无机及分析化学——第一章 气体和溶液..

合集下载

大学课件无机及分析化学-第一章气体溶液和胶体

大学课件无机及分析化学-第一章气体溶液和胶体
性。在难挥发非电解质的稀溶液中,这些性质就表现得 更有规律。
1.溶液的蒸气压下降
第一章第二节
一定温度下,将纯溶剂放入密闭容器中,当溶剂蒸
发为气态溶剂的速度与气态溶剂凝聚成液态的速度相等
时,达到相平衡。此时
的气体称为饱和蒸气,

其所具有的压力称为该
液 蒸
温度下液体的饱和蒸气
气 压
压(简称蒸气压)。 若在纯溶剂中加入
通常所说的溶液都是指液态溶液。
溶液由溶质和溶剂组成,被溶解的物质叫溶质,溶 解溶质的物质叫溶剂。
常把含量较少的组分称为溶质,含量较多的组分称 为溶剂。
一、溶液浓度的表示法
第一章第二节
1. 物质的量浓度 单位体积的溶液中所含溶质B的物质的量称为溶质B
的物质的量浓度。用符号cBcB表nV示B ,常用单位mol·L-1 。
ppb(十亿分浓度):表示溶质的质量占溶液质量 的十亿分之几,即每kg溶液中所含溶质的g数。如:
1ppb:1g/1,000,000,000g溶液=1g溶质/1kg溶液。 8ppb:8g/1,000,000,000g溶液=8g溶质/1kg溶液。
例 题 1-1
第一章第二节
在100 mL水中,溶解17.1 g蔗糖(C12H22O11),溶液 的密度为1.0638 g ·mL1,求蔗糖的物质的量浓度、质 量摩尔浓度、摩尔分数各是多少?
解: mA 20.40 0.40 20.00g
nB
0.40 M
(M 为相对分子质量)
bB
nB mA
0.40/M 20.00 103
20 M
Tf =Kf bB
即 0.207=1.86 20 M =180.0 M
3.溶液的凝固点下降

无机及分析化学第一章气体和溶液详解演示文稿

无机及分析化学第一章气体和溶液详解演示文稿

1.2 溶 液
(1) 什么是“分散系”?
一种或几种物质以细小的粒子分散在另一种物质里 所形成的系统
分散质 (分散相)
分散剂(分散介质)
被分散
起分散作用
(2) 三种常见的分散系
a)分子或离子分散系--真溶液(单相体系):
0.1~1 nm (< 10-9 m), 分子/离子分散系,例如NaCl水溶液 等。是一种稳定的体系。
(4) 单相体系中不一定只有一种组分物质(例如气体混合物 即由多种物质所组成);同一种物质也可因聚集状态的 不同而形成多相体系(例如水、水蒸气和冰三相共存); 聚集状态相同的物质在一起也不一定就是单相体系(例 如油水分层的液态体系有两相)。
1.2.2 稀溶液的通性 ★ 溶液
(1) 溶液的一般概念 分子或离子分散体系 单相 按聚集状态:气态溶液、液态溶液、固态溶液
(5) 溶液浓度的表示方法
质量分数 (无量纲) 摩尔分数 x (无量纲) 质量摩尔浓度 b (mol ·kg-1) 质量浓度 (g ·L-1) 物质的量浓度 c (mol ·L-1或mol ·dm-3)
常用溶液浓度的表示方法
名称
定义
质量分数 溶质A的质量mA与溶
液质量m之比值
摩尔分数
物质A的物质的量(nA) 与混合物的物质的量 ( i ni )之比
子与器壁之间的碰撞,是完全弹性碰撞-无动能损失。 ➢ 理想气体分子本身占有的体积忽略不计,将分子看成有质
量的几何点。
■ 严格意义上的理想气体实际上是不存在的。但对实际气体 来说,只要温度不是太低(高温,高于273K),压力不是 太高(低压,低于数百kPa),都可以近似用理想气体状态
方程作有关p、V、T、n 的计算。

