微生物脂肪酶的研究与应用 (1)
脂肪酶
• 三脂酰甘油和部分甘油酯水解生成脂肪酸 • 脂肪酸和甲醇酯化反应生成脂肪酸甲酯
脂肪酶的应感器 • 生物柴油
脂肪酶催化合成生物柴油
生物柴油
• 指以任何天然的油或脂为原料与甲醇、乙 醇反应得到的脂肪酸甲酯(或乙酯)混合物 • 可再生能源,当下研究热点 生物柴油原料来源
脂肪酶结构
• 组成通常只有氨基酸
• 活性中心:八联体β-折叠和两亲 的α-螺旋
• 起催化作用:“Ser-Asp/Glu-His” 三联体 马的脂肪酶结构
• 丝氨酸残基:被的α一螺旋“盖子” 保护
脂肪酶催化机理
• 界面活性——当脂肪酶暴露于油水界面时,盖子被打开,酶的活性才能被 激发
• 脂肪酶催化三脂酰甘油与低碳醇如甲醇的转酯反应在动力学上表现为连 续反应机理
脂肪酶催化合成生物柴油的优缺点
• 与酸碱等催化剂对比: 反应适宜温度较低(条件温和) 酶促反应时间较长
脂肪酶与其他催化剂对比
改进方案
• 应用固定化酶技术提高酶稳定性及回收率 • 应用全细胞催化剂缩减酶制品成本 • 通过甲醇流加的方法减少低碳醇对酶活性的抑制 • 寻找如乙酸甲酯、甲酸乙酯等酰基受体作为甲醇和乙醇的替代品 • 开发耐受高浓度短链醇的脂肪酶 • 对酶和底物进行预处理降低酶促反应时间
脂肪酶
脂肪酶
脂肪酶简介
• 水解甘油三酯 • 具有多种催化能力 • 广泛存在于动植物、微生物中 • 种类繁多 • 氨基酸组成及分子量差异较大
人的胰脂肪酶
脂肪酶功能
• 催化酯相关的反应: 酯水解 酯合成 酯交换等
脂肪酶功能
• 在生命体中的功能: 控制消化,吸收,脂肪重建和蛋白质代谢等过程 提供油料种子生根发芽所必须的养料和能量 在发酵微生物中,如黑曲霉,假丝酵母等,提供能量
微生物发酵生产脂肪酶的研究进展
微生物发酵生产脂肪酶的研究进展脂肪酶是一类在生物催化领域具有重要作用的酶类,可以催化脂肪的水解,将脂肪分解为脂肪酸和甘油。
因其在食品加工、医药、生物燃料等领域的广泛应用前景,脂肪酶的研究备受关注。
与传统的化学法相比,利用微生物发酵生产脂肪酶具有成本低、环境友好等优势,因此备受研究者的青睐。
本文将对近年来微生物发酵生产脂肪酶的研究进展进行综述,以期为相关研究提供参考。
一、脂肪酶的微生物来源微生物是脂肪酶的重要生产来源,包括细菌、真菌、酵母和其他微生物。
在近年的研究中,发现了大量的具有脂肪酶生产潜能的微生物。
革兰氏阳性细菌是脂肪酶的主要来源,如枯草芽孢杆菌、葡萄球菌等。
一些真菌和酵母菌也被广泛应用于生产脂肪酶,如毛霉属、曲霉属等。
这些微生物不仅能够在自然界中产生脂肪酶,而且在实验室条件下也可以进行有效的培养和发酵,因此被广泛应用于脂肪酶的生产中。
二、脂肪酶的发酵生产工艺微生物发酵是脂肪酶生产的主要工艺,通过在适宜的温度、pH和营养条件下培养脂肪酶生产微生物,可以获得高效的脂肪酶产量。
近年来,研究者们在提高发酵工艺的稳定性和产量上做出了许多努力。
通过优化培养基配方和发酵条件,可以显著提高脂肪酶的产量。
在控制发酵过程中的温度、pH和氧气供应等因素时,可以更好地保证脂肪酶的生产和稳定性。
还可以利用遗传工程技术改良脂肪酶的生产菌株,使脂肪酶的生产达到最佳化。
三、脂肪酶的鉴定和纯化鉴定和纯化是脂肪酶生产的重要步骤,通过这一步骤可以获得纯度较高的脂肪酶,为后续的应用和研究提供了可靠的基础。
在近年的研究中,研究者们发展了一系列高效的脂肪酶鉴定和纯化技术,如蛋白质亲和层析、离子交换层析、凝胶过滤层析等。
这些技术可以有效地降低脂肪酶的生产成本,提高脂肪酶的纯度和活性。
还可以利用基因工程技术改良脂肪酶结构,提高其稳定性和特异性,使脂肪酶更好地适应不同的应用环境。
四、脂肪酶的应用领域脂肪酶具有广泛的应用前景,在食品加工、医药、生物燃料等领域都有重要作用。
脂肪酶及其在猪上的应用研究
脂肪酶及其在猪上的应用研究
范宁
【期刊名称】《中国饲料添加剂》
【年(卷),期】2014(000)003
【摘要】脂肪酶是一种广泛存在的酶,动物和植物,甚至微生物中都含有脂肪酶。
脂肪酶主要起催化油脂降解的作用,在各个行业的应用也有多年历史,但在饲料工业中却才刚刚起步,还需要不断的研究与探索。
本文综述了脂肪酶的作用,来源及应用,并着重讨论了影响脂肪在猪肠道消化吸收的主要因素,引用了多位学者在猪上应用脂肪酶的效果,以供读者参考。
脂肪酶添加在饲料中可以提高饲料中脂肪吸收利用率,改善仔猪生产性能,补充内源脂肪酶分泌不足,在饲料中有很高的应用价值。
但脂肪酶的具体添加量,使用效果与油脂的种类是否有关还有待进一步的研究。
、
【总页数】4页(P9-12)
【作者】范宁
【作者单位】绵阳禾本生物工程有限公司
【正文语种】中文
【中图分类】S858.28
【相关文献】
1.非淀粉多糖酶在猪上的应用研究进展 [J], 向兴;刘华;马艳玲;唐行模;刘艺;张应德
2.低蛋白日粮在不同生长阶段猪上的应用研究进展 [J], 邓盾;王刚;陈卫东;马现永
3.非淀粉多糖酶在猪上的应用研究进展 [J], 向兴;刘华;马艳玲;唐行模;刘艺;张应德;;;;;;
4.非淀粉多糖酶在猪上的应用研究进展 [J], 向兴;唐行模;刘艺
5.巧克力粉部分替代乳清粉在保育猪上的应用研究 [J], 黄煜; 董翔; 周琳; 杨宽民因版权原因,仅展示原文概要,查看原文内容请购买。
微生物发酵生产脂肪酶的研究进展
微生物发酵生产脂肪酶的研究进展微生物发酵生产脂肪酶是一种重要的工业方法,用于生产脂肪酸和甘油等化学品。
在过去的几十年中,研究人员已经取得了一系列关于微生物发酵生产脂肪酶的重要进展。
本文将介绍一些最新的研究成果。
目前,最常用的微生物发酵生产脂肪酶的方法是使用真菌和细菌。
真菌主要包括浅拟青霉菌和乳酸菌,细菌主要包括大肠杆菌和枯草杆菌等。
这些微生物具有较高的脂肪酶活性和较好的产量。
通过应用发酵技术和优化培养条件,研究人员已经成功地实现了大规模的脂肪酶生产。
