2011年广东省高职高考数学试卷

合集下载

2011年广东省高考数学试卷(文科)答案与解析

2011年广东省高考数学试卷(文科)答案与解析

2011年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•广东)设复数z满足iz=1,其中i为虚数单位,则z=()A.﹣i B.i C.﹣1 D.1【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中iz=1,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi∵iz=1,∴i(x+yi)=﹣y+xi=1故x=0,y=﹣1∴Z=﹣i故选A【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y 的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B=|(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4 B.3 C.2 D.1【考点】交集及其运算.【专题】集合.【分析】观察两集合发现,两集合表示两点集,要求两集合交集元素的个数即为求两函数图象交点的个数,所以联立两函数解析式,求出方程组的解,有几个解就有几个交点即为两集合交集的元素个数.【解答】解:联立两集合中的函数关系式得:,由②得:x=1﹣y,代入②得:y2﹣y=0即y(y﹣1)=0,解得y=0或y=1,把y=0代入②解得x=1,把y=1代入②解得x=0,所以方程组的解为或,有两解,则A∩B的元素个数为2个.故选C【点评】此题考查学生理解交集的运算,考查了求两函数交点的方法,是一道基础题.本题的关键是认识到两集合表示的是点坐标所构成的集合即点集.3.(5分)(2011•广东)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=()A.B.C.1 D.2【考点】平面向量共线(平行)的坐标表示.【专题】平面向量及应用.【分析】根据所给的两个向量的坐标,写出要用的+λ向量的坐标,根据两个向量平行,写出两个向量平行的坐标表示形式,得到关于λ的方程,解方程即可.【解答】解:∵向量=(1,2),=(1,0),=(3,4).∴=(1+λ,2)∵(+λ)∥,∴4(1+λ)﹣6=0,∴故选B.【点评】本题考查两个向量平行的坐标表示,考查两个向量坐标形式的加减数乘运算,考查方程思想的应用,是一个基础题.4.(5分)(2011•广东)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1) B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.【点评】本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.5.(5分)(2011•广东)不等式2x2﹣x﹣1>0的解集是()A.(﹣,1)B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.(﹣∞,﹣)∪(1,+∞)【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】将不等式的左边分解因式得到相应的方程的根;利用二次方程解集的形式写出解集.【解答】解:原不等式同解于(2x+1)(x﹣1)>0∴x>1或x<故选:D【点评】本题考查二次不等式的解法:判断相应的方程是否有根;若有根求出两个根;据二次不等式解集的形式写出解集.6.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3 D.4【考点】二元一次不等式(组)与平面区域;数量积的坐标表达式.【专题】不等式的解法及应用.【分析】首先做出可行域,将z=•的坐标代入变为z=,即y=﹣x+z,此方程表示斜率是﹣的直线,当直线与可行域有公共点且在y轴上截距最大时,z有最大值.【解答】解:首先做出可行域,如图所示:z=•=,即y=﹣x+z做出l 0:y=﹣x,将此直线平行移动,当直线y=﹣x+z经过点B时,直线在y轴上截距最大时,z有最大值.因为B(,2),所以z的最大值为4故选:B【点评】本题考查线性规划、向量的坐标表示,考查数形结合思想解题.7.(5分)(2011•广东)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15 C.12 D.10【考点】棱柱的结构特征.【专题】立体几何.【分析】抓住上底面的一个顶点,看从此顶点出发的对角线有多少条即可解决.【解答】解:由题意正五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条.正五棱柱对角线的条数共有2×5=10条.故选D【点评】本题考查计数原理在立体几何中的应用,考查空间想象能力.8.(5分)(2011•广东)设圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切,则C的圆心轨迹为()A.抛物线B.双曲线C.椭圆 D.圆【考点】圆的切线方程;圆与圆的位置关系及其判定;抛物线的定义.【专题】直线与圆.【分析】由动圆与定圆相外切可得两圆圆心距与半径的关系,然后利用圆与直线相切可得圆心到直线的距离与半径的关系,借助等量关系可得动点满足的条件,即可的动点的轨迹.【解答】解:设C的坐标为(x,y),圆C的半径为r,圆x2+(y﹣3)2=1的圆心为A,∵圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切∴|CA|=r+1,C到直线y=0的距离d=r∴|CA|=d+1,即动点C定点A的距离等于到定直线y=﹣1的距离由抛物线的定义知:C的轨迹为抛物线.故选A【点评】本题考查了圆的切线,两圆的位置关系及抛物线的定义,动点的轨迹的求法,是个基础题.9.(5分)(2011•广东)如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.B.4 C. D.2【考点】由三视图求面积、体积.【专题】立体几何.【分析】根据已知中的三视图及相关视图边的长度,我们易判断出该几何体的形状及底面积和高的值,代入棱锥体积公式即可求出答案.【解答】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C【点评】本题考查的知识点是由三视图求面积、体积其中根据已知求出满足条件的几何体的形状及底面面积和棱锥的高是解答本题的关键.10.(5分)(2011•广东)设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是()A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】根据定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),然后逐个验证即可找到答案.【解答】解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));∴((f°g)•h)(x)≠((f•h)°(g•h))(x)B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))∴((f•g)°h)(x)=((f°h)•(g°h))(x)C、((f°g)°h)(x)=((f°g)(h(x))=f(g(h(x))),((f°h)°(g°h))(x)=f(h(g(h(x))))∴((f°g)°h)(x)≠((f°h)°(g°h))(x);D、((f•g)•h)(x)=f(x)g(x)h(x),((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),∴((f•g)•h)(x)≠((f•h)•(g•h))(x).故选B.【点评】此题是个基础题.考查学生分析解决问题的能力,和知识方法的迁移能力.二、填空题(共5小题,考生作答4小题每小题5分,满分20分)11.(5分)(2011•广东)已知{a n}是递增等比数列,a2=2,a4﹣a3=4,则此数列的公比q= 2 .【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】由已知{a n}是递增等比数列,a2=2,我们可以判断此数列的公比q>1,又由a2=2,a4﹣a3=4,我们可以构造出一个关于公比q的方程,解方程即可求出公比q的值.【解答】解:∵{a n}是递增等比数列,且a2=2,则公比q>1又∵a4﹣a3=a2(q2﹣q)=2(q2﹣q)=4即q2﹣q﹣2=0解得q=2,或q=﹣1(舍去)故此数列的公比q=2故答案为:2【点评】本题考查的知识点是等比数列的通项公式,其中利用等比数列的通项公式及a2=2,a4﹣a3=4,构造出一个关于公比q的方程,是解答本题的关键.12.(5分)(2011•广东)设函数f(x)=x3cosx+1,若f(a)=11,则f(﹣a)= ﹣9 .【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由于函数f(x)=x3cosx+1,是一个非奇非偶函数,故无法直接应用函数奇偶性的性质进行解答,故可构造函数g(x)=f(x)﹣1=x3cosx,然后利用g(x)为奇函数,进行解答.【解答】解:令g(x)=f(x)﹣1=x3cosx则g(x)为奇函数,又∵f(a)=11,∴g(a)=f(a)﹣1=11﹣1=10∴g(﹣a)=﹣10=f(﹣a)﹣1∴f(﹣a)=﹣9故答案为:﹣9【点评】本题考查的知识点是函数奇偶性的性质,其中构造出奇函数g(x)=f(x)﹣1=x3cosx,是解答本题的关键.13.(5分)(2011•广东)工人月工资y(元)与劳动生产率x(千元)变化的回归方程为=50+80x,下列判断正确的是②①劳动生产率为1千元时,工资为130元;②劳动生产率提高1千元,则工资提高80元;③劳动生产率提高1千元,则工资提高130元;④当月工资为210元时,劳动生产率为2千元.【考点】线性回归方程.【专题】概率与统计.【分析】回归方程═50+80x变量x增加一个单位时,变量产生相应变化,从而对选项一一进行分析得到结果.【解答】解::∵对x的回归直线方程=50+80x,∴=(x+1)+50,∴﹣=80(x+1)+50﹣80x﹣50=80.所以劳动生产率提高1千元,则工资提高80元,②正确,③不正确.①④不满足回归方程的意义.故答案为:②.【点评】主要考查知识点:统计.本题主要考查线性回归方程的应用,考查线性回归方程自变量变化一个单位,对应的预报值是一个平均变化,这是容易出错的知识点.14.(5分)(2011•广东)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为(1,).【考点】参数方程化成普通方程;直线的参数方程;椭圆的参数方程.【专题】坐标系和参数方程.【分析】利用同角三角函数的基本关系及代入的方法,把参数方程化为普通方程,再利用消去参数t化曲线的参数方程为普通方程,最后解方程组求得两曲线的交点坐标即可.【解答】解:曲线参数方程(0≤θ<π)的直角坐标方程为:;曲线(t∈R)的普通方程为:;解方程组:得:∴它们的交点坐标为(1,).故答案为:(1,).【点评】本题考查同角三角函数的基本关系,参把数方程化为普通方程的方法,以及求两曲线的交点坐标的方法,考查运算求解能力.属于基础题.15.(2011•广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为7:5 .【考点】相似三角形的性质.【专题】解三角形.【分析】根据EF的长度和与上下底平行知是梯形的中位线,设出中位线分成的两个梯形的高,根据梯形的面积公式写出两个梯形的面积,都是用含有高的代数式来表示的,求比值得到结果.【解答】解:∵E,F分别为AD,BC上点,且EF=3,EF∥AB,∴EF是梯形的中位线,设两个梯形的高是h,∴梯形ABFE的面积是,梯形EFCD的面积∴梯形ABFE与梯形EFCD的面积比为=,故答案为:7:5【点评】本题考查梯形的中位线,考查梯形的面积公式是一个基础题,解题的时候容易出的一个错误是把两个梯形看成相似梯形,根据相似多边形的面积之比等于相似比的平方.三、解答题(共6小题,满分80分)16.(12分)(2011•广东)已知函数f(x)=2sin(x﹣),x∈R.(1)求f(0)的值;(2)设α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.【考点】两角和与差的正弦函数.【专题】三角函数的图像与性质.【分析】(1)把x=0代入函数解析式求解.(2)根据题意可分别求得sinα和sinβ的值,进而利用同角三角函数基本关系求得cosα和cosβ的值,最后利用正弦的两角和公式求得答案.【解答】解:(1)∵f(x)=2sin(x﹣),x∈R,∴f(0)=2sin(﹣)=﹣1(2)∵f(3)=2sinα=,f(3β+)=2sinβ=.∴sinα=,sinβ=∵α,β∈,∴cosα==,cosβ==∴sin(α+β)=sinαcosβ+cosαsinβ=【点评】本题主要考查了两角和与差的正弦函数.考查了对三角函数基础公式的熟练记忆.17.(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.【考点】极差、方差与标准差;古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)根据平均数公式写出这组数据的平均数表示式,在表示式中有一个未知量,根据解方程的思想得到结果,求出这组数据的方差,再进一步做出标准差.(2)本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41种结果,根据概率公式得到结果.【解答】解:(1)根据平均数的个数可得75=,∴x6=90,这六位同学的方差是(25+1+9+25+9+225)=49,∴这六位同学的标准差是7(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,根据古典概型概率个数得到P==0.4.【点评】本题考查一组数据的平均数公式的应用,考查求一组数据的方差和标准差,考查古典概型的概率公式的应用,是一个综合题目.18.(13分)(2011•广东)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O 1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.(1)证明:O1′,A′,O2,B四点共面;(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G.【考点】直线与平面垂直的判定;棱柱的结构特征;平面的基本性质及推论.【专题】空间位置关系与距离;立体几何.【分析】(1)要证O1′,A′,O2,B四点共面,即可证四边形BO2A′O1′为平面图形,根据A′O1′与B′O2′在未平移时属于同一条直径知道A′O1′∥B′O2′即BO2∥A′O1′再根据BO2=A′O1′=1即可得到四边形BO2A′O1′是平行四边形,则证.(2)建立空间直角坐标系,要证BO 2′⊥平面H′B′G只需证,,根据坐标运算算出•,的值均为0即可【解答】证明:(1)∵B′,B分别是中点∴BO2∥B′O2′∵A′O1′与B′O2′在未平移时属于同一条直径∴A′O1′∥B′O2′∴BO2∥A′O1′∵BO2=A′O1′=1∴四边形BO2A′O1′是平行四边形即O1′,A′,O2,B四点共面(2)以D为原点,以向量DE所在的直线为X轴,以向量DD′所在的直线为Z轴,建立如图空间直角坐标系,则B(1,1,0),O2′(0,1,2),H′(1,﹣1,2),A(﹣1,﹣1,0),G(﹣1,﹣1,1),B′(1,1,2)则=(﹣1,0,2),=(﹣2,﹣2,﹣1),=(0,﹣2,0)∵•=0,=0∴BO2′⊥B′G,BO2′⊥B′H′即,∵B′H′∩B′G=B′,B′H′、B′G⊂面H′GB′∴BO2′⊥平面H′B′G【点评】本题考查了直线与平面垂直的判定,棱柱的结构特征,平面的基本性质及推论以及空间向量的基本知识,属于中档题.19.(14分)(2011•广东)设a>0,讨论函数f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的单调性.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】求出函数的定义域,求出导函数,设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞),讨论a=1,a>1与0<a<1三种情形,然后利用函数的单调性与导函数符号的关系求出单调性.【解答】解:定义域{x|x>0}f′(x)==设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞)①若a=1,则g(x)=1>0∴在(0,+∞)上有f'(x)>0,即f(x)在(0,+∞)上是增函数.②若a>1则2a(1﹣a)<0,g(x)的图象开口向下,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)>0方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根为x1=,x2=且x1<0<x2∴在(0,)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,+∞)上g(x)<0,即f'(x)<0,f(x)是减函数;③若0<a<1则2a(1﹣a)>0,g(x)的图象开口向上,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)可知当≤a<1时,△≤0,故在(0,+∞)上,g(x)≥0,即f'(x)≥0,f(x)是增函数;当0<a<时,△>0,方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根满足>>0故在(0,)和(,+∞)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,)上g(x)<0,即f'(x)<0,f(x)是减函数.【点评】本题考查利用导函数讨论函数的单调性:导函数为正函数递增;导函数为负,函数递减,同时考查了分类讨论的数学思想方法,属于难题.20.(14分)(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.【考点】数列递推式;数列与不等式的综合.【专题】等差数列与等比数列.【分析】(1)由题设形式可以看出,题设中给出了关于数列a n的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【解答】解:(1)∵(n≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即a n=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,【点评】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.21.(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.(1)当点P在l上运动时,求点M的轨迹E的方程;(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.【考点】轨迹方程;直线与圆锥曲线的综合问题.【专题】综合题;压轴题;转化思想.【分析】(1)由于直线l:x=﹣2交x轴于点A,所以A(﹣2,0),由于P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP,可以设点P,由于满足∠MPO=∠AOP,所以分析出MN∥AO,利用相关点法可以求出动点M的轨迹方程;(2)由题意及点M的轨迹E的方程为y2=4(x+1),且已知T(1,﹣1),又H是E 上动点,点O及点T都为定点,利用图形即可求出;(3)由题意设出过定点的直线方程l1并与点M的轨迹E的方程联立,利用有两个交点等价与联立之后的一元二次方程的判别式大于0,即可得到所求.【解答】解:(1)如图所示,连接OM,则|PM|=|OM|,∵∠MPO=∠AOP,∴动点M满足MP⊥l或M在x的负半轴上,设M(x,y)①当MP⊥l时,|MP|=|x+2|,|om|=,|x+2|=,化简得y2=4x+4 (x≥﹣1)②当M在x的负半轴上时,y=0(x≤﹣1),综上所述,点M的轨迹E的方程为y2=4x+4(x≥﹣1)或y=0(x<﹣1).(2)由题意画出图形如下:∵由(1)知道动点M 的轨迹方程为:y2=4(x+1).是以(﹣1,0)为顶点,以O(0,0)为焦点,以x=﹣2为准线的抛物线,由H引直线HB垂直准线x=﹣2与B点,则利用抛物线的定义可以得到:|HB|=|HO|,∴要求|HO|+|HT|的最小值等价于求折线|HB|+|HT|的最小值,由图可知当由点T直接向准线引垂线是与抛物线相交的H使得HB|+|HT|的最小值,故|HO|+|HT|的最小值时的H.(3)如图,设抛物线顶点A(﹣1,0),则直线AT的斜率,∵点T(1,﹣1)在抛物线内部,∴过点T且不平行于x,y轴的直线l1必与抛物线有两个交点,则直线l1与轨迹E的交点个数分以下四种情况讨论:①当K时,直线l1与轨迹E有且只有两个不同的交点,②当时,直线l1与轨迹E有且只有一个不同的交点,③当K=0时,直线l1与轨迹E有且只有一个交点,④当K>0时,直线l1与轨迹E有且只有两个不同的交点.综上所述,直线l1的斜率K的取值范围是(﹣]∪(0,+∞).【点评】此题重点考查了利用相关点法求动点的轨迹方程,还考查了利用抛物线的定义求出HO|+|HT|的最小值时等价转化的思想,还考查了直线与曲线有两个交点的等价转化思想.。

