线性代数5-6 用配方法化二次型为标准型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考题
化二次型 f x1 , x 2 , x 3 x1 x 2 x1 x 3 x 2 x 3 为标准形, 并写出所作的可逆线性 变换 .
思考题解答
解 由于所给二次型不含平 方项, 故令 x1 y1 y 2 , x 2 y1 y 2 , x y , 3 3 2 2 2 有 f ( y 1 y 3 ) y 2 y 3 , z1 y1 y 2 , y1 z1 z 3 , 再令 z 2 y 2 , 或 y2 z2 , z y , y z , 3 3 3 3
y1 1 0 1 z1 即 y 2 0 1 2 z 2 y 0 0 1 z 3 3

2 2 2 f 2 z1 2 z 2 6 z 3 .
所用变换矩阵为
代入 f 2 x1 x2 2 x1 x3 6 x2 x3 ,

2 2 f 2 y1 2 y2 4 y1 y3 8 y2 y3 .
再配方,得
2 f 2 y1 y3 2 y2 2 y3 6 y3 . 2 2

ቤተ መጻሕፍቲ ባይዱ

z1 y1 y3 z 2 y2 2 y3 z y 3 3 y1 z1 z 3 y2 z 2 2z3 , y z 3 3
2
x1 x2 x3 x2 2 x3 .
2 2
y1 x1 x2 x3 令 y2 x 2 2 x 3 y x 3 3
x1 y1 y2 y3 x 2 y2 2 y3 x y 3 3
x1 1 1 1 y1 x 2 0 1 2 y2 x 0 0 1 y3 3
一、拉格朗日配方法的具体步骤
用正交变换化二次型为标准形,其特点是保 持几何形状不变.
问题 有没有其它方法,也可以把二次型化 为标准形?
问题的回答是肯定的。下面介绍一种行之有 效的方法——拉格朗日配方法.
拉格朗日配方法的步骤 1. 若二次型含有 xi 的平方项,则先把含有 x i 的乘积项集中,然后配方,再对其余的变量同 样进行,直到都配成平方项为止,经过非退化线 性变换,就得到标准形; 2. 若二次型中不含有平方项,但是 aij 0 ( i j ),则先作可逆线性变换 x i yi y j k 1,2,, n且k i , j x j yi y j x y k k 化二次型为含有平方项的二次型,然后再按1中方 法配方.
2 2 2 x1 2 x1 x 2 2 x1 x 3 2 x 2 5 x 3 6 x 2 x 3 x1 x 2 x 3 2 去掉配方后多出来的项
2 2 2 2 x2 x3 2 x2 x3 2 x2 5 x3 6 x2 x3
x1 x2 x3 x22 4 x32 4 x2 x3
得标准形
2 f z1 z 2 z 2 , 2 3
所用可逆线性变换为 x1 z1 z 2 z 3 , x 2 z1 z 2 z 3 , x3 z3 .
1 1 0 1 0 1 C 1 1 0 0 1 2 0 0 1 0 0 1 3 1 1 1 1 1. 0 0 1
C
2 0.
二、小结
将一个二次型化为标准形,可以用正交变换 法,也可以用拉格朗日配方法,或者其它方法, 这取决于问题的要求.如果要求找出一个正交矩 阵,无疑应使用正交变换法;如果只需要找出一 个可逆的线性变换,那么各种方法都可以使用. 正交变换法的好处是有固定的步骤,可以按部就 班一步一步地求解,但计算量通常较大;如果二 次型中变量个数较少,使用拉格朗日配方法反而 比较简单.需要注意的是,使用不同的方法,所 得到的标准形可能不相同,但标准形中含有的项 数必定相同,项数等于所给二次型的秩.
例1 化二次型
2 2 2 f x1 2 x 2 5 x3 2 x1 x 2 2 x1 x3 6 x 2 x 3
为标准形, 并求所用的变换矩阵 .

含有 x1的项配方 含有平方项 2 2 2 f x1 2 x2 5 x3 2 x1 x2 2 x1 x3 6 x2 x3
2 2 2 f x1 2 x2 5 x3 2 x1 x2 2 x1 x3 6 x2 x3
2 2 y1 y2 .
所用变换矩阵为
1 1 1 C 0 1 2 , 0 0 1
C
1 0.
例2 化二次型
f 2 x1 x2 2 x1 x3 6 x2 x3 成标准形, 并求所用的变换矩阵. 解 由于所给二次型中无平方项,所以 x1 y1 y 2 x1 1 1 0 y1 令 x 2 y1 y 2 , 即 x 2 1 1 0 y 2 x y x 0 0 1 y 3 3 3 3
相关文档
最新文档