在微生物发酵过程中,培养条件是影响脂肪酶产量和活性的重要因素。
研究人员发现,温度、pH值、培养基成分和培养时间等因素对脂肪酶活性和产量有重要影响。
通过优化这些因素,可以显著提高脂肪酶的产量和活性。
还可以通过改变微生物菌株的基因组,进一步提高脂肪酶的产量和活性。
近年来,还出现了一些新的微生物发酵生产脂肪酶的方法。
研究人员发现一种新的产脂肪酶的微生物菌株,并通过改变其培养条件和基因组来提高脂肪酶的产量和活性。
一些研究还尝试利用遗传工程的方法,将脂肪酶的基因导入到其他微生物中,通过合成生物学方法来生产脂肪酶。
这些新的方法为微生物发酵生产脂肪酶提供了更多的选择。
微生物发酵生产脂肪酶还有一些其他的应用。
脂肪酶可以用于生产生物柴油,通过催化转化甘油中的脂肪酸酯成为生物柴油。
脂肪酶还可以用于食品工业中的食品加工,例如制作奶油和巧克力等产品。
微生物发酵生产脂肪酶不仅可以提高脂肪酶的产量和活性,还可以拓宽其应用领域。
微生物技术在化工工艺中的应用研究
微生物技术在化工工艺中的应用研究微生物技术是指利用生命体内的微生物来进行生产、制造或处理的技术。
它已经在各个领域取得了广泛的应用和研究,包括食品工业、医药工业、农业和环境保护等。
其中,在化工工艺中的应用也是非常重要的一部分。
本文将从生物催化、微生物发酵和微生物降解三个方面来详细探讨微生物技术在化工工艺中的应用研究。
1.生物催化技术在化工工艺中的应用研究生物催化是指利用微生物或其产物对生物转化化学过程进行催化和促进的技术。
它具有反应条件温和、特异性高和产物选择性好等优点,因此在化工工艺中具有广泛的应用前景。
(1)微生物酶的应用微生物酶是微生物体内产生的具有催化功能的蛋白质,广泛存在于自然界中。
利用微生物酶来催化化学反应,可以大大提高反应速率和产物纯度,减少副产物的生成。
例如,利用微生物酶来催化合成或降解有机物,可以在温和的条件下获得高产率和高纯度的产物,同时减少环境污染和能源消耗。
目前常用的微生物酶有蛋白酶、脂肪酶、纤维素酶等。
这些酶能够广泛应用于化工工艺中的催化反应,如废水处理、有机物合成等。
(2)微生物酶的改造与优化为了进一步提高微生物酶的活性和稳定性,可以通过基因工程技术对其进行改造和优化。
例如,通过对酶基因进行突变,可以获得具有更高催化活性或特定产物选择性的突变酶。
另外,也可以通过蛋白质工程技术对酶进行结构改造,例如改变酶的亲水性和亲油性等,从而改善酶的性能和催化效果。
这些改造和优化策略可以进一步提高微生物酶在化工工艺中的应用效果。
2.微生物发酵技术在化工工艺中的应用研究微生物发酵是指利用微生物代谢产生的酶、酸、醇、氨、色素等物质进行产业化生产的技术。
它具有资源丰富、操作简便和过程可控等优点,因此在化工工艺中得到了广泛的应用。
(1)微生物代谢产物的生产通过对不同微生物菌株进行筛选和培养条件的优化,可以实现对特定代谢产物的高效生产。
例如,利用发酵技术生产酒精、酮糖酮、有机酸等化学品,可以取代传统的合成方法,降低制备成本和环境污染。
脂肪酶的作用基本原理和应用领域
其他脂肪酶,胰脂肪酶,如被分泌到细 胞外空间,他们为处理成更简单的形式, 可以更容易吸收和运输整个身体的饮食 血脂。
真菌和细菌分泌的脂肪酶,以促进养分的吸 收,从外部介质(或病原微生物的例子,以 促进一个新的主机入侵)。一定黄蜂和蜜蜂 毒液含有磷脂,加强“生物损伤和炎症刺交 付有效载荷”。
制备化工产品和试剂
利用脂肪酶催化的脂水解反应、酯合成 反应或酯转移反应可以制备许多有重要 价值的化工产品。另外,脂肪酶催化的 酯交换反应还被广泛应用于油脂改良以 生产具有特殊结构与性质的油脂。
造纸工业
用脂肪酶辅以纤维素酶和木质素酶处理 纸浆可以防止树脂在干燥转鼓上的沉积, 保持纸的产量和质量,并减少处理树纸 化学品的用量 。
琼脂块培养法:
将分离培养基用灭菌的打孔器制作成许 多单个的直径约的小琼脂块,排放在干 净的培养皿内,将套选的菌株接种在这 些小琼脂块上培养,让其充分生长。
然后依次再将长满菌的小琼脂块放到酶 活测定板上,28℃培养1-3d,观察各菌 落周围油脂水解圈的大小,水解菌越大, 酶活越强,将水解圈大的菌株纯化后保 存在斜面培养基上。
复筛选方法——摇瓶培养
种子培养基→发酵培养基→收集菌体和上清 液,分别测酶活。
酶活的测定:
在给定的时间内,脂肪酶酶活大小与其催化 水解生成的脂肪酸的量成正比。脂肪酶酶活 的测定方法很所,根据原理不同,其中酸碱 滴定法和分光光度法最为常用,常用的分光 光度法有铜皂显色法和对硝基苯酯法。
测定脂肪酶酶活常用方法的比较
品化生产的脂肪酶并不适合于饲料用。
脂肪酶的类型和生理分布情况
大多数脂肪酶的行动特定位置上的脂至底物 (小肠)甘油骨干。列入,人体胰腺酶。只 是主要的酶,能分解人体消化系统中的膳食 脂肪。转换成单甘酶和两种脂肪酶的摄入由 衷的甘油三脂基板。其他及中国类型那个的 脂肪酶的活性存在于自然中 如磷脂和鞘磷脂, 然而,这些通常是从 传统的脂肪酶 分别对 待。
产脂肪酶微生物的筛选及脂肪酶基因的克隆表达
产脂肪酶微生物的筛选及脂肪酶基因的克隆表达产脂肪酶微生物的筛选及脂肪酶基因的克隆表达摘要:脂肪酶是一类催化脂肪水解的酶,广泛应用于食品、制药和生物工程等领域。
本文旨在概述产脂肪酶微生物的筛选方法以及如何克隆和表达脂肪酶基因。
通过筛选出高产脂肪酶的微生物,并利用基因克隆技术将其基因表达,可以为大规模生产纯脂肪酶提供基础。
1. 引言脂肪酶是一种催化脂质的水解反应酶,广泛存在于微生物中。
它们通过将脂肪酯水解为脂肪酸和甘油,起到重要的催化作用。
因此,寻找高产脂肪酶的微生物,并将其脂肪酶基因克隆和表达,具有重要的应用价值。
2. 产脂肪酶微生物的筛选产脂肪酶的微生物广泛存在于土壤、水体和动物消化系统等环境中。
筛选产脂肪酶微生物的方法主要有:直接筛选法、改进筛选法和基因工程筛选法。
