物理学前沿光学习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学习题
1.请阐述全息学的基本原理以及x射线全息学具有哪些诱人的前景?
答:全息学以波动光学为基础,利用光的干涉和衍射原理,将物体发出的特定的波以干涉条纹的形式记录下来,并在一定的条件下使其重现。
全息学分为两步,波前记录和波前重现,波前记录是将物体光波与另一相干光波——参考光波干涉,用照相的方法将干涉条纹记录下来,获得全息图或者全息照片;波前重现是利用原纪录的参考光波或其他合适的光波照射全息图,光通过全息图发生衍射,甚至衍射光波会形成原物体逼真的立体像。
与普通照相技术相比它有如下几点基本特征,1)可以形成三维图像;2)全息照相可以进行多重记录,信息容量大;3)光学系统简单——原理上无需透镜成像,是一种无透镜成像方法;4)全息照片的重现可放大或者缩小。
全息图有多种类型,从记录时物体与全息图的相对位置来分类,可分为菲涅耳全息图和夫琅禾费全息图。
1971年诺贝尔物理学奖授予了伽博,以表彰他发明和发展了全息学——x射线全息学,尽管x射线无法利用透镜成像,但是原子的间距与x射线的波长同数量级,周期性排列的原子对入射的x射线散射的相互干涉,会产生衍射点阵;用相干光对这种衍射图样作第二次衍射,便可恢复晶格的像,这就是伽博x射线全息学两步成像法的由来。
未来世界,x射线全息学将在医学成像、生物、科研、统计计量、信息科技、文字图像、装饰、防伪、海洋科学、军事领域等有不可或缺的地位。
现在全息学技术已经逐步走向市场,如高聚物全息防伪标志、透明激光全息防伪膜等,其发展前景无限美好。
2.表面等离极化激元分哪两类,各有什么特点?
答:表面等离极化激元在传播方向上具有比光波大的传播波矢(更短的波长);与光的传播方向垂直的方向上是消逝场(限制光场)。
在分类上包括金属纳米线波导和金属—介质—金属波导。
金属纳米微粒链状结构所支持的SPP特性与计算得出的金属纳米圆柱体波导中的情况非常相似,对SPP场具有亚波长尺寸的强束缚性,传播距离仅仅为数百纳米。
SPP利用金属缝隙结构来实现波导,即(金属—介质—金属),利用两个界面的耦合,形成被限制在介质核心层中的缝隙SPP模式。
在缝隙宽度为50nm,激发光波长1550nm时,其典型传播距离约为10微米。
3.简要概述电磁诱导透明技术。
答:电磁诱导透明技术是指通过外加控制场与吸收介质相互作用,使得介质对探测场的吸收发生改变,透射率增加甚至完全透明,即某种介质强烈地吸收某一频率的探测场,而当再加一束能被介质吸收的控制场时,介质对探测场就不再吸收了。
这种现象就是电磁诱导透明技术。
起源于跃迁通道之间的干涉作用,当探测光与控制光满足双光子共振时,由于两条通道的跃迁几率反号而产生干涉相消。
电磁诱导透明技术在光速减慢,信息存储以及高效非线性相互作用过程等方面存在重要应用。
4.利用高次谐波辐射实现分子轨道成像的条件是什么?
答:利用高次谐波辐射实现分子轨道成像的条件:一是存在一个和待成像分子的电离能相近的参考原子;二是这个参考原子的再碰撞电子波包的谐振幅总是相似的,不依赖于这个分子的取向。
5.目前负折射率材料的制备方法有哪几种,各有什么优缺点?
答:在一定频率范围内介电常数和磁导率都是负数的材料,称之为负折射材料(NIM),也叫做双负材料(DNM),左手材料。
其制备方法包括:1、开口谐振环—金属线阵列法;2、传输线模拟方法;3、光子晶体结构法;4、负折射手征介质法。
包括用手征介质和共振电偶极子离子的混合物来获得负折射,或是金属螺旋法
其优点是没有激发磁共振也可实现负折射,在实现光频段负折射上有很大的前景,缺点是折
射率的绝对值小。
5、量子相干法,其优点是不需要复杂的周期性结构,对加工工艺要求不高,而且可以实现均匀地负折射材料,也是一种可以利用外加场调控的负折射材料,还可以在光频范围内实现负折射。
缺点是由于要满足电偶极跃迁和磁偶极跃迁,对于原子能级的要求比较严格。
处理以上5种方法外,还可以通过金属颗粒复合材料,金属纳米线,压电压磁多层膜,铁电耦合双相各向异性等方法来实现负折射材料的制备。