第二章-一元一次不等式和一元一次不等式组总结资料讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章-一元一次不等式和一元一次不等式
组总结
第二章一元一次不等式和一元一次不等式组复习
知识要点:
1. 不等式:一般地用不等号连接的式子叫做不等式。

2. 不等式的基本性质:
(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

3. 解不等式:把不等式变为x>a或x<a的形式。

4. 一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,不等式的左右两边都是整式的不等式,叫做一元一次不等式。

5. 解一元一次不等式的步骤:
(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1
6. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分。

法则:“同大取大,同小取小,大小小大取中间,大大小小是无解。


7. 列不等式解应用题的一般步骤:
1、分析题意,清楚已知量与未知量之间的关系,找到题中适当的不等关系。

2、正确的设未知数,根据不等关系列出不等式。

3、解不等式。

4、在不等式的解集中选取符合题意的解。

5、做出正确的结论。

10. 解一元一次不等式组求公共部分时要记住: “同大取大,同小取小, 大于小数小于大数居中间, 大于大数小于小数无解”
11. 说一说运用不等式解决实际问题的基本过程. ①审题,设未知数; ②找不等关系; ③列不等式; ④解不等式; ⑤写出答案.
(7)一元一次不等式与一次函数.
【典型例题】
例1. 用不等式表示下列数量关系。

(1)a 的一半与-3的和小于或等于1。

解:
()的与的差的相反数不小于。

2a 3
525-()的相反数的不大于的倍加。

31
7516x x ()的一半:11
2a a
与-的和:31
23a +-()
小于或等于:11
231
a +-≤()故:1
231
a +-≤()()的与的差:23523
52
a a -相反数:-()
3
52a -不小于-:53
525
--≥-()a 故:---≥-()3
525
a ()的相反数的:3171
7x x
-
x 的5倍加16:5x +16
其关系不大于:
点评:用不等号表示的时候要准确理解“大”、“小”、“多”、“少”、“不大于”、“不小于”、“不多于”、“不少于”、“至少”、“至多”等词语的含义。

例2. 有理数x 、y 在数轴上的对应点如图所示,试用“>”或“<”号填空:
(1)x______y (2)x +y_____0 (3)xy____0 (4)x -y______0
精析:由数轴可知:x<0<y ,且|x|<|y|
故填:(1)<;(2)>;(3)<;(4)< 点评:本题体现了数形结合的数学思想方法。

例3. 设“A 、B 、C 、D ”表示四种不同质量的物体,在天平秤上的情况如图所示,请你用“<”号将这四种物体的质量m A 、m B 、m C 、m D 从小到大排列:_____________________________。

解析:由(1)得:m A >m B ;由(2)得:m B >m C 、m B >m D ;由(3)得:m D >m C
∴m C <m D <m B <m A
例4.
的解不小于-3。

解:
x =2m +2
-
≤+1
7516x x 故:-
≤+1
7516x x
x 0 y
当时,关于的方程m
x 1
21x m
-=1
21x m -=x m -=22Θx 不小于-3∴+≥-223m
例5. 下图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),已知两地间的距离是80km ,请你根据图象回答或解决下面问题:
(1)谁出发得较早?早多长时间?谁到达乙地较早?早到多长时间? (2)两人在途中行驶的速度分别是多少?
(3)请你分别求出表示自行车和摩托车行驶过程的函数关系式。

解析:(1)自行车;3小时;摩托车;3小时
(3)y 自=k 1x 过(0,0)(4,40)
40=k 1×4 k 1=10 y 自=10x
过(3,0),(4,40)
<2>-<1>得:40=k 2<3> 把<3>代入<1>得: 0=120+b b =-120
25m ≥-m ≥-
5
2()=
;=-=自摩280810805340v km h v km h =//y k x b
摩=2+031404222=+<>=+<>⎧⎨

k b k b ∴==-⎧⎨

k b 240120
例6. 东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠办法。

甲:买一枝毛笔就赠送一本练习本; 乙:按购买金额打九折付款。

某校欲为书法兴趣小组购买这种毛笔10枝,书法练习本x (x ≥10)本。

(1)写出每种优惠办法实际付款金额y 甲(元),y 乙(元)与x (本)之间的函数关系式;
(2)购买同样多的书法练习本时,按哪种优惠办法付款更省钱;
精析:本题应先正确写出实际付款金额y 甲(元)、y 乙(元)与x (本)之间的函数关系式,然后进行比较哪种方案更优惠,再根据实际情况灵活设计最省钱的购买方案。

解:(1)由题意,得
(2)由y 甲=y 乙,得5x +200=4.5x +225,解之得x =50。

由y 甲>y 乙,得5x+200>4.5x+22.5,解之得x>50; 由y 甲<y 乙,得5x+200<4.5x+22.5,解之得x<50。

所以,当购买50本书法练习本时,两种优惠办法的实际付款金额相等,可以任选一种优惠办法付款;
当购买书法练习本的本数多于50本书,选择乙优惠办法付款更省钱;
当购买书法练习本的本数不少于10本且多于50本时,选择甲优惠办法付款更省钱。

例题:举例说明在数轴上如何表示一元一次不等式(组)的解集.
∴-y x 摩=40120
y x x x 甲=2510510520010⨯+-=+≥()()
y x x x 乙=⨯+⨯=+≥().()
2510590%4522510



⎪⎪
+
>
<
4
3
3
5
5
图1-46 所以,原不等式组的解集为无解.
例题
暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x 名学生去旅游,他们应该选择哪家旅行社?
例题 解下列不等式或不等式组: (1)3(2x +5)>2(4x +3); (2)10-4(x -3)≤2(x -1); (3)
5
6
23+>
-x x ; (4)⎪⎪⎩⎪⎪⎨⎧+>+>+332
22)4(2
1
x x x
解:(1)去括号,得6x +15>8x +6 移项、合并同类项,得2x <9 两边都除以2,得x <
2
9. (2)去括号,得 10-4x +12≤2x -2
移项、合并同类项,得6x ≥24 两边都除以6,得x ≥4.
(3)去分母,得5(x -3)>2(x +6) 去括号,得5x -15>2x +12 移项、合并同类项,得3x >27
两边都除以3,得x >9
(4)⎪⎪
⎩⎪⎪⎨⎧+>+>+332
22)4(2
1
x x x )2()1(
解不等式(1),得x <0 解不等式(2),得x >0
这两个不等式的解集在同一数轴上表示为:
图1-47
所以,原不等式组的解集为无解.
例题 某化工厂2000年12月在判定2001年某种化肥的生产计划时,收集到了如下信息:
1.生产该种化肥的工人数不超过200人;
2.每个工人全年工作时数不得多于2100个;
3.预计2001年该化肥至少可销售80000袋;
4.每生产一袋该化肥需要工时4个;
5.每袋该化肥需要原料20千克;
6.现库存原料800吨,本月还需用200吨,2001年可以补充1200吨. 请你根据以上数据确定2001年该种化肥的生产袋数的范围. 解:设2001年可生产该化肥x 袋.根据题意得
⎪⎩

⎨⎧≥⨯+-≤⨯≤800001000)1200200800(2020021004x x x 解得80000≤x ≤90000且x 为整数.
[答]2001年该化肥产量应确定在8万到9万袋之间.。

相关文档
最新文档