2.1 直接筛选法直接筛选法是最常见也是最简单直接的方法之一。
通过将微生物菌株进行培养,然后检测菌液中产酶能力。
其中,利用酶抑制剂和显色剂的方法可以进行定性和定量的检测。
该方法的优点是操作简便,易于操作。
2.2 改进筛选法改进筛选法通过加入酶诱导剂、化合物诱导剂和高浓度含油样品等方式,提高产脂肪酶的微生物菌株筛选效果。
例如,可使用大豆油、浓缩桔子油等作为诱导剂,增强菌株胞外酶的产酶能力。
2.3 基因工程筛选法基因工程筛选法是利用基因工程技术构建含有脂肪酶基因的表达载体,转化到宿主菌株中,使其表达目标基因并产生脂肪酶。
这种方式可通过对基因进行改造和优化,提高脂肪酶活性和稳定性。
同时,基因工程筛选法还可以利用高通量筛选技术,如流式细胞术和高通量测序技术,提高筛选效率。
3. 脂肪酶基因的克隆和表达脂肪酶基因的克隆和表达是关键步骤,它们可以为脂肪酶的高效生产提供基础。
3.1 脂肪酶基因的克隆脂肪酶基因的克隆可以通过PCR扩增、限制性内切酶切割和连接等方法实现。
首先,从目标微生物的基因组DNA或环境DNA中提取目标基因的DNA序列。
然后,使用特异性引物进行PCR扩增,得到目标基因的DNA片段。
微生物脂肪酶的性质及应用
第 6 卷 第 3 期2020 年 6 月生物化工Biological Chemical EngineeringVol.6 No.3Jun. 2020微生物脂肪酶的性质及应用汪玲(湖北工业大学生物工程与食品学院,湖北武汉 430000)摘 要:脂肪酶能够催化水解反应,同时具有很多其他生物酶的性质。
与动物或植物来源的脂肪酶相比,微生物脂肪酶具有产量更大、提取更方便、受外界影响较小等特点,其应用范围更加广泛。
因此,本文对微生物脂肪酶的性质进行研究,并阐述其重要的应用场景。
关键词:微生物;脂肪酶;性质,应用中图分类号:TS201.25 文献标志码:AStudy on the Properties and Application of Microbial Fecal EnzymesWang Ling(School of Bioengineering and Food, Hubei University of Technology, Hubei Wuhan 430000)Abstract: Lipase can not only catalyze the hydrolysis reaction, but also has the properties of many other biological enzymes. Compared with animal or plant sources, the application range of microbial lipase is larger, the extraction is more convenient, and it is less affected by the outside. This article studies the properties of microbial lipases and describes their important application scenarios.Key words: Microorganism; Lipase; Properties; Application脂肪酶在多种动植物及微生物中都广泛存在,可以通过分离提取的方式获得。
微生物发酵生产脂肪酶的研究进展
微生物发酵生产脂肪酶的研究进展脂肪酶是一种通过加速脂肪的加水分解而使其水解成胆固醇、甘油、游离脂肪酸等组分的生物催化剂。
脂肪酶已经广泛应用于食品、乳制品、制药、皮革等行业,因此其生产研究具有重要意义。
微生物发酵是目前最主要的脂肪酶生产方法之一,本文详细介绍了微生物发酵生产脂肪酶的研究进展。
1. 常用微生物种类微生物发酵生产脂肪酶常用的微生物种类有真菌、细菌、放线菌、酵母等。
其中最常用的微生物是霉菌和细菌。
霉菌对不同类型的底物都具有良好的酶活性,但是其生长速度较慢,反应时间长。
细菌则生长速度快,能够迅速产生大量的酶,但是它们的适应能力较差。
2. 脂肪酶生产工艺流程微生物发酵法生产脂肪酶的具体工艺流程大致分为以下几个步骤。
(1)培养基的制备:首先需要制备含有所需营养物质的培养基。
一般来说,优质的培养基含有碳源、氮源、微量元素、维生素等。
(2)微生物的接种:将所选的微生物菌株接种到培养基中,并进行预培养。
(3)发酵过程中的条件调控:这一步的关键在于对发酵过程的控制,包括温度、pH 值、培养时间等因素。
(4)分离纯化:分离、纯化和测量酶的本质是为了得到高纯度、活性较高的脂肪酶产品。
3. 研究进展(1)发酵条件的优化脂肪酶活性的提高对生产工艺的产率和经济效益都有着重要的意义。
为此,研究者通过对发酵温度、pH值、氮源等条件进行优化,成功提高了脂肪酶的产量和酶活。
例如,Jamil Khaskheli等发现,酵母菌Candida rugosa生产脂肪酶的酶活性受到温度影响较大,并在32℃的条件下达到最大值。
(2)遗传工程改造遗传工程技术在脂肪酶生产领域也已经得到广泛应用。
相关研究表明,基于DNA重组技术可以对脂肪酶的生产菌株进行改造,提高酶的稳定性和催化效率。
例如,一项由瑞典Karolinska Institute的研究人员完成的研究表明,通过在大肠杆菌中表达脂肪酶基因,可以显著提高脂肪酶的产量和催化效率。
(3)新型菌株的筛选与发现是时候采用新型菌株用于脂肪酶生产。
脂肪酶的概述及应用
脂肪酶的概述与应用一脂肪酶概述、脂肪酶〔Lipase,甘油酯水解酶〕隶属于羧基酯水解酶类,能够逐步的将甘油三酯水解成甘油和脂肪酸。
脂肪酶存在于含有脂肪的动、植物和微生物〔如霉菌、细菌等〕组织中。
包括磷酸酯酶、固醇酶和羧酸酯酶。
脂肪酸广泛的应用于食品、药品、皮革、日用化工等方面脂肪酶广泛的存在于动植物和微生物中。