2011年普通高等学校招生全国统一考试数学卷(广东.文)含详解

2011年普通高等学校招生全国统一考试数学卷(广东.文)含详解

绝密★启用前 试卷类型:B2011年普通高等学校招生全国统一考试(广东卷)线性回归方程 y bxa =+ 中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑ , ay bx =- , 样本数据12,,,n x x x 的标准差,222121[()()()]n s x x x x x x n=-+-++- , 其中x ,y 表示样本均值.n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++ .一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1iz =,其中i 为虚数单位,则z =A .i -B .iC .1-D .1 2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B ⋂的元素个数为A .4B .3C .2D .1 3.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()λ+a b ∥c ,则λ=A .14 B .12C .1D .2 4.函数1()lg(1)1f x x x=++-的定义域是 A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-⋃+∞ D .(,)-∞+∞5.不等式2210x x -->的解集是A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞⋃+∞D .1(,)(1,)2-∞-⋃+∞ 6.已知平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧⎪⎨⎪⎩≤≤≤≤给定.若(,)M x y 为D 上的动点,点A的坐标为(2,1),则z OM OA=⋅的最大值为A .3B .4C .32D .4223正视图 图1侧视图 图22 俯视图 2图37.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有A .20B .15C .12D .10 8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为A .抛物线B .双曲线C .椭圆D .圆 9.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为 A .43 B .4 C .23 D .210.设(),(),()f x g x h x 是R 上的任意实值函数,如下定义两个函数()f g ()x 和()f g ()x :对任意x ∈R ,()f g ()x =(())f g x ;()f g ()x =()()f x g x ,则下列等式恒成立的是A .(()f g h )()x =(()f h ()g h )()xB .(()f g h )()x =(()f h ()g h )()xC .(()f g h )()x =(()f g ()g h )()xD .(()f g h )()x =(()f g()g h )()x二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9 ~ 13题)11.已知{}n a 是递增的等比数列,若22a =,434a a -=,则此数列的公比q = .12.设函数3()cos 1f x x x =+.若()11f a =,则()f a -= .13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:图4BAC DEF时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 . (二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为5cos sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.15.(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =, EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R .(1)求(0)f 的值;(2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值.17.(本小题满分13分)在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为n (1,2,,6)n = 的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5 成绩n x7076727072(1)求第6位同学的成绩6x ,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.18.(本小题满分13分)图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右BAB 'A 'CC 'DD 'EE 'G H '1O2O1O '2O '图5水平平移后得到的.,,,A A B B ''分别为 CD , C D '', DE , D E ''的中点,1122,,,O O O O ''分别为CD ,C D '', DE ,D E ''的中点.(1)证明:12,,,O A O B ''四点共面;(2)设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.19.(本小题满分14分)设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性. 20.(本小题满分14分)设0b >,数列{}n a 满足1a b =,111n n n nba a a n --=+-(n ≥2).(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,2n a ≤11n b ++.21.(本小题满分14分)在平面直角坐标系xOy 上,直线l :2x =-交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足MPO AOP ∠=∠.(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知(1,1)T -,设H 是E 上动点,求HO HT +的最小值,并给出此时点H 的坐标; (3)过点(1,1)T -且不平行于y 轴的直线1l 与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围.1.(A ).1()iz i i i i -===-⨯- 2.(C ).A B ⋂的元素个数等价于圆221x y +=与直线1x y +=的交点个数,显然有2个交点 3.(B ).(1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=124.(C ).10110x x x -≠⎧⇒>-⎨+>⎩且1x ≠,则()f x 的定义域是(1,1)(1,)-⋃+∞5.(D ).21210(1)(21)02x x x x x -->⇒-+>⇒<-或1x >,则不等式的解集为1(,)(1,)2-∞-⋃+∞6.(B ).2z x y =+,即2y x z =-+,画出不等式组表示的平面区域,易知当直线2y x z =-+经过点(2,2)时,z 取得最大值,max 2224z =⨯+=7.(D ).正五棱柱中,上底面中的每一个顶点均可与下底面中的两个顶点构成对角线,所以一个正五棱柱对角线的条数共有5210⨯=条8.(A ).依题意得,C 的圆心到点(0,3)的距离与它到直线1y =-的距离相等,则C 的圆心轨迹为抛物线 9.(C ).该几何体是一个底面为菱形的四棱锥,菱形的面积1223232S =⨯⨯=,四棱锥的高为3,则该几何体的体积112332333V Sh ==⨯⨯= 10.(B ).11.2. 2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或1q =-∵{}n a 是递增的等比数列,∴2q =12.9-3()cos 111f a a a =+=,即3()cos 10f a a a ==,则33()()cos()1cos 11019f a a a a a -=--+=-+=-+=- 13.0.5;0.53小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++= 3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii ni i x x y y bx x ==--++++-===-+-+++-∑∑ , 0.47a y bx =-=∴线性回归方程 0.010.47y x =+,则当6x =时,0.53y = ∴预测小李该月6号打6小时篮球的投篮命中率为0.5314.25(1,)5.5cos sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(5501)x y -<≤≤≤且,254x t y t⎧=⎪⎨⎪=⎩表示抛物线245y x =,22221(5501)5450145x y x y x x x y x ⎧+=-<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩且或5x =-(舍去),又因为01y ≤≤,所以它们的交点坐标为25(1,)515.75如图,延长,AD BC ,AD BC P =∵23CD EF =,∴49PCD PEF S S ∆∆= ∵24CD AB =,∴416PCD PEF S S ∆∆= ∴75ABEF EFCDS S =梯形梯形16.解:(1)(0)2sin()16f π=-=-(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦, ∴212cos 1sin 13αα=-=,24sin 1cos 5ββ=-= ∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯=17.解:(1)61(7076727072)756x +++++=,解得690x = PBAC DEFxy O2x =-AP l MM标准差22222222212611[()()()](5135315)766s x x x x x x =-+-++-=+++++= (2)前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠则基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种 这5位同学中,编号为1、3、4、5号的同学成绩在区间(68,75)中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间(68,75)中” 则A 中的基本事件有(1,2)、(2,3)、(2,4)、(2,5)共4种,则42()105P A == 18.证明:(1)连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心∴,,,CD C D DE D E ''''是圆柱底面圆的直径∵,,A B B ''分别为 C D '', DE , D E ''的中点∴1290A O D B O D ''''''∠=∠=∴1A O ''∥2BO '∵BB '//22O O ',四边形22O O B B ''是平行四边形∴2BO ∥2BO ' ∴1A O ''∥2BO ∴12,,,O A O B ''四点共面(2)延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB '' ∵11O H A O ''''=∴1O H ''//2O B '',四边形12O O B H ''''是平行四边形 ∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''= ∴12O O ''⊥面22O O B B ''∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B '' ∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=∵11tan 2HH HO H O H '''∠=='',1tan 2A G A H G A H '''∠==''∴1tan tan 1HO H A H G ''''∠⋅∠=∴190HO H A H G ''''∠+∠= ∴1HO H G ''⊥易知12O O ''//HB ,四边形12O O BH ''是平行四边形∴2BO '∥1HO '∴2BO H G ''⊥,H G H B H ''''= ∴2BO '⊥平面H B G ''21.解:(1)如图所示,连接OM ,则PM OM =∵MPO AOP ∠=∠,∴动点M 满足MP l ⊥或M 在x 的负半轴上,设(,)M x yxy O 2x =-TN l HNH∙H xy O TA 1l 1l1l① 当MP l ⊥时,2MP x =+,22OM x y =+222x x y +=+,化简得244y x =+(1)x ≥-② 当M 在x 的负半轴上时,0y =(1)x <-综上所述,点M 的轨迹E 的方程为244y x =+(1)x ≥-或0y =(1)x <-(2)由(1)知M 的轨迹是顶点为(1,0)-,焦点为原点的抛物线和x 的负半轴0y =(1)x <- ① 若H 是抛物线上的动点,过H 作HN l ⊥于N由于l 是抛物线的准线,根据抛物线的定义有HO HN = 则HO HT HN HT +=+当,,N H T 三点共线时,HN HT +有最小值3TN =求得此时H 的坐标为3(,1)4--② 若H 是x 的负半轴0y =(1)x <-上的动点显然有3HO HT +>综上所述,HO HT +的最小值为3,此时点H 的坐标为3(,1)4-- (3)如图,设抛物线顶点(1,0)A -,则直线AT 的斜率12AT k =-∵点(1,1)T -在抛物线内部,∴过点T 且不平行于,x y 轴的直线1l 必与抛物线有两个交点 则直线1l 与轨迹E 的交点个数分以下四种情况讨论: ① 当12k ≤-时,直线1l 与轨迹E 有且只有两个不同的交点 ② 当102k -<<时,直线1l 与轨迹E 有且只有三个不同的交点 ③ 当0k =时,直线1l 与轨迹E 有且只有一个交点 ④ 当0k >时,直线1l 与轨迹E 有且只有两个不同的交点 综上所述,直线1l 的斜率k 的取值范围是1(,](0,)2-∞-+∞。

2011年广东高职高考数学真题试卷.

2011年广东高职高考数学真题试卷.

2011年广东省高等职业院校招收中等职业学校毕业生考试一、选择题:本大题共15小题,每小题5分,满分75分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x||x|=2},N={-3,1},则M∪N=()A. ¢B.{-3,-2,1}C.{-3,1,2}D.{-3,-2,1,2}2.下列等式中,正确的是()A.(3)=-27B. [(3)] =-27C.lg20-lg2=1D.lg5*lg2=13.函数y=的定义域是()A.[-1,1]B.(-1,1C.( -∞,1D.(-1,+ ∞4.设α为任意角,则下列等式中,正确的是()A.sin(α-=cosαB.cos(α-=sinαC.sin(α+π=sinαD.cos(α+π=cosα5.在等差数列{a}中,若a=30,则a()A.20B.40C.60D.806.已知三点O(0,0,A(k,-2,B(3,4,若则k=(A.-B.C.7D.117.已知函数y=f(x是函数y=a的反函数,若f(8=3,则a=()A.2B.3C.4D.88.已知角θ终边上一点的坐标为(x,A.-B.-C.D.9.已知向量ABA. B. C. D.510.函数f(χ=(sin2χ-cos2x的最小正周期及最大值分别是()A.π,1B.π,2C. ,2D. ,311.不等式的解集是()A.{x|-1<x≤1}B.{x|x≤1}C.{x|x>-1}D.{x|x≤1或x>-1}12.“x=7”是“x≤7”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分,也非充要条件Log,x>113.已知函数f(x= sinx,0≤x≤1 ,则下列结论中,正确的是(), x<0A.f(x在区间(1,+∞)上是增函数B.f(x在区间(-∞,1]上是增函数C.f(D. f(2=114.一个容量为n的样本分成若干组,若其中一组的频数和频率分别是40和0.25,则n=(A.10B.40C.100D.16015.垂直于x轴的直线l交抛物线y=4x于A、B两点,且|AB|=4,则该抛物线的焦点到直线l的距离是(A.1B.2 B.3 D.4二、填空题:本大题共5小题,每小题5分,满分25分。

2011年广东高考数学试题及答案

2011年广东高考数学试题及答案

2011年普通高等学校招生全国统一考试(广东卷)数学(理科) 试卷类型:A 成本文参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yxyb xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为正视图侧视图A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,T V Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年广东省高考数学试卷(理科)答案与解析