(完整版)无机及分析化学课后重点习题答案详解(高等教育出版社)

(完整版)无机及分析化学课后重点习题答案详解(高等教育出版社)

第一章 气体和溶液2. 解:根据理想气体状态方程:nRTV p =可得: RTpV M n ==m 则: mol /0.160.250L101.3kPa K 298K mol L kPa 315.8164.0-11g g pV mRT M ≈⨯⨯⋅⋅⋅⨯==-该的相对分子质量为16.04. 解:由题意可知,氮气为等温变化,氧气为等容变化 kPa 92.350.0mL2.00mL kPa 0.98211N 2=⨯==V V p p kPa 45.43333K 732kPa 0.53121O 2=⨯==K T T p p 根据道尔顿分压定律:kPa4.4792.345.4322O N ≈+=+=p p p 总7. 解: T =(273+15)K = 288K ; p 总 =100kPa ;V =1.20L 288K 时,p (H 2O)=1.71kPaM (Zn)=65.39则 p 氢气= (100-1.71)kPa = 98.29kPa mol 0493.0K288K mol L 8.315kPa L 20.18.29kPa 911-=⨯⋅⋅⋅⨯==-RT pV n 氢气根据: Zn(s) + 2HCl → ZnCl 2 + H 2(g)65.39g 1molm (Zn)=? 0.0493mol解得m (Zn)=3.22g则杂质的质量分数 w (杂质) = (3.45-3.22)/ 3.45 = 0.06714. 解:因溶液很稀,可设ρ ≈1 g·mL -1(1) 14113L mol 1054.1K293K mol L kPa 315.8kPa 10375-----⋅⨯=⋅⋅⋅⋅⨯=∏=RT c (2) mol g L L g cV m n m M /1069.6mol 1054.1010.50515.04143⨯=⋅⨯⨯⨯===--- 血红素的相对分子质量为41069.6⨯ (3) K1086.2kg mol 1054.1mol kg K 86.14141----⨯=⋅⨯⨯⋅⋅=⋅=∆b K T f f K1088.7kg mol 1054.1mol kg K 512.05141----⨯=⋅⨯⨯⋅⋅=⋅=∆b K T b b (4)由于沸点升高和凝固点下降的值太小,测量误差很大,所以这两种方法不适用。

无机及分析化学第一章第一节气体

无机及分析化学第一章第一节气体

例 1-3
• 在 25 ℃下,将 0.100m ol 的 O 2 和 0.350mol 的 H 2 装入 3.0 0L 的容器中,通电后氧气 和氢气反应生成水,剩下过量的氢气。求反应前后气体的总压和各部分的分压。 •
解:反应前 0.100mol 8.315kPa L mol-1 K -1 298K p(O 2) 82.6kPa 3.00L 0.350mol 8.315kPa L mol-1 K -1 298K p(H 2) 289kPa 3.00L p 82.6kPa 289kPa 372kPa( 四舍五入) 通电时0.100mol O 2只与0.200molH2 反应生成0.200molH2 O,而剩余0.150molH 2。 液态水所占的体积与容 器体积相比可忽略不计 ,但由此产生的饱和水 蒸气却必须考虑。 因此反应后 0.150mol 8.315kPa L mol-1 K -1 298K p(H 2) 124kPa 3.00L P(H 2 O) 3.17kPa p 124kPa 3.17kPa 127kPa(四舍五入)
无机及分析 化学
第一章 气体和溶液
1.1 气体 1.1.1 理想气体状态方程
概念:分子本身不占体积,分子间没有相互作用力的气体称为理想气体。 低压状态下可以看做理想气体,所遇到的实际情况都不是理想气体。 理想气体状态方程: pV=nRT p 代表了气体的压力 V 代表了气体的体积
T 代表了气体的温度
• 解:
mRT 0.118g 8.315kPa L mol-1 K -1 298K -1 M 16 . 0 g mol pV 73.3kPa 250 10-3 L 所以该气体的相对分子 质量为 16.0g mol-1。