植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的缺乏,在肉食动物的胃液中含有少量的丁酸甘油酯酶。
脂肪酶是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反响,除此之外还表现出其他一些酶的活性,如磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶活性等〔Hara;Schmid〕。
脂肪酶不同活性的发挥依赖于反响体系的特点,如在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。
脂肪酶的性质研究主要包括最适温度与pH、温度与pH稳定性、底物特异性等几个方面。
迄今,已别离、纯化了大量的微生物脂肪酶,并研究了其性质,它们在分子量、最适pH、最适温度、pH和热稳定性、等电点和其他生化性质方面存在不同〔Veeraragavan等〕。
总体而言,微生物脂肪酶具有比动植物脂肪酶更广的作用pH、作用温度*围,高稳定性和活性,对底物有特异性〔Schmid等;Kazlauskas等〕。
脂肪酶的催化特性在于:在油水界面上其催化活力最大,早在1958年Sarda和Desnnelv 就发现了这一现象。
溶于水的酶作用于不溶于水的底物,反响是在2个彼此别离的完全不同的相的界面上进展。
这是脂肪酶区别于酯酶的一个特征。
酯酶〔〕作用的底物是水溶性的,并且其最适底物是由短链脂肪酸〔≤C8〕形成的酯。
脂肪酶的生产原理及应用
脂肪酶的生产原理及应用前言脂肪酶是一种酶类,其主要作用是加速脂肪的降解反应。
脂肪酶的生产原理和应用在生物技术领域中具有重要的意义。
本文将介绍脂肪酶的生产原理以及其在食品、医药和环境等方面的应用。
生产原理脂肪酶的生产主要通过微生物发酵得到。
下面将介绍脂肪酶的生产原理。
1.微生物选择:选择合适的微生物菌株对脂肪酶的生产至关重要。
常用的微生物菌株有放线菌、毛霉、酵母等。
2.培养基配方:合理的培养基配方是脂肪酶生产的基础。
培养基中应提供合适的碳源、氮源、矿物盐和生长因子。
3.发酵条件控制:合理的发酵条件对脂肪酶的生产影响巨大。
发酵温度、pH值和发酵时间是影响脂肪酶生产的关键因素。
一般来说,脂肪酶在温度为30-40℃,pH值为7-8的条件下生产效果较好。
4.酶提取和纯化:经过发酵得到的发酵液中含有脂肪酶,需要提取和纯化以得到高纯度的酶。
常用的方法有沉淀法、超滤法等。
脂肪酶的应用脂肪酶在食品、医药和环境等领域具有广泛的应用。
下面将介绍脂肪酶在不同领域中的应用情况。
食品领域1.食品加工:脂肪酶可用于食品加工过程中的油脂酯化反应和水解反应,用于改善食品的质地、口感和保鲜性。
2.乳制品工业:脂肪酶可用于乳制品中乳脂肪的酯化反应,用于改善乳品的风味和乳脂质的稳定性。
3.面包工业:脂肪酶可用于面包制作过程中的面糊脂肪分解,用于改善面包的质地和延长保鲜期。
医药领域1.药物制剂:脂肪酶可用于药物制剂的制备过程中的脂肪酯水解反应,用于改善药物的溶解性和生物利用度。
2.肥胖症治疗:脂肪酶可用于治疗肥胖症,通过促进脂肪的降解和消化,达到减重的目的。
环境领域1.油污处理:脂肪酶可用于油污处理过程中的脂肪降解反应,用于减少油污对环境的污染。
2.生物柴油制备:脂肪酶可用于生物柴油的制备过程中的酯交换反应,用于提高生物柴油的产量和质量。
总结脂肪酶的生产原理主要通过微生物发酵得到,需要选择合适的微生物菌株、合理的培养基配方以及控制合适的发酵条件。
微生物脂肪酶在动物饲料中的应用研究
1 2
养 猪 S N R D C I N( WI EP O U TO 5 )
2 1 01
3 微生物脂肪酶在动物饲料 中的应用 含 8 %牛油 的玉米 一 豆粕 型基础 饲 粮 中添 加 不 同水 脂肪 酶是脂肪代谢最 基本 的酶 , 若缺乏将 会危 平 脂肪 酶 (、O 4 、O 6 、0 、0 、0 /) 结 果 0 2 、0 5 、0 10 20 4 0U g , 及机体健康 。单 胃动物 自身能够分泌脂肪酶 ,但幼 表 明, 添加脂肪 酶对 肉仔鸡 、 火鸡 日增重 、 料转化 饲 龄动物消化机能 尚未发育健全 , 脂肪酶分泌量不足 , 率和 脂肪消化率 负相关 , 且添 加越 多, 副作 用越大 , 限制 了其对脂肪 的利用 ,而成年家畜 内源性脂肪酶 这可能是 因为其脂肪酶添加水平过高 的缘故 。
3 微 生物脂肪酶在其他动物饲料 中的应 用 . 3 刘善庭 (0 7 【研究 1 7日龄 的滩羊 羔羊对 2 0 )q - 31 脂肪酶饲 料消化率的影响 , 对照组饲喂牛奶粉 , 试验 组在对照 组基础上添 加脂肪酶 40 0Uk ,结果表 0 /g 明, 脂肪酶 组的采食量 、 日增重 、 料消化 率等都 显 饲 著 高于对照组 (l . ) 尸 0 5 。杨新文等 ( 1)憾 验研究 <0 2 0[ 0 t 发现, 在脂肪水平为 1% 的南方鲇饲料中添加 o g 0 3 的脂肪 酶, 可以显著提 高胰脂 肪酶活力 (< . ) 提 P0 5, 0 高脂肪 消化率 (l . ) 改善饲料利用 率 (l . ) 尸0 5 , <0 尸0 5 。 <0 谷金皇等 ( 1)8 2 0 [在瓦氏黄颡鱼试验 中添加 0 /g 0 1 1 . g【 3 l 的脂肪酶, 得到 的结果也与杨新文等 (O 0【 似 。 2 1 )啪 1
微生物酶技术在食品加工与检测中的运用
微生物酶技术在食品加工与检测中的运用随着生物技术的不断发展,微生物酶技术在食品加工与检测中的运用越来越广泛。
微生物酶技术是指利用微生物产生的酶对食品进行加工和检测的技术。
微生物酶具有高效、特异性强、可持续生产等优点,被广泛应用于食品加工与检测领域。