2011年广东省高考数学试卷(理科)答案与解析

2011年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•广东)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中(1+i)Z=2,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi则(1+i)Z=(1+i)(x+yi)=x﹣y+(x+y)i=2即解得x=1,y=﹣1故Z=1﹣i故选B【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3【考点】交集及其运算.【专题】集合.【分析】据观察发现,两集合都表示的是点集,所以求两集合交集即为两函数的交点,则把两集合中的函数关系式联立求出两函数的交点坐标,交点有几个,两集合交集的元素就有几个.【解答】解:联立两集合中的函数解析式得:,把②代入①得:2x2=1,解得x=±,分别把x=±代入②,解得y=±,所以两函数图象的交点有两个,坐标分别为(,)和(﹣,﹣),则A∩B的元素个数为2个.故选C【点评】此题考查学生理解两个点集的交集即为两函数图象的交点个数,是一道基础题.3.(5分)(2011•广东)若向量,,满足∥且⊥,则•(+2)=()【考点】数量积判断两个平面向量的垂直关系;平面向量数量积的运算.【专题】平面向量及应用.【分析】利用向量共线的充要条件将用表示;垂直的充要条件得到;将的值代入,利用向量的分配律求出值.【解答】解:∵∴存在λ使∵∴=0∴=2=0故选D【点评】本题考查向量垂直的充要条件|考查向量共线的充要条件、考查向量满足的运算律.4.(5分)(2011•广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g (x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.【解答】解:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)﹣|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|﹣g(x)的奇偶性均不能确定故选A【点评】本题考查的知识点是函数奇偶性的判断,其中根据已知确定|f(x)|、|g(x)|也为偶函数,是解答本题的关键.5.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】首先画出可行域,z=•代入坐标变为z=x+y,即y=﹣x+z,z表示斜率为的直线在y轴上的截距,故求z的最大值,即求y=﹣x+z与可行域有公共点时在y轴上的截距的最大值.【解答】解:如图所示:z=•=x+y,即y=﹣x+z首先做出直线l0:y=﹣x,将l0平行移动,当经过B点时在y轴上的截距最大,从而z 最大.因为B(,2),故z的最大值为4.故选:C.【点评】本题考查线形规划问题,考查数形结合解题.6.(5分)(2011•广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.【考点】相互独立事件的概率乘法公式.【专题】概率与统计.【分析】根据已知中的比赛规则,我们可得甲要获得冠军可分为甲第一场就取胜,或甲第一场失败,第二场取胜,由分类事件加法公式,我们分别求出两种情况的概率,进而即可得到结论.【解答】解:甲要获得冠军共分为两个情况一是第一场就取胜,这种情况的概率为一是第一场失败,第二场取胜,这种情况的概率为×=则甲获得冠军的概率为【点评】本题考查的知识点是相互独立事件的概率乘法公式,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.7.(5分)(2011•广东)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9C.12D.18【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中三视图我们可以确定,该几何体是以正视图为底面的直四棱柱,根据已知三视图中标识的数据,求出棱柱的底面积和高,代入棱柱体积公式即可得到答案.【解答】解:由已知中三视图该几何体为四棱柱,其底面底边长为3,底边上的高为:=,故底面积S=3×=3,又因为棱柱的高为3,故V=3×3=9,故选B.【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状及相应底面面积和高是解答本题的关键.8.(5分)(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【考点】元素与集合关系的判断.【专题】集合.【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.【解答】解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确.【点评】此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的题型.二、填空题(共7小题,每小题5分,其中14、15只能选做一题。

2011年广东省高考数学试卷(理科)含详解-推荐下载

2011年广东省高考数学试卷(理科)含详解-推荐下载

x
y2
2y
给定.若
D.3
y
C
B
A
x
z (x, y) ( 2,1) 2x y,即z为直线则y 2x z
的纵截距,显然当直线y 2x z经过点B( 2,2)时, z取到最大值,
从而z max ( 2)2 2 4,故选C.
6 甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.
3.若向量 a,b, c满足a // b,且a c,则c (a 2b)
A.4
B.3
解析 : c (a 2b) c a c 2b c a 2c b 0 0 0,故选D.
4.设函数 f (x) 和 g(x )分别是 R 上的偶函数和奇函数,则下列结论恒成立的是
A. f (x) +|g(x)|是偶函数
C.2+2i
2.已知集合 A={ (x,y)|x,y 为实数,且 x 2 y 2 1 },B={(x,y) |x,y 为实数,且 y=x}, 则 A ∩
B 的元素个数为
A.0
B. 1
C.2
D.3
解析 : 集合A表示由圆x2 y 2 1上的所有点组成的集合;集合B表示直线y x上的所有点 组成的集体,由于直线经过圆内的点O(0,0), 故直线与圆有两个交点, 故选C.
(一)必做题(9—13 题) [来源:]
9.不等式 x 1 x 3 0 的解集是______.
解析原: x不等1 式x的 3解集0为 (x 1)2 (x 3)2, 1 0. x(x 2)7 的展开式中, x4 的系数是______ (用数 字作答).
x
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2011年普通高等学校招生全国统一考试数学理试题(广东卷)(解析版)

2011年普通高等学校招生全国统一考试数学理试题(广东卷)(解析版)

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程y bx a =+中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-,其中x ,y 表示样本均值.n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i - 1.(B ).22(1)11(1)(1)iz i i i i-===-++- 2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B ⋂的元素个数为A .0B .1C .2D .32.(C ).A B ⋂的元素个数等价于圆221x y +=与直线y x =的交点个数,显然有2个交点 3.若向量,,a b c 满足a ∥b 且⊥a c ,则(2)⋅+=c a bA .4B .3C .2D .0 3.(D ).依题意得⊥c a ,⊥c b ,则(2)20⋅+=⋅+⋅=c a b c a c b4.设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()()f x g x +是偶函数 B .()()f x g x -是奇函数正视图 图1侧视图 图2俯视图 图3C .()()f x g x +是偶函数D .()()f x g x -是奇函数4.(A ).由()f x 是偶函数、()g x 是奇函数,得()f x 和()g x 都是偶函数,所以()()f x g x +与()()f x g x -都是偶函数,()()f x g x +与()()fx g x -的奇偶性不能确定5.已知平面直角坐标系xOy 上的区域D 由不等式组02x y x ⎧⎪⎨⎪⎩≤≤给定.若(,)M x y 为D 上的动点,点A的坐标为,则z OMOA =⋅的最大值为A ...4 D .3 5.(C ).zy =+,即y z =+,画出不等式组表示的平面区域,易知当直线y z =+经过点时,z 取得最大值,max 24z ==6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军. 若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .346.(D ).乙获得冠军的概率为111224⨯=,则甲队获得冠军的概率为13144-=7.如图1 ~ 3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.. C ..7.(B ).该几何体是一个底面为平行四边形,高为3则33V Sh ===8.设S 是整数集Z 的非空子集,如果,a b S ∀∈,有ab S ∈,则称S 关于数的乘法是封闭的.若,T V 是Z 的两个不相交的非空子集,T V Z ⋃=,且,,a b c T ∀∈,有abc T ∈;,,x y z V ∀∈,有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 8.(A ).若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题)9.不等式13x x +--≥0的解集是 . 9.[1,)+∞.13x x +--≥0 ⇒1x +≥3x -⇒2(1)x +≥2(3)x -⇒x ≥110.72()x x x-的展开式中,4x 的系数是 (用数字作答)10.84.72()x x x -的通项7821772()(2)r r r r r r r T xC x C x x--+=-=-,由824r -=得2r =,则227(2)84C -=11.等差数列{}n a 前9项的和等于前4项的和.若11a =,40k a a +=,则k = . 11.10.方法1:由94S S =得93646d d +=+,求得16d =-,则4111(1)()13()066k a a k +=+-⨯-++⨯-=,解得10k =方法2:由94S S =得567890a a a a a ++++=,即750a =,70a =,即104720a a a +==,即10k = 12.函数32()31f x x x =-+在x = 处取得极小值. 12.2.2()363(2)f x x x x x '=-=-,令()0f x '=得0x =或2x =,显然当0x <时()0f x '>;当02x <<时()0f x '<;当2x >时()0f x '>,函数32()31f x x x =-+在2x =处取得极小值13.某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm . 13.185.设父亲的身高为x cm ,儿子的身高为y cm ,则根据上述数据可得到如下表格:COPBA上表中的最后一组(182,?)是预测数据,173,176x y ==12221()()00361033()niii nii x x y y b x x ==--++⨯===++-∑∑,3a y bx=-= 线性回归方程3y x =+,所以当182x =时,185y =,即他孙子的预测身高为185 cm .(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.14.. sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(01)x y ≤≤≤,254x t y t ⎧=⎪⎨⎪=⎩表示抛物线245y x = 22221(01)5450145x y x y x x x y x ⎧+=<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩或5x =-(舍去), 又因为01y ≤≤,所以它们的交点坐标为(1,515.(几何证明选讲选做题)如图4,过圆O 外一点P 分别作 圆的切线和割线交圆于,A B ,且7PB =,C 是圆上一点使得5BC =,BAC APB ∠=∠,则AB =___________.15由弦切角定理得PAB ACB ∠=∠,又BAC APB ∠=∠,则△PAB ∽△ACB ,则PB AB AB BC=,235AB PB BC =⋅=,即AB =三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R .(1)求5()4f π的值; (2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求cos()αβ+的值.16.解:(1)515()2sin()2sin 43464f ππππ=⨯-== (2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α=16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β== ∴1235416cos()cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯= 17.(本小题满分13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素,x y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:CDPF(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2)当产品中的微量元素,x y 满足175x ≥且75y ≥时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).17.解:(1)设乙厂生产的产品数量为a 件,则98145a =,解得35a = 所以乙厂生产的产品数量为35件(2)从乙厂抽取的5件产品中,编号为2、5的产品是优等品,即5件产品中有2件是优等品由此可以估算出乙厂生产的优等品的数量为235145⨯=(件) (3)ξ可能的取值为0,1,223253(0),10C P C ξ=== 1123256(1),10C C P C ξ=== 22251(2),10C P C ξ===∴ξ的分布列为:∴3614012.1010105E ξ=⨯+⨯+⨯=18.(本小题满分13分)如图5,在锥体P ABCD -中,ABCD 是边长为1的 菱形,且60DAB ∠=,PA PD ==2PB =,,E F 分别是BC ,PC 的中点.CDPAE FH (1)证明:AD ⊥平面DEF ;(2)求二面角P AD B --的余弦值.18.(1)证明:取AD 的中点H ,连接,,PH BH BD∵PA PD =,∴AD PH ⊥∵在边长为1的菱形ABCD 中,60DAB ∠= ∴△ABD 是等边三角形∴AD HB ⊥,PH HB H = ∴AD ⊥平面PHB ∴AD PB ⊥∵,E F 分别是BC ,PC 的中点 ∴EF ∥PB ,HB ∥DE∴AD DE ⊥,AD EF ⊥,DEEF E =∴AD ⊥平面DEF(2)解:由(1)知PH AD ⊥,HB AD ⊥ ∴PHB ∠是二面角P AD B --的平面角 易求得22PH BH==∴2227334cos 2PH HB PB PHB PH HB+--+-∠====⋅ ∴二面角P AD B --的余弦值为19.(本小题满分14分)设圆C 与两圆22(4x y +=,22(4x y +=中的一个内切,另一个外切. (1)求C 的圆心轨迹L 的方程; (2)已知点M ,F ,且P 为L 上动点,求MP FP -  的最大值及此时点P 的坐标.19.解:(1)设(F F ',圆C 的半径为r ,则(2)(2)4CF CF r r '-=+--=<  ∴C 的圆心轨迹L 是以,F F '为焦点的双曲线,2a =,c =1b =∴C 的圆心轨迹L 的方程为2214x y -= (2)2MP FP MF -≤= ∴MP FP - 如图所示,P 必在L 直线MF 的斜率2k =-:2MF y x =-+22142x y y x ⎧-=⎪⎨⎪=-+⎩215280x -+=6)0--=12x x ==∵P x >P x =,P y = ∴MP FP - 的最大值为2,此时P 为(55-20.(本小题满分14分)设0b >,数列{}n a 满足1a b =,1122n n n nba a a n --=+-(2)n ≥.(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,1112n n n b a ++≤+.20.(1)解:∵1122n n n nba a a n --=+-∴1122n n n a ba n a n --=+- ∴1211n n n n a b a b--=⋅+ ① 当2b =时,1112n n n n a a ---=,则{}nna 是以12为首项,12为公差的等差数列∴11(1)22n n n a =+-⨯,即2n a = ② 当0b >且2b ≠时,11211()22n n n n a b b a b--+=+-- 当1n =时,122(2)n n a b b b +=-- ∴1{}2n n a b+-是以2(2)b b -为首项,2b 为公比的等比数列 ∴112()22n n n a b b b+=⋅-- ∴212(2)2(2)n n n n nn n b a b b b b b-=-=--- ∴(2)2nn n nn b b a b-=- 综上所述(2),02222nn n n n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, (2)方法一:证明:① 当2b =时,11122n n n b a ++=+=;② 当0b >且2b ≠时,12212(2)(222)n n n n n n b b b b b -----=-++++1221222nnnn n n n n n b a b b b ----⋅=≤=++++1112111111222222222n n n n n n n n n n b b b b+++----+++=====<=⋅1112n n b +++∴对于一切正整数n ,1112n n n b a ++≤+.方法二:证明:① 当2b =时,11122n n n b a ++=+=;② 当0b >且2b ≠时,要证1112n n n b a ++≤+,只需证11(2)122n n n n n nb b b b ++-≤+-, 即证1(2)122n n n nn b b b b +-≤+-即证1221112222n n n n n n n b b b b b ----+≤+++++即证122111()(222)2n n n n n n b b b b n b----++++++≥即证2112231122221()()2222n n n n n n n n b b b b n b b b b---+-+++++++++≥ ∵2112231122221()()2222n n n n n n n n b b b b b bb b---+-+++++++++ 2121232111222()()()()2222n n n n n n n n b bb b b b b b----+=++++++++122n nb n -≥+=,∴原不等式成立 ∴对于一切正整数n ,1112n n n b a ++≤+.21.(本小题满分14分)在平面直角坐标系xOy 上,给定抛物线L :214y x =.实数,p q 满足24p q -≥0,12,x x 是方程20x px q -+=的两根,记12(,)max{,}p q x x ϕ=.(1)过点2001(,)4A p p 0(0)p ≠作L 的切线交y 轴于点B .证明:对线段AB 上的任一点(,)Q p q ,有0(,)2p p q ϕ=; (2)设(,)M a b 是定点,其中,a b 满足240a b ->,0a ≠.过(,)M a b 作L 的两条切线12,l l ,切点分别为2111(,)4E p p ,2221(,)4E p p ',12,l l 与y 轴分别交于,F F '.线段EF 上异于两端点的点集记为X .证明:112(,)(,)2p M a b X p p a b ϕ∈⇔>⇔=; (3)设{(,)|D x y y =≤1x -,y ≥215(1)}44x +-.当点(,)p q 取遍D 时,求(,)p q ϕ的最小值 (记为min ϕ)和最大值(记为max ϕ)21.解:(1)2001(,)4A p p 是抛物线L 上的点,12y x '=,则切线的斜率012k p = 过点A 的抛物线L 的切线方程为AB :200011()42y p p x p -=-,即2001124y p x p =-∵(,)Q p q 在线段AB 上,∴2001124q p p p =-,∴22220001144()()24p q p p p p p p -=--=-≥0不妨设方程20x px q -+=的两根为1x =,2x =则012p p p x --=,022p p p x +-=① 当00p >时,00p p ≤≤,001222p p p x p -==-,022p x = ∵00122p px -<≤,∴12x x ≤,∴122(,)max{,}p q x x x ϕ==02p = ② 当00p <时,00p p ≤≤,012p x =,002222p p px p -==- ∵00222p px ≤<-,∴12x x ≥,∴121(,)max{,}p q x x x ϕ==02p = 综上所述,对线段AB 上的任一点(,)Q p q ,有0(,)2p p q ϕ= (2)由(1)知抛物线L 在2001(,)4p p 处的切线方程为2001124y p x p =-,即200240p p x y -+=∵切线恒过点(,)M a b ,则200240p ap b -+=,∴1,2p a =① 当0a >时,(,)M a b X ∈⇔10a p <<⇔1p a =+2p a =-⇔12p p >② 当0a <时,(,)M a b X ∈⇔10p a <<⇔1p a =-2p a =+⇔12p p >综合①②可得(,)M a b X ∈⇔12p p >∵由(1)可知,若2111(,)4E p p , 点(,)M a b 在线段EF 上,有1(,)2p a b ϕ= ∴(,)M a b X ∈⇒1(,)2p a b ϕ= ③由(1)可知,方程20x ax b -+=的两根11,22p x =或12p a -,21,22p x =或22p a - 若1(,)2p a b ϕ=,即112max{,}2p x x = 则1122p a p -≥、 2122p p ≥、 2122p a p -≥ ∴12p p > ∴1(,)2p a b ϕ=⇒12||||p p >⇒(,)M a b X ∈ ④ 综合③④可得(,)M a b X ∈⇔1(,)2p a b ϕ=综上所述112(,)(,)2p M a b X p p a b ϕ∈⇔>⇔=;(3)由2115(1)44y x y x =-⎧⎪⎨=+-⎪⎩,求得两个交点(0,1),(2,1)- 则02p ≤≤,过点(,)G p q 作抛物线L 的切线,设切点为N 2001(,)4x x ,切线与y 轴的交点为H 由(2)知200240x px q -+=,解得0x p =,①若0x p =,则点(,)G p q 在线段NH 上由1y x ≤-,得1q p ≤-,∴022x p p p p =+≥=+-=,∴0m min in )12(x ϕ==. 由215(1)44y x ≥+-,得221511(1)14442q p p p ≥+-=+-∴2442p q p -≤-,∴0x p p =+≤t =,则2122p t =-+,02t ≤≤ ∴22011552(1)2222x t t t ≤-++=--+≤ ∴0max max 5)24(x ϕ==② 若0x p =,则点(,)G p q 在线段NH 的延长线上方程20x px q -+=的两根为012p p x x --=,022p p x x +-=即01,22x x =或02x p - ∵0x p ≤∴00012(,)max{,}max{,}222x x xp q x x p p ϕ==-=-p ==51(,)4p q ϕ≤≤ 综上所述min 1ϕ=,max 54ϕ=。