无机及分析化学 第一章课件

无机及分析化学 第一章课件

2、相:体系中物理性质和化学性质完全相同的一 部分称为相
(1)单相体系(均相体系):只有一个相的体系
(2)多相体系:有两个或两个以上相的体系
粗分散系 多相体系 胶体分散系
分 散 系
分子、离子分散系——单相体系
1-2-2 稀溶液的通性—依数性(colligative properties )
稀溶液的蒸气压、沸点、凝固点和渗透压等
P PB B
*

P PB P PB 1 B PB A
* * *
P—溶液的蒸气压 ,PB*—纯溶剂的蒸气压, χB—溶剂的摩尔分数, χA—溶质的摩尔分数
拉乌尔定律:一定温度下,难挥发非电解质稀溶液的蒸气压下降 与溶质的摩尔分数成正比。(此定律只适用于稀溶 液,溶液越稀,越符合定律)
理想气体状态方程式
PV nRT m M
R的取值(与P、V、T的单位有关)
R 8 . 314 J mol
1
RT
K
1
( Pa m
1
3
mol
1
K
1
, KPa L mol
1
K
1
)
0 . 08206 atm L mol
62360 mmHg ml mol
渗透。可用于海水淡化、工业废水及污水处理、溶液的浓缩等 方面。
范特霍夫(Van`t Hoff)综合实验结果,指出: V nRT
cRT
对很பைடு நூலகம்的溶液,
bRT
1-3 胶体溶液 colloid
1-3-1 溶胶的制备
1、分散法 研磨法、超声波法、胶溶法、电弧法 2、凝聚法 物理凝聚法、化学凝聚法

无机及分析化学课件第四版第一章

无机及分析化学课件第四版第一章

电动电势
ζ是衡量胶粒所带净电荷多少 的物理量,吸附正离子为正,
负离子则为负
电解质对电 动电势影响 很大
1.3.4 溶胶的稳定性和聚沉
溶胶是多相、高分散系统、表面能很大,是热 力学不稳定系统。
✓ 布朗运动 为何往往能稳定存在? ✓ 胶粒带电
✓ 溶剂化作用
溶胶的稳定性可用ζ的绝对值来衡量,越大,胶体所带 电荷量越多,扩散层后,溶剂化层也厚,溶胶也越稳定
这部分中学计算,训练较多,在此不再赘述。
1.1.2 道尔顿理想气体分压定律
1 分压的概念
组分气体: 理想气体混合物中每一种气体叫做组分气体。
分压: 组分气体B在相同温度下占有与混合气体相同
体积时所产生的压力,叫做组分气体B的分压。
N2,O2
2L容器内盛1L O2,1L N2
PN2,PO2: 组分气体单独占据容器时所产生的压力。
实验表明,难挥发非电解质溶液的 沸点总是高于纯溶剂的沸点。这一 现象称为溶液的沸点升高(boiling point elevation)。
溶液的沸点升高(△Tb) =溶液的沸点(Tb) -纯溶剂的沸点(Tb0)
即: △Tb=Tb- Tb0
难挥发性非电解质稀溶液的沸点升高的原因是溶液 的蒸气压低于纯溶剂的蒸气压。
Δp = pBo xA =K b
ΔTb = Kb b ΔTf = Kf b Π = cRT
1.3 胶体溶液
胶体:是一种物质以一定的分散程度 存在的状态。
胶体分散系
胶体溶液(溶胶)是由小 分子、原子或离子聚集成 较大颗粒而形成的多相体 系。
高分子溶液:是由一些高分子 化合物所组成的溶液。
分子或离子分散系
结果,对于难挥发性的非电解质稀溶液,得出如 下规律:

无机及分析化学第一章 气体、溶液和胶体

无机及分析化学第一章 气体、溶液和胶体

设有一混合气体,有 i个组分,pi和ni分别表示各组 分的分压力和物质的量,V为混合气体的总体积,则
pi=(ni/V) ·RT p=pi=(ni/V)·RT =(n/V)·RT pi/p=ni/n pi = ( ni/n )·p
第二节 溶 液
第一章第二节
广义地说,两种或两种以上的物质均匀混合而且彼 此呈现分子(或离子或原子)状态分布者均称为溶液, 溶液可以气、液、固三种聚集状态存在。
ppb(十亿分浓度):表示溶质的质量占溶液质量 的十亿分之几,即每kg溶液中所含溶质的g数。如:
1ppb:1g/1,000,000,000g溶液=1g溶质/1kg溶液。 8ppb:8g/1,000,000,000g溶液=8g溶质/1kg溶液。
例 题 1-1
第一章第二节
在100 mL水中,溶解17.1 g蔗糖(C12H22O11),溶液 的密度为1.0638 g ·mL1,求蔗糖的物质的量浓度、质 量摩尔浓度、摩尔分数各是多少?
LOGO
无机及分析化学第一章 气体、溶液和胶体
化学学科的分类
1. 无机化学 2. 分析化学 3. 有机化学 4. 物理化学 5. 高分子化学
化学学科的重要性
化学学科与其它学科的相互渗透,形成新 的学科,如生物化学、环境化学、环境分析化 学、食品化学、农药化学、土壤化学、植物化 学、配位化学、放射化学等。
第一章第二节
在100 mL水中,溶解17.1 g蔗糖(C12H22O11),溶液 的密度为1.0638 g ·mL1,求蔗糖的物质的量浓度、质 量摩尔浓度、摩尔分数各是多少?
解:
( 2 )b ( C 1 2 H 2 2 O 1 1 )= n ( C m 1 ( 2 H H 2 2 O 2 O ) 1 1 ) 1 0 0 0 .0 1 5 0 3 0 .5 m o lk g 1

《无机和分析化学》1_12章习题答案

《无机和分析化学》1_12章习题答案

ln
k2 k1


650 670 8.315 670 - 650
ln
7.0 10-5 2.0 10-5

227 kJ
mol -1
ln
k3

227 103 8.315

690 690
650 650


ln(2.0
10 -5 )

8.38
k3 2.310 4 s1

第二章 化学热力学 (34页)
机 8. 2N2H4(l)+ N2O4(g) = 3N2(g) +4H2O(l)
及 分 析
rHm⊖=4×(-285.8)-9.16-2×50.6= -1254kJ·mol-1 -1254×1000∕64= -19.6 MJ
化 11. ⑴ 水变成水蒸汽: S>0
学 ⑵ 气体等温膨胀:S>0
:
:
1: 2 :1
40.00 6.60 53.33
Tb mB 0.0510 0.500
M
K bmA

0.512 9.00
180g mol -1
最简式:CH2O
分子式:C6H12O6

第一章 气体和溶液 (15页)
Kf
1.86
机 10. mA Tf M A mB 2.00 92.1 0.100 9.9g
教 案
⑶ 苯与甲苯相溶: S>0
⑷ 盐从过饱和溶液中结晶出来:S<0
⑸ 渗透:S>0
⑹ 固体表面吸附气体: S<0


第二章 化学热力学 (34页)
机 及 12.
⑴ ⑷: S<0

无机化学 第一章 气体和溶液.

无机化学 第一章 气体和溶液.

V
10.0
1.2 溶 液
一、浓度的几种表示方法 (溶质为A;溶剂为B)
1. 物质的量浓度 (c)
C nA (mol L1)
V
2.摩尔分数(X) xA =
nA ; n总
则:xA +xB =
xB =
nB ; n总
nA nB 1 n总 n总
推广:溶质和溶剂的摩尔分数 之和=1
3.质量摩尔浓度(b)
解:(1) pM RT
M