本文将从微生物酶的特性、在食品加工中的应用及在食品检测中的运用等方面进行探讨。
一、微生物酶的特性1.高效性:微生物酶具有高效催化作用,能够在较低的温度和压力下完成反应,提高了生产效率。
2.特异性强:微生物酶具有针对性,能够选择性地作用于特定的底物,降低了反应的副产物,提高了产品纯度。
3.可持续生产:微生物酶可以通过发酵的方式进行大规模生产,且具有较长的有效期,保证了产品质量。
4.对环境友好:微生物酶的制备和应用过程中产生的废弃物对环境影响较小,符合可持续发展的理念。
1. 蛋白酶在食品加工中的应用蛋白酶是一类能够催化蛋白质水解的微生物酶,被广泛用于食品加工中。
利用蛋白酶可以在奶酪生产中加速凝固过程,提高产量和减少制作时间;在肉制品加工中,蛋白酶可以软化肌肉组织,改善食品口感;在面包制作中,蛋白酶可以改善面团的流变性质,提高面包的品质。
糖化酶是一类能够降解淀粉和糖类的微生物酶,被广泛用于食品加工中。
在酿酒工艺中,糖化酶可以促进淀粉的糖化过程,提高酒精发酵效率;在生产果汁和饮料中,糖化酶可以降低果胶和纤维素的浓度,提高果汁的透明度和口感;在烘焙食品中,糖化酶可以促进淀粉的水解,提高产品的口感和保质期。
脂肪酶是一类能够加快脂肪水解反应的微生物酶,被广泛用于食品加工中。
在乳制品加工中,脂肪酶可以降低乳脂的粘度,提高奶油和黄油的稳定性;在食用油加工中,脂肪酶可以降低油脂的酸价,提高产品的质量和口感。
1. 快速检测方法利用微生物酶技术可以开发出一系列快速检测方法,如酶标记抗体法(ELISA)、酶标记免疫分析法(EMIT)等。
这些方法可以快速、准确地检测食品中的有害物质,为食品安全提供可靠的保障。
产脂肪酶菌株的筛选及其固定化的研究
产脂肪酶菌株的筛选及其固定化的研究随着人们生活方式的改变和食物极限的提高,肥胖和心脑血管疾病等疾病也日益增多。
白领和学生等群体中,人们的饮食习惯和健康状况引起了更多的关注。
研究表明,脂肪酶能够降低脂肪的含量,对于健康人群以及需要减肥的人来说,这种酶被应用广泛。
因此,本文主要讨论如何通过菌株的筛选和固定化研究,实现产脂肪酶的目标。
1.产脂肪酶菌株的筛选(1)菌株分类首先我们需要得到具有脂肪酶产生能力的微生物株。
目前,研究人员从不同来源的环境中筛选得到脂肪酶分解菌株。
一般来说,脂肪酶菌株按照细菌、真菌、酵母菌的类型划分。
以细菌领域为例,产脂肪酶的细菌具有广泛的分布。
研究表明,主要包括属于芽孢杆菌属(Bacillus)、乳酸菌属(Lactobacillus)、放线菌属(Streptomyces)、泥炭菌属(Pseudomonas)等。
其中,芽孢杆菌属的应用比较广泛。
其次,酵母菌的产酶能力比较强,因此也是研究的热点对象。
真菌也是研究的对象之一。
上述微生物大多数有代表性的株系都已经分离鉴定过程中分离纯化和筛选中,通过选择合适的产酶基质,调节适宜的菌株培养环境,确定了不同的产酶体系。
基于活性、脂肪酶酶特异性和影响、菌株生产含量等方面着手,最终确定了适宜的菌株,如Bacillus subtilis CICC 40224,Bacillus pumilus CICC 1316。
(2)筛选菌株的影响因素1.酸碱度:脂肪酶的酸碱度是影响酶活性的一种因素,特别是在温度较高的条件下,酸碱度会对酶的活性和稳定性产生较大的影响。
2.温度:温度也是影响脂肪酶活性的因素之一。
根据研究,脂肪酶在40-50℃时的活性最为理想。
3.基质:脂肪酶对基质的种类和特性有一定的要求。
研究表明,基质的溶解度、分子大小、分子构型等因素会影响脂肪酶的分解能力。
4.浓度:产酶菌株的营养状态也会影响到它的产酶性能。
不同浓度的培养基对产酶菌株的贡献不同,太浓或太稀的培养基均会对脂肪酶的产生产生不利影响。
微生物脂肪酶的研究进展及其在食品工业中的应用
微生物脂肪酶的研究进展及其在食品工业中
的应用
微生物脂肪酶是指在微生物体内或分离出来的酶,其具有水解脂肪酸甘油酯的能力,被广泛地应用于食品工业。
随着生物科技的发展和应用,对微生物脂肪酶的研究也得到了不断的深入。
首先,关于微生物脂肪酶的研究进展,研究者们发现,微生物脂肪酶不仅可以水解三酰甘油,还能够水解低级脂肪酸甘油酯和胆固醇酯等,并具有对增味剂、色素和防腐剂的降解作用。
可见,微生物脂肪酶不仅具有高效水解作用,还具有其他处理功能的应用前景。
另外,微生物脂肪酶在食品工业中的应用也越来越广泛,如乳品和油脂加工等领域。
其中,在乳脂肪中加入微生物脂肪酶可增加奶油香味和口感,改善奶油的品质;在食用油中添加微生物脂肪酶,则可去除脂肪酸和不饱和脂肪酸等杂质,提高食用油的稳定性和口感。
综上所述,微生物脂肪酶的研究和应用前景广阔,将为食品工业的发展带来新的机遇和挑战。
脂肪酶综述范文
脂肪酶综述范文脂肪酶是一类能够催化脂肪分解的酶,它在生物体中起到重要的作用。
本文将就脂肪酶的结构、功能和应用展开综述,以及一些相关的研究进展。
脂肪酶是一类水解酶,它主要催化甘油脂的水解反应,将甘油和脂肪酸分解成甘油和游离脂肪酸。
脂肪酶的分解作用对于生物体的能量供应和营养吸收非常重要。
在人体中,脂肪酶主要存在于胰液和肠道中,协助脂肪的消化吸收。
此外,脂肪酶还能催化其他脂质类物质的水解,如酯、磷脂等。
脂肪酶的结构非常多样,包括蛋白质、糖蛋白、脂质部分和辅助因子等。
研究表明,脂肪酶的活性主要与其催化部位和辅助因子有关。
催化作用的部位主要是一些亲水性氨基酸残基,如丝氨酸、谷氨酸等。
辅助因子则可以改变酶的构象、稳定其活性或提供其它功能。
此外,脂肪酶的结构与功能也受到基因的调控。
脂肪酶在医学和食品工业中有着广泛的应用。
在医学领域,脂肪酶在临床诊断、药物研发和治疗等方面发挥着重要作用。
例如,通过检测血液中的脂肪酶活性可以帮助诊断胰腺炎、胆囊炎等疾病。
在药物研发方面,脂肪酶也是一个重要的靶点,许多抗肥胖和抗高脂血症药物的研究与脂肪酶的抑制有关。