广东高职高考数学题分类汇总

广东高职高考数学题分类汇总

广东省历年高职高考数学试题集合不等式部分一、选择题1、(1998)已知集合1|0x A x x -⎧⎫=>⎨⎬⎩⎭,{}11B x x =-<, 那么A B =( )A 、(),0-∞B 、()0,2C 、()(),01,-∞+∞D 、()1,2)2、(2000)不等式111≤-+x x的解集是( )A 、}0|{≤x xB 、{|01}x x ≤≤C 、{|1}x x ≤D 、{|01}x x x ≤>或3、设集合M={|15},{|36},x x N x x M N ≤≤=≤≤⋂=则( )A 、}53|{≤≤x xB 、}61|{≤≤x xC 、}31|{≤≤x xD 、}63|{≤≤x x4、(2002)“29x =”是“3x =”( )A .充分条件B .必要条件C .充要条件D .非充分条件也非必要条件5、(2002)已知a b >,那么b a 11>的充要条件是( )A .022≠+b aB .0a >C .0b <D .0ab <6.(2002)若不等式220x bx a -+<的解集为{}15x x <<则a =( )A .5B .6C .10D .127. (2003)若不等式2(6)0x m x +-<的解集为{}32x x -<<, m = ( )A. 2B. -2C. -1D. 18.(2004)“6x =”是“236x =”的( )A. 充分条件B. 必要条C. 充要条件D. 等价条件9. (2004)若集合{}{}22(45)(6)05,1,5x x x x x c +--+==-, 则c =( )A.-5B. -8C. 5D. 610.(2004)若a b <,则11a b >等价于( )A. 0a >B. 0b <C. 0ab ≠D. 0ab >11. (2004)若a b >, 则( )A. 33a b >B. 22a b >C. lg lg a b >D. >12.(2005)设集合{}3,4,5,6,7A =, {}1,3,5,7,9B =, 则集合A B 的元素的个数为()A. 1B. 2C. 3D. 413. (2005)“240b ac ->”是方程20(0)ax bx c a ++=≠有实数解的( )A. 充分而非必要条件B. 必要而非充分条件C. 充要条件D. 既非充分又非必要条件14.(2006)已知集合{}1,1,2A =-,{}220B x x x =-=,则A B =( )A. ∅B. {}2C. {}0,2D. {}1,0,1,2-15.(2006)若,a b 是任意实数,且a b >,则下列不等式成立的是( ) A. 22a b > B. a b > C. lg()0a b -> D. 1122a b ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭16.(2007)已知集合{}0,1,2,3A =,{}11B x x =-<,则A B =( )A. {}0,1B. {}0,1,2C. {}2,3D. {}0,1,2,317、(2008)设集合{}1,1,2,3A =-,{}3B x x =<,则A B =( )A. ()1,1-B. {}1,1-C. {}1,1,2-D. {}1,1,2,3-18、(2008)x R ∈,“3x <”是“3x <”的( )A 、充要条件B 、充分条件C 、必要条件D 、既非充分也不必要条件19、(2008)若,,a b c 是实数,且a b >,则下列不等式正确的是( )A 、ac bc >B 、ac bc <C 、22ac bc >D 、22ac bc ≥20.(2009)设集合{}2,3,4,M =,{}2,4,5B =,则MN =( ) A. {}2,3,4,5 B. {}2,4 C. {}3 D. {}521.(2009)已知集合203x A x x ⎧+⎫=≥⎨⎬-⎩⎭,则A =( ) A 、(],2-∞ B 、()3,+∞ C 、[)2,3- D 、[]2,3-22.(2009)若,,a b c 均为实数,则“a b >”是“a c b c +>+”的( )A 、充分条件B 、必要条件C 、充要条件D 、既非充分也非必要条件23.(2010)已知集合{}1,1,=-M ,{}1,3=-N ,则=MN ( ) A. {}1,1- B. {}1,3- C. {}1- D. {}1,1,3-24.不等式11-<x 的解集是( )A 、{}0<x xB 、{}02<<x xC 、{}2>x xD 、{}02<>x x x 或25.(2010)已知2()81=++f x x x在区间()0,+∞内的最小值是( ) A 、5 B 、7 C 、9 D 、 1126.(2010)“2>a 且2>b ”是“4+>a b ”的( )A 、必要非充分条件B 、充分非必要条件C 、充要条件D 、非充分非必要条件 27.(2011)已知集合{}2M x x ==,{}3,1N =-,则M N =( )A. φB. {}3,2,1--C. {}3,1,2-D. {}3,2,1,2--28.(2011)不等式211x ≥+的解集是( ) A 、{}11x x -<≤ B 、{}1x x ≤ C 、{}1x x >- D 、{}11x x x ≤>-或29.(2011)“7=x ”是“7≤x ”的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分也非必要条件30.(2012)已知集合{}1,3,5M =,{}1,2,5N =,则M N =( )A. {}1,3,5B. {}1,2,5C. {}1,2,3,5D. {}1,531.(2012)不等式312x -<的解集是( )A 、1,13⎛⎫- ⎪⎝⎭B 、1,13⎛⎫ ⎪⎝⎭C 、()1,3-D 、()1,3 32.(2012)“21x =”是“1x =”的( )A 、充分条件B 、必要条件C 、充要条件D 、既非充分也非必要条件33.(2013)已知集合{}1,1,=-M ,{}01,2N =,,则=M N ( )A. {}0B. {}1C. {}0,1,2D. {}1,01,2-,34.(2013)若,a b 是任意实数,且a b >,则下列不等式正确的是( )A 、22a b >B 、1b a <C 、lg()0a b ->D 、22a b >35.(2013)在ΔABC 中,30A ︒∠>是1sin 2A >的( ) A 、充分非必要条件 B 、充要条件C 、 必要非充分条件D 、既非充分也非必要条件36. (2014)已知集合{}1,0,2-=M ,{}2,0,1-=N ,则=N M ( )A 、{}0B 、{}1,2-C 、φD 、{}2,1,0,1,2--37. (2014)“()()021>+-x x ”是“021>+-x x ”的( ) A 、充分非必要条件 B 、必要非充分条件C 、充分必要条件D 、非充分非必要条件二、填空题1.(1997)不等式|x+1|≤2的解集是2.(1998)不等式xx 211-->1的解集是 3.(2000)函数1(4)(1)(0)y x x x =++>的最小值等于4.(2002)集合M 满足{}{}4,3,2,11⊆⊆M ,那么这样的不同集合M共有 个。

2011广东理数(word版)

2011广东理数(word版)

试卷类型:A2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、 考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V=Sh 其中S 为柱体的底面积,h 为柱体的高线性回归方程 y bx a =+ 中系数计算公式 ,其中,x y 表示样本均值。

N 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+)一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i -2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A.0 B.1 C.2 D.33.若向量a,b,c满足a∥b且a⊥b,则()2a a b ⋅+= A.4 B.3 C.2 D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

2011年广东高考数学试卷及答案(文科)

2011年广东高考数学试卷及答案(文科)

2011年广东普通高等学校招生全国统一考试数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出四个选项中,只有一项符合题目要求。

1.设复数z 满足1=iz ,其中i 为虚数单位,则z =( ) A .i - B .i C .1- D .12.已知集合{}22(,)|,1A x y x y x y =+=为实数,且,{}(,)|,1B x y x y x y =+=为实数,且,则A B 的元素个数为( )A .4B .3C .2D .13.已知向量(1,2)a = ,(1,0)b = ,(3,4)c =,若λ为实数,//a b c λ+ ,则λ=( )A .41 B .21 C .1 D .24.函数)1lg(11)(x xx f ++-=的定义域是( )A .()1,-∞-B .),1(+∞C .),1()1,1(+∞-D .),(+∞-∞5.不等式0122>--x x 的解集是( ) A .⎪⎭⎫ ⎝⎛-1,21B .),1(+∞C .),2()1,(+∞-∞D .),1(21,+∞⎪⎭⎫ ⎝⎛-∞-6.已知平面直角坐标系xOy 上的区域D 由不等式组⎪⎩⎪⎨⎧≤≤≤≤yx y x 2220给定。

若(,)M x y 为D 上的动点,点A 的坐标为),则OA OM z ∙=的最大值为( )A .3B .4C .23D .247.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线A .20B .15C .12D .108.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆9.如图1~3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则几何体体积为( )A .34B .4C .32D .210.设()f x ,()g x ,()h x 是R 上的任意实值函数,如下定义两个函数()()f g x 和()()f g x ∙:对任意x R ∈,()()(())f g x f g x = ;()()f g x ∙=()()f x g x ,则下列等式恒成立的是( ) A .()()()()()())(x h g h f x h g f ∙∙=∙ B .()()()()()())(x h g h f x h g f ∙=∙ C .()()()()()())(x h g h fx h g f = D .()()()()()())(x h g h fx h g f ∙∙∙=∙∙二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

历届广东省高职高考数学试题

历届广东省高职高考数学试题

广东高职高考第一至九章考题精选第一章 集合与逻辑用语1.(05年)设}7,6,5,4,3{=A ,}9,7,5,3,1{=B ,则B A 的元素个数为( )A. 1B. 2C. 3D. 4 2.(06年)已知}2,1,1{-=A ,}02{2=-=x x x B ,则=B A ( )A. ∅B. }2{C. }2,0{D. }2,1,0,1{- 3.(07年)已知集合}3,2,1,0{=A ,}11{<-=x x B ,则=B A ( )A. }1,0{B. }2,1,0{C. }3,2{D. }3,2,1,0{ 4. (08年)设集合{}3,2,1,1-=A ,{}3<=x x B ,则=B A ( )A.)1,1(-B.{}1,1-C.{}2,1,1-D.{}3,2,1,1-5. (09年)设集合=M {}432,,,=N {}452,, ,则=N M ( ) A .{}5432,,,B .{}42,C .{}3D .{}5 6.(10年)设集合=M {}1,1- ,=N {}3,1- ,则=N M ( )A .{}1,1-B .{}3,1-C .{}1-D .{}3,1,1- 7.(11年)已知集合{}2|==x x M ,{}1,3-=N ,则=N M ( )A .∅B .{}1,2,3--C .{}2,1,3-D .{}2,1,2,3-- 8.(12年)设集合{1,3,5}M =,{1,2,5}N =,则=N M ( )A.{1,3,5}B. {1,2,5}C. {1,2,3,5}D. {1,5} 9.(13年)设集合{}1,1-=M ,{}2,1,0=N ,则=N M ( ) A . {}0 B . {}1 C . {}2,1,0 D . {}2,1,0,1-10.(14年)已知集合{}1,0,2-=M ,{}2,0,1-=N ,则=N M ( ) A .{}0 B .{}1,2- C .∅ D .{}2,1,0,1,2--11. (05年)“042>-ac b ”是“方程02=++c bx ax ,0≠a 有实数解”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既非充分又非必要条件 12. (06年)设G 和F 是两个集合,则G 中元素都在F 中是F G =的( )A. 充分条件B. 充要条件C. 必要条件D. 既非充分又非必要条件 13. (08年)R x ∈,“3<x ”是“3<x ”的( )A .充分必要条件 B.充分不必要条件 C.既不必要也不充分条件 D.必要不充分条件 14.(09年)设c b a ,,均为实数,则“b a >”是“c b c a +>+”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件 15.(10年)“2>a 且2>b ”是“4>+b a ”的( )A. 必要非充分条件B. 充分非必要条件C. 充要条件D. 非充分非必要条件 16.(11年)“7=x ”是“7≤x ”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分,也非必要条件 17.(12年)“12x =”是 “1x =”的 ( )A. 充分必要条件B. 充分非必要条件C. 非充分也非必要条件D. 必要非充分条件 18.(13年)在ABC ∆中,“ 30>∠A ”是“21sin >A ”的( ) A. 充分非必要条件 B. 充分必要条件 C. 必要非充分条件 D. 非充分非必要条件 19.(14年)“0)2)(1(>+-x x ”是“021>+-x x ”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 非充分非必要条件第二章 不等式1.(06年)若a ,R b ∈,且b a >,则下列不等式成立的是( )A. 22b a >2B. b a >C. 0)lg(>-b aD. b a )21()21(<2. (08年)若c b a ,,是实数,且,b a >则下列不等式中正确的是( )A. bc ac >B. bc ac <C. 22bc ac >D. 22bc ac ≥ 3.(13年)设b a ,是任意实数,且b a >,则下列式子正确的是( ) A . 22b a > B . 1<abC . 0)lg(>-b aD . b a 22>4.(07年)不等式0432>--x x 的解为___ ____.5.(09年)已知集合=A ⎭⎬⎫⎩⎨⎧≥-+032x x x ,则=A ( )A .(]2,-∞-B .()+∞,3C .[)3,2-D .]3,2[- 19.(09年)不等式)13(log )5(log 22+<-x x 的解是6.(10年)不等式11<-x 的解集是( )A .{}0<x xB .{}20<<x xC . {}2>x xD .{}20><x x x 或 7.(11年)不等式112≥+x 的解集是( ) A .{}11≤<-x x B .{}1≤x x C . {}1->x x D .{}11->≤x x x 或 8. (12年)不等式312x -<的解集是( )A . 113,⎛⎫- ⎪⎝⎭B . 113,⎛⎫⎪⎝⎭C . ()13,-D . ()13,9.(13年)对任意R x ∈,下列式子恒成立的是( )A . 0122>+-x xB . 01>-xC . 012>+xD . 0)1(log 22>+x 10.(13年)不等式0322<--x x 的解集为 . 11.(05年)解不等式:)24(log )34(log 222->-+x x x12.(06年)解不等式:2445≤+-x x13. (08年)解不等式21692<++x x第三章 函数1.(05年)下列四组函数中,)(x f ,)(x g 表示同一个函数的是( )A. x x f =)(,2)(x x g = B. 1)(+=x x f ,11)(2--=x x x gC. 2)(x x f =,4)()(x x g =D. x x f lg 2)(=,2lg )(x x g =2.(10年)设函数⎪⎩⎪⎨⎧≤>=0,20,log )(3x x x x f x ,则[])1(f f ( )A. 0B. 2log 3C. 1D. 23.(13年)设函数⎪⎩⎪⎨⎧>≤+=1,21,1)(2x xx x x f ,则=))2((f f ( )A . 1B . 2C . 3D . 44.(05年)函数13)(+-=x x x f 的定义域为( ) A. )1,(--∞ B. ),1(+∞- C. ),3(+∞ D. ),3[+∞ 5.(06年)函数xx y --=2)1(log 2 的定义域是( )A. )2,(-∞B. )2,1(C. ]2,1(D. ),2(+∞ 6.(08年)函数)10(log 123x x y -+-=的定义域是( )A. )10,(-∞B. )10,21(C. )10,21[D. ),21[+∞7.(10年)函数xx x f -+=21)(的定义域为( )A. )2,(-∞B. ),2(+∞C. ),1()1,(+∞---∞D. ),2()2,(+∞-∞ 8.(11年)函数xx y +-=1)1lg(的定义域是( )A .[]1,1-B .()1,1-C .()1,∞-D .()+∞-,1 9.(12年) 函数lg(1)y x =-的定义域是 ( )A . ()1,+∞B . ()1,-+∞C . ()1,-∞-D . ()1,-∞10.(13年)函数24x y -=的定义域是( ) A . ()2,2- B . []2,2- C . ()2,-∞- D . ()+∞,2 11.(14年)函数xx f -=11)(的定义域是( )A .)1,(-∞B .),1(+∞-C .]1,1[-D .)1,1(-12.(06年)函数242+-=x x y ,]3,0[∈x 的最大值为( )A. 2-B. 1-C. 2D. 3 13.(10年)函数182)(++=x xx f 在区间),0(+∞内的最小值( ) A. 5 B. 7 C. 9 D. 1114.(05年)下列在R 上是增函数的为( )A. x y 2=B. 2x y =C. x y cos =D. x y sin = 15.(05年)设x ax x f sin )1()(2+=,其中a 为常数,则)(x f 是( )A. 既是奇函数又是偶函数B. 奇函数C. 非奇非偶函数D. 偶函数 16.(06年)下列函数中,为偶函数的是( )A. x x f cos )(=,),0[+∞∈xB. x x x f sin )(+=,R x ∈C. x x x f sin )(2+=,R x ∈D. x x x f sin )(⋅=,R x ∈ 17.(07年)下列函数中,在其定义域上为奇函数的是( )A. x x y cos 2sin +=B. x x y 33+=C. x x y -+=22D. x x y cot tan +=18.(09年))内是减函数,,在区间(∞+=0)(x f y 则)3(sin ),4(sin ),6(sin πf c πf b πf a ===的 大小关系是( )A .a b c >>B .a c b >>C .c a b >>D .c b a >> 19.(09年)函数)1lg()(2x x x f +=是( )A .奇函数B .既是奇函数也是偶函数C .偶函数D .既不是奇函数也不是偶函数 20.(10年)若函数)(x f y =满足:对区间[]b a ,上任意两点1x 、2x ,当21x x <时,有)()(21x f x f >,且0)()(<b f a f ,则)(x f y =对区间[]b a ,上的图像只可能是( )x x x x21.(11年)已知函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤>=,31,sin1,log)(21xxxxxxxf,则下列结论中,正确的是()A.)(xf在区间),1(+∞上是增函数 B.)(xf在区间]1,(-∞上是增函数C.1)2(=πf D.1)2(=f22.(12年)下列函数为奇函数的是( )A.2y x=B.2siny x=C.2cosy x=D.2lny x=23.(12年)()f x是定义在()0,+∞上的增函数,则不等式()(23)f x f x>-的解集是. 24.(13年)下列函数为偶函数的是()A. x ey= B. xy lg= C. xy sin= D. xy cos=25.(14年)下列函数在其定义域内单调递减的是()A.xy21= B.xy2= C.xy)21(= D.2xy=26.(14年)已知)(xf是偶函数,且0≥x时,xxf3)(=,则=-)2(f .27.(05年)下列图形中,经过向左及向上平移一个单位后,能与函数1)(2+=xxf图象重叠的图形是()28. (06年)抛物线4412-+-=xxy的对称轴是( )A. 4-=x B. 2-=x C. 2=x D. 4=x29. (06年)直线caxy+=分别与x轴、y轴相交,交点均在正半轴上,则下列图形中与函数caxy+=2图象相符的是()212+x12-30.(07年)已知函数cbxaxy++=2)(Rx∈的图象在x轴上方,且对称轴在y轴左侧,则函数baxy+=的图象大致是()31. (08年)下列区间中,函数34)(2+-=xxxf在其上单调增加的是( )A. (0,∞-] B. ),0[+∞ C.]2,(-∞ D.),2[+∞32. (08年)二次函数cbacbxaxy,,(2++=为常数)的图像如右图所示,则( )A. 0<ac B. 0>ac C. 0=ac D. 0>ab33. (09年)已知函数为实数)bbxxxf(3)(2++=的图像以1=x为对称轴,则)(xf的最小值为()A.1 B.2 C.3 D.434.(14年)若函数kxxxf++-=2)(2)(Rx∈的最大值为1,则=k .35. (05年)设函数)(xf对任意x都有)10()(xfxf-=,且方程0)(=xf有且仅有2个不同的实数根,则这2个根的和为( )A. 0B. 5C. 10D. 1536.(07年)某公司生产一种电子仪器的成本C(单位:万元)与产量x(3500≤≤x,单位:台)的关系式为xC10010000+=,而总收益R(单位:万元)与产量x的关系式为221300xxR-=,(Ⅰ)试求利润L与产量x的关系式;(说明:总收益=成本+利润),(Ⅱ)当产量为多少时,公司所获得的利润最大?最大利润是多少?37.(09年)已知小王的移动电话按月结算话费,月话费y (元)与通话世界t (分钟)的关系可表示为3600360),360(68,68≤≤⎩⎨⎧>-+=t t l a y ,其中1月份的通话时间未460分钟,月话费为86元, (1)求a 的值。

2011年至2018年广东省高职高考数学试题分章节汇编(可打印修改)

2011年至2018年广东省高职高考数学试题分章节汇编(可打印修改)

B、
y
1 3
x
C、 y 3x 2x
D、 y log3 x
41、(2016)已知 f x是偶函数,且 y f x的图像经过点 2, 5,则下列等式恒成立的是(

A、 f 5 2 B、 f 5 2 C、 f 2 5 D、 f 2 5
42、(2017)已知集合 M 0,1,2,3, 4, N 3, 4,5,则下列结论正确的是(
2011 至 2018 年高职高考数学试题分章节汇编
前四章真题练习
1、(2011)已知集合 M x x 2 , N 3,1,则 M U N (

A.
B. 3, 2,1
C. 3,1, 2 D. 3, 2,1, 2
2、(2011)下列不等式中,正确的是( )
3
3
A、
32
2
27
B、
32
A、 8
B、 1 C、1 D、8
34、(2015)“ 0 a 1”是“ loga 2 loga 3 ”的(

A、充分非必要条件 B、必要非充分条件
C、充分必要条件 D、非充分非必要条件
35、(2015)当 x 0 时,下列不等式正确的是(

A、 x 4 4 B、 x 4 4 C、 x 4 8 D、 x 4 8
A、6
B、7
C、8
D、9
3、(2012)设 an 是等差数列, a2 和 a3 是方程 x2 5x 6 0 的两个根,则 a1 a4 ( )
A、2
B、3
C、5
D、6
4、(2013)若 a,b, c, d 均为正实数,且 c 是 a 和 b 的等差中项, d 是 a 和 b 的等比中项,则有(

2011年高职高考数学

2011年高职高考数学

2011年广东省高等职业院校招收中等职业学校毕业生考试数学班级 姓名一、选择题:(每题5分,共75分)1、已知集合}2{==x x M ,}1,3{-=N ,则=N M ( )A .φB .}123{,,--C .}213{,,-D .}2123{,,,-- 2、下列等式中,正确的是()A .27)3(232-=- B .27])3[(232-=- C .12lg 20lg =- D .12lg 5lg =⋅3、函数xx y +-=1)1lg(的定义域是()A .]1,1[-B .)1,1(-C .)1,(-∞D .),1(+∞- 4、设α为任意角,则下列等式中,正确的是()A .απαcos )2sin(=-B .απαsin )2cos(=-C .απαsin )sin(=+D .απαcos )cos(=+5、在等差数列}{n a 中,若306=a ,则=+93a a()A .20B .40C .60D .806、已知三点)0,0(O ,(,2)A k -,)4,3(B ,若AB OB ⊥,则=k()A .317-B .38C .7D .11 7、已知函数)(x f y =是函数xa y =的反函数,若3)8(=f ,则=a( )A .2B .3C .4D .58、已知角θ终边上一点的坐标为0)( )3,(<x x x ,则=⋅θθcos tan( )A .3-B .23-C .33D .239、已知向量)4,1(-=AB ,向量)1,3(=BC =()A .10B .17C .29D .510、函数2)2cos 2(sin )(x x x f -=的最小正周期及最大值分别是( )A .1,πB .2,πC .2,2πD .3,2π 11、不等式112≥+x的解集是()A .}11{≤<-x xB .}1{≤x xC .}1{->x xD .}11{->≤x x x 或 12、“7=x ”是“7≤x ”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分也非必要条件13、已知函数⎪⎪⎩⎪⎪⎨⎧<≤≤>=0 ,310 ,sin 1 ,log )(21x xx x x x x f 则下列结论中,正确的是( )A .)(x f 在区间),1(+∞上是增函数B .)(x f 在区间]1,(-∞上是增函数C .1)2(=πfD .1)2(=f14、一个容量为n 的样本分成若干组,若其中一组的频数和频率分别是40和0.25,则n =( )A .10B .40C .100D .16015、垂直于x 轴的直线l 交抛物线x y 42=于B A ,两点且34=AB ,则该抛物线的焦点到直线l 的距离是( )A .1B .2C .3D .4二、填空题:(每题5分,共25分)16、在边长为2的等边三角形ABC 中,=⋅BC AB 。

广东省2011年普通高等学校数学招生全国统一考试密卷 理

广东省2011年普通高等学校数学招生全国统一考试密卷 理

广 东 省2011年普通高等学校招生全国统一考试密卷数学(理)试题本试卷共4页,21小题, 满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高. 球的表面积公式24S R π=, 其中R 为球的半径.如果事件A 、B 互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}{220A x x x =-≤,}{11B x x =-<<, 则A B =A .}{01x x ≤<B .}{10x x -<≤ C .}{11x x -<< D .}{12x x -<≤ 2. 若复数(1-i )(a +i )是实数(i 是虚数单位),则实数a 的值为A .2-B .1-C .1D .2 3. 已知向量p ()2,3=-,q (),6x =,且//p q ,则+pq 的值为AB C .5 D .13 4. 函数ln xy x=在区间()1,+∞上 A .是减函数 B .是增函数 C .有极小值 D .有极大值 5. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为.NMD 1C 1B 1A 1DCBA图3(度)A .2B .3C .4D .56. “a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件7. 将18个参加青少年科技创新大赛的名额分配给3所学校, 要求每校 至少有一个名额且各校分配的名额互不相等, 则不同的分配方法种数为 A .96 B .114C .128D .136 图1 8. 如图2所示,已知正方体1111ABCD A BC D -的棱长为2, 长 为2的线段MN 的一个端点M 在棱1DD 上运动, 另一端点N 在正方形ABCD 内运动, 则MN 的中点的轨迹的面积为 A .4π B .2πC .πD .2π图2 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.为了了解某地居民月均用电的基本情况, 抽取出该地区若干户居民的用电数据, 得到频 率分布直方图如图3所示, 若月均用电量在 区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户.D 10. 以抛物线2:8C y x=上的一点A为圆心作圆,若该圆经过抛物线C的顶点和焦点,那么该圆的方程为.11. 已知数列{}n a是等差数列, 若468212a a a++=, 则该数列前11项的和为.12. △ABC的三个内角A、B、C所对边的长分别为a、b、c,已知3,,3c Cπ==2a b=, 则b的值为.13. 某所学校计划招聘男教师x名,女教师y名, x和y须满足约束条件25,2,6.x yx yx-≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是名.(二)选做题(14~15题,考生只能从中选做一题)14. (几何证明选讲选做题)如图4, CD是圆O的切线, 切点为点A、B在圆O上,1,30BC BCD︒=∠=,则圆O15. (坐标系与参数方程选讲选做题)在极坐标系中,若过点(极轴垂直的直线交曲线4cosρθ=于A、B两点,则AB图4三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()2sin cos cos2f x x x x=+(x∈R).(1)当x取什么值时,函数()f x取得最大值,并求其最大值;(2)若θ为锐角,且8fπθ⎛⎫+=⎪⎝⎭,求tanθ的值.DA 1B 1BA17.(本小题满分12分)某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润 (单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为4.9元.表1 表2 (1) 求,a b 的值;(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.18.(本小题满分14分)如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点, 12A A A B==. (1) 求证:1//AB 平面1BC D ;(2) 若四棱锥11-B AAC D 的体积为3, 求二面角1--C BC D 的正切值.图519.(本小题满分14分)已知直线2y =-上有一个动点Q ,过点Q 作直线1l 垂直于x 轴,动点P 在1l 上,且满足 O P O Q ⊥(O 为坐标原点),记点P 的轨迹为C . (1) 求曲线C 的方程;(2) 若直线2l 是曲线C 的一条切线, 当点()0,2到直线2l 的距离最短时,求直线2l 的方程.20.(本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式; (2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数.21.(本小题满分14分)已知函数y =()f x 的定义域为R , 且对于任意12,x x ∈R ,存在正实数L ,使得 ()()1212fx fx L x x-≤-都成立.(1) 若()f x =求L 的取值范围;(2) 当01L <<时,数列{}n a 满足()1n n a f a +=,1,2,n = .① 证明:112111nkk k aa a a L+=-≤--∑; ② 令()121,2,3,k k a a a A k k ++== ,证明:112111nk k k A A a a L +=-≤--∑.参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分. 9. 325 10. ()(2219x y -+±= 11. 3312. 13. 1014.π15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解: ()2sin cos cos2f x x x x =+sin 2cos 2x x =+ …… 1分22x x ⎫=+⎪⎪⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. …… 3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x 取得最大值, …… 5分(2)解法1:∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. …… 6分 ∴1cos 23θ=. …… 7分 ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 23θ==…… 8分∴sin 2tan 2cos 2θθθ== …… 9分∴22tan 1tan θθ=-. …… 10分2tan 0θθ+=.)(1tan 0θθ-+=.∴tan θ=或tan θ=不合题意,舍去) …… 11分∴tan θ=. …… 12分解法2: ∵8f πθ⎛⎫+= ⎪⎝⎭, 22πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∴212cos 13θ-=. …… 8分 ∵θ为锐角,即02πθ<<,∴cos3θ=. …… 9分∴sin3θ==. …… 10分∴sintancos2θθθ==. …… 12分解法3:∵83fπθ⎛⎫+=⎪⎝⎭,223πθ⎛⎫+=⎪⎝⎭.∴1cos23θ=. …… 7分∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin23θ==…… 8分∴sintancosθθθ=…… 9分22sin cos2cosθθθ=…… 10分sin21cos2θθ=+2=. …… 12分17.(本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:…… 2分∴60.6540.1 4.9E a bξ=⨯++⨯-=,即50.9a b-=. …… 3分∵0.60.20.11a b++++=, 即0.3a b+=, …… 4分解得0.2,0.1a b==.GFEODC 1A 1B 1CBA∴0.2,0.1a b == . …… 6分 (2)解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都是一等品或2件一等品,1件二等品. …… 8分故所求的概率P =30.6+C 2230.60.2⨯⨯0.432=. (12)分18. (本小题满分14分)(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点.∵D 为AC 的中点, ∴OD 为△1ABC 的中位线,∴ 1//OD AB . …… 2分∵OD ⊂平面1BC D ,1⊄AB 平面1BC D , ∴1//AB 平面1BC D . …… 4分 (2)解: 依题意知,12AB BB ==,∵1⊥AA 平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC 平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C , ……6分 设BC a =,在Rt △ABC中,AC =AB BC BE AC ==∴四棱锥11-B AAC D 的体积()1111132V AC AD AA BE =⨯+126=a =. …… 8分依题意得,3a =,即3BC =. …… 9分 (以下求二面角1--C BC D 的正切值提供两种解法)解法1:∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C . 取BC 的中点F ,连接DF ,则DF //AB ,且112DF AB ==. ∴DF ⊥平面11BB C C . 作1FG BC ⊥,垂足为G ,连接DG , 由于1DF BC ⊥,且DF FG F = , ∴1BC ⊥平面DFG .∵DG ⊂平面DFG , ∴1BC ⊥DG .∴DGF ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △BGF ~Rt △1BCC ,得11GF BFCC BC =,得1132BF CC GF BC ⨯=== 在Rt △DFG 中, tan DF DGF GF ∠=3=. ∴二面角1--C BC D的正切值为3. …… 14分 解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂ ∴AB ⊥平面11BB C C .。