此外,脂肪酶还可以用于脂肪酸的合成、生物柴油的生产等方面。
近年来,关于脂肪酶的研究也取得了很大的进展。
通过对脂肪酶基因的研究,科学家们发现了与肥胖、高脂血症等疾病相关的突变,并开展相应的治疗研究。
此外,一些研究还表明脂肪酶在肠道微生物的代谢中起着重要作用,通过改变脂肪酶的活性或者菌群的结构,可以影响人体的脂质代谢和肠道健康。
综上所述,脂肪酶是一类能够催化脂肪分解的重要酶类。
它的结构和功能多样,在医学和食品工业等领域有着广泛的应用。
近年来,与脂肪酶相关的研究也取得了很大的进展,为深入理解脂肪代谢和相关疾病的发生提供了重要的理论和实证依据。
随着研究的不断深入,相信脂肪酶的结构和功能将会揭示更多的秘密,为相关领域的应用和治疗提供更多的可能性。
微生物发酵生产脂肪酶的研究进展
微生物发酵生产脂肪酶的研究进展概述脂肪酶是一种重要的酶类,在工业生产中具有广泛的应用价值。
它能够在水和油脂界面上催化水解和合成酯化反应,常用于食品、医药、皮革、纺织等行业。
微生物发酵生产脂肪酶是目前最主要的脂肪酶生产方式之一,由于其生产过程易于操作、生产成本较低,且酶活性高,因此备受关注。
本文将对微生物发酵生产脂肪酶的研究进展进行探讨。
微生物来源微生物种类的选择对脂肪酶的生产具有非常重要的影响。
目前常用的产脂肪酶的微生物种类包括真菌、细菌和酵母菌等。
真菌是脂肪酶生产的重要来源之一,如青霉菌、曲霉菌、酵母菌等,这类微生物具有较高的脂肪酶产量和较高的酶活性。
细菌属和酵母属中也有一些菌株能够高效产生脂肪酶。
选择合适的微生物来源是微生物发酵生产脂肪酶的首要条件。
发酵条件的优化发酵条件的优化对脂肪酶的产量和酶活性有着直接的影响。
在微生物发酵生产脂肪酶的过程中,温度、pH、培养基成分和发酵时间等因素均会对生产效果产生影响。
研究人员通过对这些因素的调控和优化,以提高脂肪酶的产量和酶活性。
通过利用实验设计方法,对微生物发酵生产脂肪酶的影响因素进行系统优化,可以得到最佳的发酵条件,从而提高脂肪酶的产量和酶活性。
基因工程技术的应用随着基因工程技术的不断发展,将其应用于微生物发酵生产脂肪酶已成为目前的研究热点之一。
通过对脂肪酶基因的克隆、表达和改良,可以获得产量更高、酶活性更强的脂肪酶。
利用重组DNA技术将脂肪酶基因导入高产酶的真菌或细菌中,可以显著提高脂肪酶的产量和酶活性。
还可以通过对脂肪酶基因进行改良,获取具有更适应工业生产需求的脂肪酶。
提高产酶菌株的筛选筛选高效产酶菌株是微生物发酵生产脂肪酶的关键一步。
传统的筛选方法主要依赖于培养基中蛋白质、酯酶可诱导表达的碳源。
近年来, 一些研究人员通过利用高通量筛选技术, 对大量菌株进行筛选, 以获取具有高脂肪酶产量和较高酶活性的微生物菌株。
例如, 利用背景荧光素分子检测技术, 可以对高产酶菌株进行快速筛选, 从而提高了筛选的效率。
低温微生物脂肪酶的研究进展
工业化 生产和获得纯 度制剂, 所以比 植物 动 脂肪酶 理论研究 在酶 和实
际应用中有着更为重要的作用.近五年来, DERWERT 生物技术 仅被 文摘收录的脂肪酶文献就多达4001 多篇, ) 其中日 美国的专利文献 本、
示了其巨大的应用潜力。 2、 产低温微生物脂肪酶菌株的筛选 根据相关文献报道, 产微生物脂肪酶菌种的研究主要集中在根
吏1
在许多 领城得到了 广泛的应用。本文从微生物脂肪酶的功能、 筛选的影响因素、 结构特征和化学修饰、 诱变和提取分离方法、 固定 化、 研究现状进行了 论述, 这对于广大的科研工作者具有一定的参考价值。
[摘 要l低 条 下 生 脂 醉 有 效封 、用 期 等 势 独 的 温 应 制 中 温 肪 无 替 的并 温 件 徽 物 肪 具 高 、热作 周 短 优 .其 特 低 适 机 是 高 脂 醉 法 代 ,
[关键词」温 生 脂 酶 能 变 取 分 低 微 物 肪 ;功 ;诱 ;提 和 离
1、 微生物脂肪酶的功能和研究历史
脂肪酶(Iipase,EC3.1.13, 甘油醋 解酶) , 解生物产 各种天 水 分 生的
然的油和脂肪, 是一类特殊的酷键水解酶, 主要水解由甘油和 12 碳原 子以上的不溶性长链脂肪酸形成的甘油三酷, 催化的反应式是三酸甘 油醋和水在脂肪酶的作用下生成二酸甘油醋和脂肪酸 。其另一个催 化特征功能是一种专门在异相系统油水界面上水解特殊酷类的酶, 对 均匀分散的或水溶性底物不起作用, 以底物甘油三酷中 1位或3 位和 2 位酷键的识别和水解反应性 一 酷键位置专一性最为关键, 这是脂肪 酶区别于M酶的一个特征。 H 脂肪酶广泛存在于各种动植物的组织中和 各种微生物中, 它是最早研究的酶类之一, 动植物脂肪酶于十九世纪 被首次报道, 而微生物脂肪酶则是在本世纪被发现和研究当中, 几乎 所有的微生物都有合成脂肪酶的能力,只是合成的能力不同而已, 由 于微生物脂肪酶种类多, 来源广, 周期短, 作用高效, 具有比动植物脂 肪酶广的PH 值, 作用温度范围和对底物的专一性类型, 又便于进行
脂肪酶在面包和馒头中应用研究进展
FOOD AND FERMENTATION INDUSTRIESDOI:10.13995/ki.11-1802/ts.029270引用格式:王新伟,成高民,李蕊,等.脂肪酶在面包和馒头中应用研究进展[J].食品与发酵工业,2022,48(11):332-337.WANG Xinwei,CHENG Gaomin,LI Rui,et al.Recent application of lipase in bread and steamed bread:A review[J].Food and Fermentation Industries,2022,48(11):332-337.脂肪酶在面包和馒头中应用研究进展王新伟,成高民,李蕊,赵仁勇*(河南工业大学粮油食品学院,河南郑州,450001)摘要脂肪酶具有环保、安全、高效等优点,运用新型脂肪酶来改善面包和馒头品质成为国内外研究的热点之一。