2011年至2018年广东省高职高考数学试题分章节汇编

2011年至2018年广东省高职高考数学试题分章节汇编

2021至2021年高职高考数学试题分章节汇编前四章真题练习1、(2021)集合加=卜料=2}, N = {-3,1},那么MUN=()A. 0B. {-3,-2,1}C. {-3,1,2}D. {-3,-2,1,2}2、(2021)以下不等式中,正确的选项是() 3 3A、(3-2p=—27B、(-3)2 7 =-27C、怆20-怆2 = 1D、Ig51g2 = l3、(2021)函数),=母旦的定义域是() y/\+XA、[-1,1]B、(-1,1)C、(一』)D、(-1,-HZ))4、(2021)函数是函数y ="的反函数,假设"8) = 3,那么〃=()A、2B、3C、4D、85、(2021)不等式——21的解集是() x+1A、{X|-1VX«1}B、{x|x< 1}C、D、>-lj>6、(2021) “x = 7〞是“x<7〞的()A、充分非必要条件B、必要非充分条件C、充要条件D、既非充分也非必要条件log」X, x>\7、(2021)设函数/(幻=卜门,0<x<l,那么以下结论中正确的选项是()x<0 .3A、/(X)在区间(1,长.)上时增函数B、/(外在区间上时增函数C、足)=1D、〃2) = 18、(2021)集合知={1,3,5}, N={1,2,5},那么M|JN=()A. {1,3,5}B. {1,2,5}C. {1,2,3,5}D. {1,5}9、(2021)函数y = Ig(x-1)的定义域是()A、(1,-Kz))B、(—l,+oo)C、(—oo, — l)D、(—oo,l)10、(2021)不等式|3x-l|v2的解集是()A、B、C. (-1,3) D、(1,3)11、(2021) “r=i 〞是“x = i 〞的()A、充分条件B、必要条件C、充要条件D、既非充分也非必要条件12、(2021)函数/(x) = |log“x|,其中0<avl,那么以下各式中成立的是()A、/(2)>/(l)>/(i)B、/(I) > /(2) > /(I) 3 4 4 3C、/(1)>/(2)>/(1)D、/4)>/(1)>/(2)3 4 4 313、(2021) /(x)是定义在(0,2)上的增函数,那么不等式/(x)>f(2工一3)的解集是;14、(2021)设集合〃={—□}, N = {0』,2},那么MC1N=()A. {0}B. {1}C. {0,1,2}D. {-l,0,l,2} 15、(2021)函数y = >/4^『的定义域是()A 、(-2,2)B 、[-2,2]C 、(—,-2)D 、(2,f16、(2021)设〃1是任意实数,且那么以下式子正确的选项是()A 、a 2>b 2B. -<1 C 、lg (6/-/?)>0 D> 2a>2b17、 (2021)以下函数为偶函数的是()A 、y = e xB 、y = Igx C> y = sinx D 、 y = cosx x 2 +l,x<l18、(2021)设函数"" = {2 ,那么〃〃2))=(—, x> 1 .XA 、1B 、2C 、3D 、419、(2021)在AABC 中,“NA>30.〞 是 “sinA>!〞 的()2A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分也非必要条件 20、(2021)对任意xeR,以下式子恒成立的是()A 、X 2-2X + 1>0B 、|x-l|>0 C, 2r +l>0 D 、log 2(x 2+l)>0 21、(2021)不等式丁-2工-3<0的解集为;22、(2021)集合知={-2,0,1} , N = {—l,0,2},那么MC1N=(A. {0}B. {-2,1}C. °D. {-2,-1,0,1,2}23、(2021)函数/(x) = —=的定义域是() - XA 、(f ,1)B 、(-1,-K >D )C 、[-1,1]D 、(-1,1) 24、(2021)以下不等式中,正确的选项是()A 、Ig7 + lg3 = l B.怆2 =史 C 、log.7 = -!^ D. Ig37=71g 3 lg3 lg725、(2021)以下函数在其定义域内单调递减的是( )(2021) “(x—l)(x+2)>0〞 是 “ 的(A 、充分非必要条件B 、必要非充分条件C 、充分必要条件D 、非充分非必要条件 27、(2021)/(x)是偶函数,且工之.时,〃x) = 3',那么〃-2)=—28、 (2021)假设函数/(力=一/+2工+k(xeR)的最大值为1,那么攵=; 29、(2021)集合〞={1,4} , N = {1,3,5},那么"UN=()A. {1}B. {4,5}C. {1,4,5}D. {1,3,4,5} 30、(2021)函数/(x) = VTT 工的定义域是()A 、(^=0,—1]B 、[—C> (^=0,1] D 、(—00,+co) 31、 (2021)不等式x2_7x+6>0的解集是()A 、(1,6)B 、(—oo,l)U(6,+co)C 、0D 、(—00,4-00)32、(2021)设.>0且为任意实数,那么以下算式错误的选项是()A 、4°=1B 、优•/="+>C 、? = "-、'D 、("『=/ 33、(2021)函数“X )是奇函数,且〃2) = 1,那么[/(—2)了=()A 、-8B 、-1C 、1D 、8A 、> = ; xB 、y = 2'C 、y =12;26、34、(2021) “Ovavl〞是“log02>log03〞的(A、充分非必要条件B、必要非充分条件C、充分必要条件D、非充分非必要条件(2021)当x>0时,,以下不等式正确的选项是( )A、x + —<4 Bx x + —>4 C、x + —<8 D、x + —>8 36、(2021)集合4 = {2,3,〃}, 8 = {1,4},且AC|B = {4},那么.=()A. 1B. 2C. 3D. 437、(2021)函数),=在工T的定义域是()38、(2021)设“泊为实数,那么“〃 =3〞是“4(人-3) = 0〞的()A、充分条件B、必要条件C、充分必要条件D、非充分非必要条件39、(2021)不等式Y -5x-6«0的解集是( )A、{*-2<x<3}B、{x|-l<x<6} C> {x1-64x«l}D、1x|x<-6j40、(2021)以下函数在其定义域内单调递增的是()41、(2021)是偶函数,且y = /(x)的图像经过点(2,-5),那么以下等式恒成立的是 ()A、5) = 2B、/(-5) = -2C、2) = 5D、/(-2) = -542、(2021)集合"={0J2,3,4}, N = {3,4,5},那么以下结论正确的选项是()A. M jNB. N jMC. Mp|N = {3,4}D. MUN = {O,1,2,5}43、(2021)函数的定义域是()A、-4]B、C、D、(—4,+QO)44、(2021)设/(x)是定义在R上的奇函数,当xNO时,/(x) = x2-4.?,M/(-i)= < )A、-5B、-3C、3D、545、(2021) “x>4〞是“(x—l)(x—4)>0〞的()A、必要非充分条件B、充分非必要条件C、充分必要条件D、非充分非必要条件46、(2021)以下运算不正确的选项是( )A、Iog210 - log2 5 = 1B、Iog210+ log2 5 = log215C、2°=1D、2,O-2S=447、(2021)函数),=,的图像与单调递减函数y = /(x)(xwR)的图像相交于点3,.)给出以下四个结论:①a = In b②〃 =In a③f(a) = b④当x >.时,f(x) < e xA、1个B、2个C、3个D、4个48、(2021)集合4 = {0,L2,4,5}, 8 = {0,2},那么Ap|8=()A. {1}B. {0,2}C. {3,4,5}D. {0,1,2}49、(2021)函数= 二玄的定义域是()(2021)以下等式正确的选项是(一 8,一4一©0,—— 352、 (2021) “xv—3〞 是 “丁>9,,的( A 、必要非充分条件 B 、充分非必要条件 C 、充分必要条件 D 、非充分非必要条件 53、(2021) f(x) = \「「一八,那么〃/(2))=()X — 1, X <.A 、1B 、0C 、-1D 、-254、(2021)设/(x)是定义在R 上的奇函数,且对于任意实数x,有/(x + 4) = /(x),假设/(—1) = 3,那么〃4) + 〃5)=()A 、-3B 、3C 、4D 、62021至2021年高职高考数学试题第五章数列真题练习1、(2021)在等差数列{〃“}中,假设q =30,贝!1%+为 =() A 、20 B 、40 C 、60 D 、802、(2021)在等比数列{%}中,6=1,公比q = 假设4=8①,那么〃=()A 、6B 、7C 、8D 、93、(2021)设%是等差数列,的和小是方程方-5%+6 = 0的两个根,那么%+4=() A 、2 B 、3 C 、5 D 、64、(2021)假设bed 均为正实数,且c 是.和〃的等差中项,〞是.和〃的等比中项,那么有 () A 、ah > cd B 、ab > cd C 、ab < cd D 、ah < cd5、(2021){〃“}为等差数列,且%+% =8,%+4 = 12 ,那么 ;6、(2021)数列{4}的前〃项和S“=、、,那么%=()7、(2021)等比数列{〃〃}满足4>0(〃eN*),且%% =9,贝lj%=;8、(2021)在各项为正数的等比数列{〃“}中,假设a } -a 4=-那么log3a 2 + log 3ai =(A 、-1B 、1C 、-3D 、39、(2021)假设等比数列{4}满足q=40=20,那么{4}的前〃项和邑=; 10、(2021)在等比数列{q }中,%=74=56,那么该等比数列的公比是( A 、2 B 、3 C 、4 D 、811、(2021)也}为等差数列,且为+.8 +?0 =50,WJ a 2 + 2t/10 =;A B DA 、Ig5-lg3 = lg2B 、Ig5+lg3 = lg8 C> 馆5 =业Ig551、(2021)指数函数y = "(Ovavl)的图像大致是(D 、lg- 100)12、(2021)数列{q }为等差数列,且3=2,公差"=2,假设/,心,4成等比数列,那么攵= ()A 、4B 、6C 、8D 、1013、(2021)设等比数列{4}的前〃项和Sn =3-3,那么{4}的公比q=;A 、2(1-2") Bs 2(1-2-〃) C 、2(1-2~) D 、2(1-2〃-)15、(2021)数列{%}为等比数列,前.〃项和S“=3〞,a,那么.=()A 、-6B 、一3 C. 0 D 、32021至2021年高职高考数学试题第六章三角函数真题练习C 、sin(a + ^) = sin<zD 、cos(c + /r) = cosa2、(2021)角 e 终边上一点为(x,瓜)(x<0),那么 tan?cos6=()A _ Q R _立 C 乔 D 乔/B 、 7 J B 、L 、U 、2323、(2021)函数〃x) = (sin2x-cos2x)-的最小正周期及最大值分别是()A 、nAB 、肛2C 、-,2D 、-,3 2 24、 (2021) sin390°=()B. — C> — D 、12 2函数y = 2 sin x cos x 最小正周期为; sin 330°=() B. 1 C 、-且 D 、旦 2 2 2 函数/(x) = 3 cos 2]的最小正周期为; 4 假设 sin 6 ==,tan 8 > 0 ,那么 cos 6 =;函数/(x) = 4sinxcosx(xeR)的最大值是(B 、2C 、4D 、8 10、(2021)角6的顶点为坐标原点,始边为人,轴的正半轴,假设P (4,3)是角夕终边上的一 点,那么tan 夕=()11、(2021)函数/(x) = 2sin@x 的最小正周期为3乃,那么3=()1 2A 、 _B 、 一C 、 1D 、 23 312、 (2021)在AA3C 中,内角A, B, C,所对应的边分别为a = 3,c = l,cos8 = 1 ,那么3b= :1、 (2021)设.为任意角,A.(万) A 、sin a —- =cosaI 2) 在以下等式中,正确的选项是()B 、 丸 cos a — - 2 = sincr 6、7、8、 9、(2021) (2021) 1—— 2(2021) (2021)(2021)A 、1(3 4、交点为P ,那么以下等式正确的选项是() 15 5 >, 3 4 4A 、sin 0 = —B 、cos 0 =—— C 、 tan6 = —— D 、 tan6 =一A 、sin A =B 、cos A =C 、tan A = >/2D 、cos(A + B) = 119、 ( 2021 )A4BC 对应边分别为的内角A, B, C 的对边分别为a,b,c ,3b = 4a, B = 2A ,那么 cos A =;2021至2021年高职高考数学试题第七章向量真题练m(2021)三点0(0,0),A 化-2),3(3,4),假设后,而,那么Z=()将函数y = (x+lf 的图像按向量)经过一次平移后,得到),= /的图像,)10、(2021)设向量Z = (4,5),6 = (1,O)": = (2㈤,且伍+ 可〃鼠 那么<=()13、 (2021) 在区间W 片上的最大值是()A 、 14、 2(2021) B 、V22 D 、1函数y = (sin2x-cos2x)~的最小正周期是()15、 16、 A 、T(2021) (2021) B 、7T C 、24 D 、4万角8的顶点与原点重合,始边为工轴的非负半轴,如果8的终边与单位圆的17、(2021)A 、-218、 (2021) 函数/ (x) = cos3xcosx-sin3xsinx 的最小正周期是()AA8C, BC = 6AC = «/C = 90.,那么()1、 2、 A 、」B 、 3(2021) §C 、7D 、11 3 向量而= (1T),向量反= (3,1),那么困卜()A 、- MB 、屈C 、729D 、53、 4、(2021) (2021) 在边长为2的等边AABC 中,AB BC=; 向量 a = (3,5),6 =(2,x),且 那么1=() A 、B 、C 、D 、5、 (2021)那么向量6、 7、 8、9、A 、(OJ)B 、(0,-1)C 、(-1,0)D 、(1,0) (2021)向量1 = (1,2)石=(2,3),那么向量3力= (2021)假设4月=(2,4),8乙=(4,3),那么/=()A 、(6,7)B 、(2,-1)C 、(-2,1)D 、(7,6) (2021)假设向量满足.