脂肪酶在面包和馒头体系中的作用底物是脂类,脂类是面粉中的次要成分,但其种类和含量影响着产品的特性和质量。
脂肪酶的添加使体系中产生极性脂,适量极性脂会增加面包中气室的稳定性,增大面包体积。
该文简述了面粉中内源性脂的种类及其功能效应、脂肪酶的催化机制及其在发酵面制品中作用底物、脂肪酶对面包和馒头等发酵制品品质的影响等,指出了脂肪酶对馒头和面包品质改良机制的研究,将是未来脂肪酶在面包和馒头中应用的研究方向。
关键词馒头;面包;脂肪酶;脂质;极性脂;非极性脂馒头是深受中国人民喜爱的传统主食之一。
由于环境温度、制作条件以及原粮小麦品质的不稳定性等因素的影响,馒头的品质很难得到保证。
在馒头工业化生产中,经常出现表皮龟裂、有气泡;颜色发暗、发黄;内部结构不均匀或有大孔洞等问题。
因此,为了改善和提高馒头品质,在原料面粉或馒头制备过程中需添加各种添加剂,如乳化剂⑷、碱⑷、酶制剂⑷和增白剂⑷等。
随着科技的发展和人们安全意识的提高,馒头中添加剂的使用要求越来越严格,运用新型酶制剂来改善面制品品质成为国内外研究的热点之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DOI:CNKI:11-1759/TS.20120210.1743.006 网络出版时间:2012-02-10 17:43网络出版地址:/kcms/detail/11.1759.TS.20120210.1743.006.html微生物脂肪酶的研究与应用刘虹蕾,缪铭,江波 ,张涛(江南大学食品科学与技术国家重点实验室,江苏无锡214122)摘要:脂肪酶是一类能够催化酯的水解反应以及在非水相体系中催化脂肪酸和醇类发生酯化反应的酶类。
随着酶学技术的快速发展,微生物脂肪酶也受到了越来越多的关注。
作为生物催化剂,脂肪酶一直以来都是生物技术领域中最重要的一类酶。
本文探讨了脂肪酶的来源、理化性质、脂肪酶活力测定,同时对脂肪酶的非水相催化特性以及脂肪酶在食品工业,医药、洗涤剂、皮革、造纸和生物柴油工业领域中的应用进行了讨论。
关键词:脂肪酶;酶活测定;非水相;食品工业应用Research and applications of microbial lipasesLiu Hong-lei, Miao Ming, Jiang Bo, Zhang Tao(State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China) Abstract: lipases are a class of enzymes which catalyse the hydrolysis of esters and esterification of fatty acid andalcohol. Lipases constitute the most important group of biocatalysts for biotechnological applications. This reviewdescribes physicochemical origin and properties of lipases, lipase activity determination, catalytic properties oflipases in nonaqueous phase and various industrial applications of microbial lipases in the food, pharmaceuticals,detergent, leather, papermaking and biodiesel.Key words: lipases; lipase actiity determination; Nonaqueous phase; food industrial applications脂肪酶(三酰甘油酯水解酶,EC 3.1.1.3),是一类广泛存在于多种微生物中的生物催化剂。
脂肪酶最早被发现可追溯至1901年,其天然作用底物为三脂酰甘油酯,能够将酯键水解,释放甘油二酯,甘油一酯,甘油以及游离脂肪酸。
随着非水酶学的发展,研究者发现,脂肪酶在非水相中能够催化酯化、酯交换以及转酯化反应,并且具有高度的选择性和专一性,已广泛应用于食品、医药、洗涤剂等行业。
特别是在食品行业中得到了大量的应用,并逐渐成为食品领域中应用最为广泛的酶类之一。
但是,由于目前脂肪酶相对于传统的化学催化剂的生产成本仍然偏高,这是制约脂肪酶工业化应用的主要问题,因此,在了解脂肪酶催化特性的基础上,通过筛选高产菌株,或者改变脂肪酶催化环境等方法提高脂肪酶的产率和利用率,降低利用脂肪酶进行工业化生产的成本是目前急需解决的主要问题。
1 脂肪酶简介1.1 脂肪酶的来源脂肪酶是一种普遍存在于生物体的酶类,具有重要的生理学意义,同时也具有工业化应用的潜在可能性。
脂肪酶能够催化三酰甘油酯水解成为甘油和游离脂肪酸。
而在有机相中,脂肪酶则催化酯化,酯交换以及转酯化反应。
在真核生物体内,脂肪酶参与许多类脂化合物的代谢过程,包括脂肪的消化、吸收、利用以及脂蛋白的代谢。
在植物中,脂肪酶存在于储存能量的组织中。
脂肪酶在微生物界分布很广,大约65个属微生物可产脂肪酶,其中细菌有28个属、放线菌4个属、酵母菌10个属、其它真菌23个属,但实际上微生物脂肪酶分布远远超过这个数目[1]。
收稿日期:2011-08-29 *通讯联系人作者简介:刘虹蕾(1987-),女,硕士研究生,主要从事应用酶技术研究。
1.2 常用微生物脂肪酶目前,已经商品化的脂肪酶种类,拒不完全统计约36种,其中植物性来源的不超过5种,其余均来源于微生物,其中既包括多种游离脂肪酶也包括固定化脂肪酶。