+可=忖一可,那么必有()A 、a = 0B 、BC 、a-b = 0D 、a = b (2021)向量 a =(2sin8,2cos8),那么〃=(A 、 8B 、 4C 、2D 、 1C、函数丁 =cossin --cosa ,那么 tan0 =2A、-2B、-- C. - D、2 2 211、(20J4) /胆示的平行四边形48CQ中,以下等式不正确的选项是() A、AC = AB + ADB、AC = AD + DC /C、AC = BA-BC / /D、AC = BC-BA / /12、(2021)在平面直角坐标系中,三必/ 2),那么|而+阮卜()A、1B、2C、3D、413、(2021)向量a = (sin6,2)虚=(1,cos8),假设那么tanC=()A、--B、1C、-2D、22 214、(2021)向量I和I夹角为2,且同= 71*3,那么;15、(2021)设三点4(1,2),8(T3),C(x—l,5),假设A月与前共线,那么X=()A、-4B、-1C、1D、416、(2021)设向量2 = (-3,1)向=(0,5),那么()A、1B、3C、4D、517、(2021)在AA8C中,假设AB = 2,那么而-(a —赤)=;18、(2021)设向量)=(44)3=(2,—3),假设Z・B = 2,那么工=()A、-5B、-2C、2D、719、(2021)点0(0,0), A(-7,10),B(-3,4),设2 =砺 +砺,那么同=;20、(2021)设向量a =(2,3sin8),〃 =(4,cose),假设a〃B,贝ljtan8 =;21、(2021)假设向量A总= (l,2),Ad =(3,4),那么就=()A、(4,6)B、(-2,-2)C、(1,3)D、(2,2)22、(2021)向量)= (4,3),6 = (x4),假设2_1_几那么[=;2021至2021年高职高考数学试〕第八章解析几何真题练习〔2021〕垂直于x轴的直线/交抛物线V=4x交于A、B两点,且卜耳=4乔,那么该抛物线1、的焦点到直线/的距离是〔〕A、1B、2C、3D、42、〔2021〕设/是过点〔0,-虚〕及过点〔1,四〕的直线,那么点〔表2〕到/的距离是.3、〔2021〕经过点〔0,-1〕和〔1,0〕,且圆心在直线y = x + l上的圆的方程是4、〔2021〕以点尸〔1,3〕,Q〔-5,1〕为端点的线段的垂直平分线的方程为〔〕A、12x+y + 2 = 0B、3x+ y + 4 = 0 C> 3x-y + 8 = 0 D、2x-y-6 = 0 2 25、〔2021〕椭圆J +二=1的两焦点坐标是〔〕36 25A、〔o,-Vn〕,〔o,VrT〕B、〔-6,0〕,〔6,0〕C、(0,-5),(0,5)D、(->/rT,o),(>/n,o)6、(2021)圆Y-4x+y2=o的圆心至ij直线x + ®,一4 = 0的距离是;7、(2021)假设直线/过点(1,2),在y轴上的截距为1,那么/的方程为()A、3x-y-l = 0B、3x-y + l = 0C、x-y-l = 0D、x-y + \= 08、(2021)抛物线/=-8),的准线方程是()A、y = 4B、y = -4C、y = 2D、y = -29、(2021)以下抛物线中,其方程形式为)2=2px(p>0)的是()10、(2021)假设圆丁 + /-2% + 4),= 3-2女-二与直线2工+),+ 5 = 0相切, 那么Z=()A、3 或-1B、-3或1C、2 或-1D、-2或111、(2021)点A(l,3)和点8(3,-1),那么线段AB的垂直平分线的方程是;12、(2021)以下方程的图像为双曲线的是()A、x2-y2=0 B. x2 = 2y C、3x2+4y2=l 2x2-y2=213、(2021)假设圆+(y + l)2 =2与直线%+y一左=0相切,那么%=()A、±2B、±V2C、±2&D、±414、(2021)点A(2,l)和点8(T,3),那么线段AB的垂直平分线在y轴上的截距为;15、(2021)抛物线/ =4),的准线方程是()A、y = -1B、y = 1C、x = —1D、x = \16、(2021)直线/的倾斜角为巳,在y轴上的截距为2,那么/的方程是()4A N y + x-2 = 0 B、y + x + 2 = 0 C、y-x-2 = 0 D、y-x + 2 = 017、(2021)直角三角形的顶点A(T,4),3(T,7)和C(2,4),那么该三角形外接圆的方程是:18、(2021)抛物线V=-8x的焦点坐标是()A、(-2,0)B、(2,0)C、(0,-2)D、(0,2) 2 219、(2021)双曲线二一二=1(.>0)的离心率为2,那么〃=()a- 6A、6B、3C、6D、夜20、(2021)设直线/经过圆/+y2+2x + 2y = 0的圆心,且在y轴上的截距为1,那么直线/的斜率为()A、2B、-2C、-D、--2 221、(2021)点A.,2)和8(3, Y),那么以线段A8的中点为圆心,且与直线x + y = 5相切的圆的标准方程是:22、(2021)抛物线丁=4x的准线方程是()A、x = —\B、x = 1C、y = -1D、y = l23、(2021)点4(—1,4),3(5,2),那么A3的垂直平分线是()A N 3x-y-3 = O B、3x+y-9 = 0 C^ 3x-y-10 = 0 D、3x+y-8 = 024、〔2021〕双曲线工-二=1的离心率6=;4 3225、〔2021〕以两直线x+y = 0和2x-〕,-3 = 0的交点为圆心,且与直线2x-y + 2 = 0相切的圆 的标准方程是:2021至2021年高职高考数学试题第九章概率统计真题练习1、〔2021〕 一个容量为〃的样本分成假设干组,假设其中一组的频数和频率分别是40和0.25,那么 〃=〔〕A 、10B 、40C 、100D 、1602、〔2021〕袋中装有6只乒乓球,其中4只是白球,2只是黄球,先后从袋中无放回地取出两 球,那么取到的两球都是白球的概率是:3、〔2021〕现有某家庭某周每天用电量〔单位:度〕依次为:8.6、74、8.0. 6.0. 8.5、8.5、 9.0,那么此家庭该周平均每天的用电量为〔 〕A 、6.0B 、8.0C 、8.5D 、9.04、〔2021〕 一个容量为40的样本数据,分组后组距与频数如下表:那么样本在区间[60,100]的频率为〔〕A 、0.6B 、0.7C 、0.8D 、0.95、〔2021〕从1,_2,3,4,5五个数中任取一个数,那么这个数是奇数的概率是_;6、〔2021〕X 是2,七,…,X ]0的平均值,%为再,修,再,工4的平均值,为知与,…,再0的平均 值,贝lji=〔〕A 、"+辿B 、3«+2%C 、%Ds5 5 2〔2021〕容量为20的样本数据,分组后频数分布表如下:那么样本数据落在区间[10,40〕的频率为 〔 〕 A 、0.35 B 、0.45 C 、0.55 D 、0.658、〔2021〕设袋内装有大小相同,颜色分别为红、白、黑的球共100个,其中红球45个,从 袋内任取1个球,假设取出白球的概率为0.23,那么取出黑球的概率为一:9、 〔 2021 〕在样本内,工2,0工4,工5中,假设占,公,工3的均值为80, %看的均值为90 ,那么占,&,工3,4*5的均值是〔〕A 、80B 、84C 、85D 、90:那么今年第一季度该医院男婴的出生频率是〔 〕11、〔2021〕在1,234,5,6,7七个数中任取一个数,那么这个数为偶数的概率是一;12、〔2021〕七位顾客对某商品的满意度〔总分值为10分〕打出的分数为:8,576,9,6,8.去掉一A 、 44 「 40 123 123C 、 59 123D 、64 123个最高分和最低分后,所剩数据的平均值为〔〕A、6B、7C、8D、913、(2021)甲班和乙班各有两名男羽毛球运发动,从这四人中任意选出两人配对参加双打比赛,那么这对运发动来自不同班的概率是( )14、(2021)质检部门从某工厂生产的同一批产品中随机抽取100件进行质检,发现其中有5 件不合格品,由此估计这批产品中合格品的概率是—:15、(2021)假设样本数据3,2,x,5的均值为3,那么该样本的方差是()A、1B、1.5C、2.5D、616、(2021)同时抛三枚硬币,恰有两枚硬币正面朝上的概率是()17、(2021)某高中学校三个年级共有学生2000名,假设在全校学生中随机抽取一名学生,抽到高二年级女生的概率为0.19,那么高二年级的女生人数为;18、(2021)假设样本5,4,6,7,3的平均数和标准差分别为()A、5和2B、5和应C、6和3D、6和619、(2021)从某班的21名男生和20名女生中,任意选派一名男生和一名女生代表班级参加评教座谈会,那么不同的选派方案共有()A、41 种B、420 种C、520 种D、820 种20、(2021)从编号为123,4的4张卡片中随机抽取两张不同的卡片,它们的编号之和为5的概率是:21、(2021)现有3000棵树,其中400棵松树,现在提取150做样本,其中抽取松树做样本的有()棵A、15B、20C、25D、30 22、(2021) 一个硬币抛两次,至少一次是正面的概率是()A、' - C. - -3 2 3 423、(2021)数据10,x,11,y,12,z的平均数为8,那么的平均数为2021至2021年高职高考数学试题解做题真题练习一、函数局部解做题1、(2021)设/(x)既是R上的减函数,也是R上的奇函数,且/(1) = 2, (1)求/(一1)的值:假设/(r2-3r + l)>-2,求,的取值范围.2、(2021)如图,两直线4和.相交成60.角,交点是O,甲和乙两人分别位于点A和B, |.4| = 3千米,|O3| = l千米,现甲,乙分别沿小6朝箭头所示方向,同时以4千米/小时的速度步行,设甲和乙/小时后的位置分别是点P和Q.〔1〕用含f的式子表示|OP|与|..|;〔2〕求两人的距离|PQ|的表达式.3、〔2021〕将10米长的铁丝做成一个右图所示的五边形框架ABCDE,要求连接AD后,△AQE•为等边三角形,四边形ABCD为正方形.〔1〕求边BC的长:〔2〕求框架ABCDE围成的图形的面积.4、〔2021〕如下图,在平面直角坐标系中,点4-2,0〕不作半圆交y轴于点",以点尸为半圆的圆心,以A6为边作正方形A8CQ 接CM和MP. 〔1〕求点.,尸和〃的坐标;〔2〕求四边形8cMp的面木5、(2021)如图,点46,.)和8(3,4),点.在),轴上,四边形为梯形,P为线段.4上异于端点的一点,设|OP| = x.(1)求点C的坐标;(2)试问当x为何值时,三角形的面积与四边形的面积相等?6^ (2021)矩形周长为10,面积为A, 一边长为工.(1)求A与x的函数关系式;(2)求A的最大值;(2)设有一个周长为10的圆,面积为S,试比拟A与S的大小关系.二、数列局部解答1、(2021)数列{a fj}的前〃项和S.且满足q = I,%- = S“ +1(〃 e N,)(1)求数列{4}的通项公式;(2)设等差数列色}的前〃项和,,假设7; =30,色}20(〃 wN*),且4+4,成等比数列,求,;(3)证实:点"w9(〃eN*).2、(2021)设函数f(x) = ox+b,满足〃O) = 1J(1) = 2(1)求.和匕的值;(2)假设数列{4}满足4“+],且%=1,求数列{〃“}的通项公式;(3)假设%=/、(〃£"),求数列匕}的前〃项和S“.3、(2021)数列卜力的首项4 =1必=2qi+〃2-4“ + 2(〃 = 2,3-.・),数列{b ti}的通项为(1)证实:数列也}是等比数列;(2)求数列低}的前〉项和S〞.4、(2021)数列{〃〃}满足.〃+1 =2 + “〃(〃eN*),且%=1(1)求数列{4}的通项公式及{4}的前〃项和S. ;(2)设么=2勺,求数列{仇}的前〃项和7;;(3)证实:< 1(〃 e.。

2011-2014年广东省中职高考数学试题分析

2011-2014年广东省中职高考数学试题分析

2011-2014年广东省高等职业院校招收中等职业学校毕业生考试数学试题分析一.试卷的结构与分值1三.各章试题的分析从多年的考题来看,数学基础是很重要的,基本概念、基本性质、公式都在考题中体现得非常具体。

特别是2014年解答题第一题即21题,就纯粹是考察学生的最基础的知识。

各章所占比例相对稳定。

压轴题中连续多年考查数列及解析几何内容。

第一章集合:集合与充分必要条件的考查方式都是以选择的形式出现,没有出现在填空、解答题中。

题目多考查集合的交、并运算;充分必要条件主要是考查基础知识的掌握情况,特别要充分理解充要条件的含义;2011、2012、2013、2014四年考点相同,集合的交、并且是离散数集,易于计算。