几种常见的微生物脂肪酶及其催化特性如表1所示:表1 常见脂肪酶及其催化特性The catalytic properties of common lipases酶的商品名称酶的来源最适温度最适pH 主要用途Novozym435 南极假丝酵母70-80℃N.A. 手性催化、酯合成、酯交换Lipozyme TLIM 嗜热丝孢菌50-65℃N.A. 酯合成、酯交换Lipozyme RMIM 米黑根毛酶65-70℃N.A. 手性催化、酯合成Lipase AY30G 皱褶假丝酵母45℃7.0 油脂水解、酯合成、酯交换酶的构象发生改变,从而使脂肪酶的催化活性得到提高;相反,如果金属离子对酶的必需基团、活性部位生物活性的化学特性产生不利影响,或者对蛋白质分子以及蛋白质与其他物质之间的共价键产生破坏作用,就会使酶的活性受到抑制或者完全失活。
Chartraint发现P.aeruginosa MB5001脂肪酶活性会被ZnSO4强烈抑制,CaC12和牛磺胆酸则对该酶活性则会起到促进作用。
许多研究表明,金属离子对于脂肪酶活性具有一定影响,但鳌合剂(如EDTA等)对于酶活性影响并不像金属离子那样明显。
1.5 新型微生物脂肪酶的开发前面已经提到,脂肪酶的来源非常广泛,多种微生物都能用于生产脂肪酶。
随着生物催化研究的不断深入,脂肪酶应用领域迅速扩展。
然而,能够用于特定催化反应的脂肪酶数量并不多,或者催化活力不高,因此有关脂肪酶生产菌株的选育、脂肪酶的分子改造、脂肪酶的筛选和产酶条件研究仍然是目前研究的热点。
对新型微生物脂肪酶的挖掘和对已有微生物的产酶特性或者酶的改造是目前解决问题较为有效的方法。
对于新型微生物脂肪酶的挖掘是目前酶学领域许多专家学者的研究热点,大多对耐极端环境或对特殊环境具有耐受活力的微生物进行研究,通过传统筛选手段筛选出某种特殊用途的脂肪酶。
国外研究者在这一领域做出了非常有意义的工作。
由于脂肪酶通常作用温度较高,因此具有优良低温活性的脂肪酶成为研究新热点。
Rashid等[3]人研究报道了从深海中筛选到一株产低温脂肪酶的适冷假单胞菌,所产脂肪酶酶活性最适温度为35℃。
而为了得到适合于有机相催化的新型脂肪酶,Cardenas等人从969株菌中筛选得到10株脂肪酶生产菌,这些脂肪酶在水相和有机相中都具有活性。
随后又从从2000株菌中筛选得到40株菌,这些菌所产脂肪酶在有机相中能拆分多种手性酸。
而对已有微生物的产酶特性或者酶的改造一般采用两种手段:一种是纯化得到酶蛋白后,从蛋白的基因水平上认识该酶,然后对该酶的基因进行克隆表达或者改造;另一种手段是采用传统的诱变方法对微生物进行诱变处理,然后在研究产酶机制的基础上对酶的生产进行调控,使得微生物高产脂肪酶。
最常用的是采用紫外诱变处理微生物菌株,经处理后微生物所产酶酶活可以提高几倍到数倍。
除了传统的紫外诱变外,研究者也在积极探索一些新的诱变选育方法,如快中子,原生质体诱变以及离子束诱变等等。
前一种改造手段是一种发展趋势,但存在研究成本高,研究周期长等缺点;后者所采用的手段和技术相对较经济,处理方法简单,能在较短的时间内达到预期目的。
因此在分子生物学快速发展的时代,传统诱变和筛选方法仍是国内外育种工作者的首选。
2 脂肪酶活力的分析方法目前已经发展出了很多的测定粗酶或者是纯的脂肪酶酶活力测定方法。
测定的主要基于两种原理,一种是测定底物三酰甘油酯的消失速度,另一种则是测定脂肪酸或者是乳状液澄清的速率。
2.1 固体培养基测定法测定在制作琼脂平板时加入脂肪酶的底物及有色指示剂。
在琼脂平板上点上待测脂肪酶(打孔加样或滤纸片点样),在脂肪酶水解作用下,加样点的周围出现透明圈(或颜色褪去)。
根据透明圈(或褪色圈)的大小及透明(或褪色)程度用于判断脂肪酶的活性大小[4]。
这种方法主要用于定性,例如产脂肪酶微生物的筛选、脂肪酶活性的初步判断等,如果用于定量,那么就应采用标准活性酶在同一测定平板中进行对照测定,才可消除测定的系统误差。
此法的优点是简单、直观,但是存在测定时间长,测定结果不能够准确定量的缺点。
可以用于脂肪酶活力固体培养基测定法的指示剂有维多利亚蓝、醇溶青、硫酸尼罗蓝以及夜蓝等多种染料。
同时可以利用脂肪酸产生使体系的pH值下降这一原理,选择颜色随pH值变化而变化的指示剂。
脂肪酸产生的有色斑点直径的大小和酶活力的对数值成线形关系。
这种方法可以快速方便的测定微生物脂肪酶的活力,但是由于微生物自身的代谢会产生一部分酸,可能对测定结果造成影响,使测定结果出现误差[5]。
荧光指示剂罗丹明B也可以用来含有橄榄油乳化体系中脂肪酶的活力。
底物被水解后在紫外照射下可以观察到橙黄色的荧光圈。
2.2 以蛋黄作为底物测定脂肪酶的活力脂肪酶可以作用于卵黄磷脂蛋白中脂肪部分,从而改变卵黄磷脂蛋白的溶解性。
基于上述原理,Moncla 和Pryke[6]对传统的蛋黄培养基进行了发展,发明了改性蛋黄琼脂培养基,这种培养基可以用来分离和测定脂肪酶的活力。
含有蛋黄素LB的培养基可以用来测定经过基因技术改造的大肠杆菌中表达的脂肪酶的活力。
用蛋黄琼脂培养基测定阴道加德纳菌所产生的脂肪酶活力,所得结果为68%,而对同样的微生物酶的活力测定,采用4-甲基油酸伞形酯斑点法进行测定则结果为39%。
此法操作相对简单,不足是测定时间较长,而且可能存在较大的测定误差,因此应用不多。
2.3 滴定法脂肪酶催化酯类的水解,释放出游离的脂肪酸,通过对脂肪酸的定量滴定可以测定脂肪酶的活力。
PH-stat 法是最常用的脂肪酶活力测定的方法之一,这种方法通常以橄榄油为底物,加入脂肪酶,在不断搅拌的情况下,随着水解反应的进行向体系中逐渐滴加NaOH,使反应体系的pH值保持在一个恒定值,最终根据NaOH的消耗量确定脂肪酶的活力。
这一方法优点是简便快捷,所需设备简单,是目前较为常用的脂肪酶酶活测定方法;但此法的不足之处是制备底物乳化液麻烦,而且,由于超声条件存在差异,常常造成乳液液滴大小不均,实验重复性不好。