这几年都没有考查补集的运算,这一点要留意,在复习中不可疏漏,但也不必小题大做。

2013年充分必要条件综合性较强,通过三角函数的图像性质知识体现逻辑关系。

2014年充分必要条件综合了不等式的性质。

第二章不等式:不等式主要考查不等式的基本性质与不等式的解法,在近若干年的考题中,没有不等式的证明题,但2014年在压轴题数列的综合题目中出现了证明。

综合性题目比较多地考查一元二次不等式的解集问题, 2011年考查分式不等式、2012年考绝对值不等式、2013年是最为基础的二次不等式。

2014年没有单独的不等式的考题,而是将不等式的性质与充要条件结合。

多年在考查函数定义域、函数单调性时都同时考查不等式且多体现在二次不等式中。

第三章函数:主要考查函数的基础知识,如定义域(2011是分式与根式及对数结合,2012是对数式、2013是二次与根式结合、2014是分母为根式)、值域(2013年选择题考到二次函数、指数函数、对数函数的值域,压轴题二次函数给定区间的最值)与函数的应用,2011年考查了函数单调性与奇偶性的综合运用,2012未考应用题,2013压轴题是一次分段函数、二次函数给定区间的综合应用题。

2013年函数的考试分值比例有大的提高。

2011高考题广东卷及解析

2011高考题广东卷及解析

④2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程 y bxa =+ 中系数计算公式121()()()nii i nii xx y y b xx ==--=-∑∑ , ay b x =- ,其中x ,y 表示样本均值. n 是正整数,则1221()()nnn n n n a b a b aab abb-----=-++++ .一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i - 1.(B ).22(1)11(1)(1)iz i i i i -===-++- 2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B ⋂的元素个数为A .0B .1C .2D .32.(C ).A B ⋂的元素个数等价于圆221x y +=与直线y x =的交点个数,显然有2个交点 3.若向量,,a b c 满足a ∥b 且⊥a c ,则(2)⋅+=c a bA .4B .3C .2D .0 3.(D ).依题意得⊥c a ,⊥c b ,则(2)20⋅+=⋅+⋅=c a b c a c b4.设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()()f x g x +是偶函数 B .()()f x g x -是奇函数 C .()()f x g x +是偶函数 D .()()f x g x -是奇函数4.(A ).由()f x 是偶函数、()g x 是奇函数,得()f x 和()g x 都是偶函数,所以()()f xg x +与()()f x g x -都是偶函数,()()f x g x +与()()f x g x -的奇偶性不能确定正视图图1 侧视图图2俯视图图35.已知平面直角坐标系xOy上的区域D由不等式组2xyx⎧⎪⎨⎪⎩≤≤≤≤给定.若(,)M x y为D 上的动点,点A的坐标为,则z OM OA=⋅的最大值为A...4 D.35.(C).zy=+,即y z=+,画出不等式组表示的平面区域,易知当直线yz=+经过点2)时,z取得最大值,max24z=+=6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A.12B.35C.23D.346.(D).乙获得冠军的概率为111224⨯=,则甲队获得冠军的概率为13144-=7.如图 1 ~ 3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图的体积为A....7.(B).该几何体是一个底面为平行四边形,高为3的四棱柱,,则33V Sh==⨯=8.设S 是整数集Z 的非空子集,如果,a b S ∀∈,有ab S ∈,则称S 关于数的乘法是封闭的.若,T V 是Z的两个不相交的非空子集,T V Z ⋃=,且,,a b c T ∀∈,有abc T ∈;,,x y z V ∀∈,有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的8.(A ).若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题)9.不等式13x x +--≥0的解集是 . 9.[1,)+∞.13x x +--≥0 ⇒1x +≥3x -⇒2(1)x +≥2(3)x -⇒x ≥110.72()x x x -的展开式中,4x 的系数是 (用数字作答)10.84.72()x x x-的通项7821772()(2)r rr r r rr T x C x C xx--+=-=-,由824r -=得2r =,则227(2)84C -=11.等差数列{}n a 前9项的和等于前4项的和.若11a =,40k a a +=,则k = .11.10.方法1:由94S S =得93646d d+=+,求得16d =-,则4111(1)()13()066k a a k +=+-⨯-++⨯-=,解得10k =方法2:由94S S =得567890a a a a a ++++=,即750a =,70a =,即104720a a a +==,即10k =12.函数32()31f x x x =-+在x = 处取得极小值. 12.2.2()363(2)f x x x x x '=-=-,令()0f x '=得0x =或2x =,显然当0x <时()0f x '>;当02x <<时()0f x '<;当2x >时()0f x '>,函数32()31f x x x =-+在2x =处取得极小值13.某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm . 13.185.设父亲的身高为x cm ,儿子的身高为y cm ,则根据上述数据可得到如下表格:上表中的最后一组(182,?)是预测数据,173,176x y ==12221()()00361033()nii i ni i xx y y bx x ==--++⨯===++-∑∑, 3ay b x =-= 线性回归方程 3y x =+,所以当182x =时, 185y =,即他孙子的预测身高为185 cm .(二)选做题(14 ~ 15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x ty t ⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________. 14.5.图4COPBAsin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215xy +=(01)x y ≤≤≤,254x t y t ⎧=⎪⎨⎪=⎩表示抛物线245y x=22221(01)5450145x y x y x x x y x ⎧+=≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩或5x =-(舍去), 又因为01y ≤≤,所以它们的交点坐标为(1,515.(几何证明选讲选做题)如图4,过圆O 外一点P 分别作 圆的切线和割线交圆于,A B ,且7P B =,C 是圆上一点使得5B C =,BAC APB ∠=∠,则A B =___________.15.由弦切角定理得P A B A C B ∠=∠,又B A C A P B ∠=∠, 则△P A B ∽△AC B ,则P B A B A BB C=,235AB PB BC =⋅=,即AB =三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R .(1)求5()4f π的值;(2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求cos()αβ+的值.16.解:(1)515()2sin()2sin 43464f ππππ=⨯-==(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β==∴1235416cos()cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=17.(本小题满分13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素,x y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2)当产品中的微量元素,x y 满足175x ≥且75y ≥时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).17.解:(1)设乙厂生产的产品数量为a 件,则98145a =,解得35a =所以乙厂生产的产品数量为35件(2)从乙厂抽取的5件产品中,编号为2、5的产品是优等品,即5件产品中有2件是图5CDPBAEFCDPBAE FH优等品由此可以估算出乙厂生产的优等品的数量为235145⨯=(件)(3)ξ可能的取值为0,1,223253(0),10C P C ξ===1123256(1),10C C P C ξ===22251(2),10C P C ξ===∴ξ的分布列为:∴3614012.1010105E ξ=⨯+⨯+⨯=18.(本小题满分13分)如图5,在锥体P A B C D -中,A B C D 是边长为1的 菱形,且60DAB ∠=,PA PD ==2PB =,,E F分别是B C ,PC 的中点.(1)证明:AD ⊥平面D E F ;(2)求二面角P AD B --的余弦值.18.(1)证明:取A D 的中点H ,连接,,PH BH BD∵PA PD =,∴AD PH ⊥∵在边长为1的菱形A B C D 中,60DAB ∠=∴△ABD 是等边三角形∴AD H B ⊥,PH HB H = ∴AD ⊥平面PH B ∴AD PB ⊥∵,E F 分别是B C ,PC 的中点∴E F ∥P B ,H B ∥D E∴AD D E ⊥,AD EF ⊥,DE EF E = ∴AD ⊥平面D E F(2)解:由(1)知PH AD ⊥,H B AD ⊥ ∴P H B ∠是二面角P AD B --的平面角易求得,22PH BH ==∴2227334cos 27222PH H B PBPH B PH H B+--+-∠====-⋅∴二面角P AD B --的余弦值为7-19.(本小题满分14分)设圆C与两圆22(4x y ++=,22(4x y -+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点55M,0)F ,且P 为L 上动点,求M P FP - 的最大值及此时点P 的坐标.19.解:(1)设(0),0)F F ',圆C 的半径为r ,则(2)(2)4CF CF r r '-=+--=< ∴C 的圆心轨迹L 是以,F F '为焦点的双曲线,2a =,c =,1b =∴C 的圆心轨迹L 的方程为2214xy -=(2)2 M P FP M F-≤== ∴M P FP-如图所示,P必在L直线M F的斜率2k=-:2M F y x=-+22142xyy x⎧-=⎪⎨⎪=-+⎩215280x-+=6)0--=12155x x==∵Px>5Px=5Py=-∴M P FP- 的最大值为2,此时P为()55-20.(本小题满分14分)设0b>,数列{}na满足1a b=,1122nnnnbaaa n--=+-(2)n≥.(1)求数列{}na的通项公式;(2)证明:对于一切正整数n,1112nn nba++≤+.20.(1)解:∵1122nnnnbaaa n--=+-∴1122n nna ban a n--=+-∴1211nn n n a b a b--=⋅+ ① 当2b =时,1112nn n n a a ---=,则{}nn a 是以12为首项,12为公差的等差数列∴11(1)22nn n a =+-⨯,即2n a =② 当0b >且2b ≠时,11211()22nn n n a b b a b--+=+-- 当1n =时,122(2)nn a bb b +=--∴1{}2nn a b +-是以2(2)b b -为首项,2b为公比的等比数列∴112()22nn n a bb b+=⋅-- ∴212(2)2(2)nnn nnnn ba b bbb b-=-=---∴(2)2nn nnn b b a b-=-综上所述(2),02222nn n n n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, (2)方法一:证明:① 当2b =时,11122n n n b a ++=+=;② 当0b >且2b ≠时,12212(2)(222)n n n n n n b b b bb -----=-++++1221222nnnn n n n n n ba b bb----⋅=≤=++++11121111222222222n nn n n n n n bb b b+++---++=====<=⋅1112n n b +++∴对于一切正整数n ,1112n n n b a ++≤+.方法二:证明:① 当2b =时,11122n n n b a ++=+=;② 当0b >且2b ≠时, 要证1112n n n b a ++≤+,只需证11(2)122nn nnn nb b b b++-≤+-,即证1(2)122nnn nn b b b b+-≤+-即证1221112222n n n n n nnb b b bb----+≤+++++即证122111()(222)2n n n n n nb b bbn b----++++++≥即证2112231122221()()2222n nn n nn nn b b bb n bbbb---+-+++++++++≥∵2112231122221()()2222n nn n nn nn b b bb bbbb---+-+++++++++2121232111222()()()()2222n n nn nn n nb b bb bbbb----+=++++++++n ≥+= ,∴原不等式成立∴对于一切正整数n ,1112n n n b a ++≤+.21.(本小题满分14分)在平面直角坐标系xOy 上,给定抛物线L :214y x =.实数,p q 满足24p q -≥0,12,x x 是方程20x px q -+=的两根,记12(,)max{,}p q x x ϕ=.(1)过点2001(,)4A p p 0(0)p ≠作L 的切线交y 轴于点B .证明:对线段A B 上的任一点(,)Q p q ,有0(,)2p p q ϕ=;(2)设(,)M a b 是定点,其中,a b 满足240a b ->,0a ≠.过(,)M a b 作L 的两条切线12,l l ,切点分别为2111(,)4E p p ,2221(,)4E p p ',12,l l 与y 轴分别交于,F F '.线段E F上异于两端点的点集记为X.证明:112(,)(,)2p M a b X p p a b ϕ∈⇔>⇔=;(3)设{(,)|D x y y =≤1x -,y ≥215(1)}44x +-.当点(,)p q 取遍D 时,求(,)p q ϕ的最小值 (记为m in ϕ)和最大值(记为max ϕ)21.解:(1)2001(,)4A p p 是抛物线L 上的点,12y x '=,则切线的斜率012k p = 过点A 的抛物线L 的切线方程为A B :200011()42y p p x p -=-,即2001124y p x p =-∵(,)Q p q 在线段A B 上,∴2001124q p p p =-,∴22220001144()()24p q p p p p p p -=--=-≥0不妨设方程20x px q -+=的两根为12x =22x =则012p p p x --=,022p p p x +-=① 当00p >时,00p p ≤≤,001222p p p x p -==-,022p x =∵00122p p x -<≤,∴12x x ≤,∴122(,)max{,}p q x x x ϕ==02p =② 当00p <时,00p p ≤≤,012p x =,002222p p p x p -==-∵00222p p x ≤<-,∴12x x ≥,∴121(,)max{,}p q x x x ϕ==02p =综上所述,对线段A B 上的任一点(,)Q p q ,有0(,)2p p q ϕ=(2)由(1)知抛物线L 在2001(,)4p p 处的切线方程为2001124y p x p =-,即200240p p x y -+=∵切线恒过点(,)M a b ,则200240p ap b -+=,∴1,2p a =±① 当0a >时,(,)M a b X ∈⇔10a p <<⇔1p a =+,2p a =-⇔12p p >② 当0a <时,(,)M a b X ∈⇔10p a <<⇔1p a =-,2p a =+⇔12p p >综合①②可得(,)M a b X ∈⇔12p p >∵由(1)可知,若2111(,)4E p p ,点(,)M a b 在线段E F 上,有1(,)2p a b ϕ=∴(,)M a b X ∈⇒1(,)2p a b ϕ= ③由(1)可知,方程20x a x b -+=的两根11,22p x =或12p a -,21,22p x =或22p a -若1(,)2p a b ϕ=,即112max{,}2p x x = 则1122p a p -≥、2122p p ≥、 2122p a p -≥∴12p p > ∴1(,)2p a b ϕ=⇒12||||p p >⇒(,)M a b X ∈ ④综合③④可得(,)M a b X ∈⇔1(,)2p a b ϕ=综上所述112(,)(,)2p M a b X p p a b ϕ∈⇔>⇔=;(3)由2115(1)44y x y x =-⎧⎪⎨=+-⎪⎩,求得两个交点(0,1),(2,1)- 则02p ≤≤,过点(,)G p q 作抛物线L 的切线,设切点为N 2001(,)4x x ,切线与y 轴的交点为H由(2)知200240x px q -+=,解得0x p =±,①若0x p =+(,)G p q 在线段N H 上由1y x ≤-,得1q p ≤-,∴022x p p p p =+≥+=+-=,∴0m min in )12(x ϕ==.由215(1)44y x ≥+-,得221511(1)14442q p p p ≥+-=+-∴2442p q p -≤-,∴0x p p =+≤+令t =,则2122p t =-+,02t ≤≤∴22011552(1)2222x t t t ≤-++=--+≤∴0max max 5)24(x ϕ==②若0x p =-(,)G p q 在线段N H 的延长线上方程20x px q -+=的两根为012p p x x --=,022p p x x +-=即01,22x x =或02x p -∵0x p ≤∴00012(,)max{,}max{,}222x x x p q x x p p ϕ==-=-2p -==,同理可得51(,)4p q ϕ≤≤综上所述m in 1ϕ=,m ax 54ϕ=全卷分析:【试卷亮点】今年的理科数学试题依然保持总体平稳,局部稍有变化,将学生的“知识、能力、素质为一体”,内容上体现了“考查学生对基础知识、基本技能的掌握程度”和“考查学生对数学思想方法和数学本质的的理解水平”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档