RT
p

0.5977 103 103 8.314 (273 1000) 97 103
65.2 103kg mol1 65.2 g mol1
(2) 65.2 2.03 32.07
硫蒸气的化学式为S2
只有一种气体
要计算该气体压强:
第一章 气体和溶液
物质的存在状态通常有三种: 气态、液态和固态。 本章重点介绍气体和溶液的一些基本规律。
1.1 对气体而言,主要掌握理想气体状态方程式和道尔顿分压定律 的应用。
1.2 对溶液而言,主要掌握稀溶液的“依数性”的公式和应用。 1.3 对胶体溶液而言,主要了解其相关性质。(自学)
1.1 气 体
解: PV nRT
PV m RT M
M m RT PV
M
=
0.118创10- 3 Kg 8.315Pa 鬃m3 mol-1 状K-1 73.3创103 Pa 250? 10- 6 m3
(25 +
273)K
M = 16醋10- 3 Kg mol- 1
例1-2:在1000 ℃和97 kPa压力下,硫蒸气的密度是 0.5977 gL-1。试求:(1)硫蒸气的摩尔质量,(2)硫 蒸气的化学式。

无机及分析化学 第一章 气体、溶液和胶体

无机及分析化学 第一章 气体、溶液和胶体
27
1.4.1 溶液蒸汽压的下降
液体的蒸发
一定温度下,敞口容 器中液体将不断蒸发 至没有液体留下。
一定温度下,密 闭容器中的液体 随着蒸发进行, 最终将达到液体 蒸发与气体凝结 的动态平衡状态, 蒸气压力不再变 化。
a 敞口容器
b 密闭容器中
液体的饱和蒸汽压 在一定温度下,液体与其蒸气平衡时 的蒸气压力为该温度下的液体的饱和蒸气压,简称蒸气压。
V/T=恒量 (n、P 恒定)
阿伏加德罗定律:在相同的温度与相同的压力下,相同体积的 气体所含气体的分子数相同或所含气体的物质的量相同,其数 学表达式为
na=nb (Ta=Tb,pa=pb,Va=Vb)
9
1.2.1 理想气体状态方程
以上三个定律的适用条件是压力要较低,温度不 能太低,即对稀薄气体适用(或理想气体)。
多相体系
均相体系
常见实例
泥浆
氢氧化铁溶胶 蛋白质水溶液 葡萄糖水溶液
8
1.2 气体
气体的基本特性是扩散性和可压缩性。
波义耳定律:一定量气体,在温度恒定时,它的压力和体积的 乘积为恒量,其数学表达式为
pV=恒量 (n、 T恒定)
查理-盖吕萨克定律:他的现代表述是,一定量的气体当压力 恒定时,它的体积与热力学温度成正比,其数学表达式为
35
溶液的沸点升高现象
难挥发非电解质稀溶液的蒸气压比纯溶剂要低,所以在 达到溶剂沸点时,溶液不能沸腾。为了使溶液沸腾,就必须 使溶液的温度升高,加剧溶剂分子的热运动,以增加溶液的 蒸气压。当溶液的蒸气压与外压相等时,溶液开始沸腾。显 然此时溶液的温度应高于纯溶剂的沸点。
拉乌尔定律的适用范围:
非电解质 稀 溶液
33
溶质的独立质点数:

无机及分析化学课件第四版第一章气体和溶液

无机及分析化学课件第四版第一章气体和溶液

21世纪化学四大难题:
1. 化学反应理论——建立精确有效而又普遍适用得 化学反应 多体量子理论和统计理论;
2、 结构与性能得定量关系; 3、 生命现象得化学理论——生命化学难题; 4、 纳米尺度难题。
四、学习化学得重要性及必要性
数、理——化学——生物
20世纪发明了七大技术:
信息技术
认知科学
生物技术 核科学和核武器技术 航空航天和导弹技术 激光技术 纳米技术
科学原子论:道尔顿于1808年发表《化学哲学新体系》, 提出原子论,其要点为:
●物质由不可分割得原子组成; ●同种元素得原子其形状、质量及性质都相同,不同元素得
原子,其形状、质量及性质都不相同; ●两种元素得化合作用就是一种元素得一定数目得原子与
另一种元素得一定数目得原子结合形成复杂原子。
此学说意义重大: ●给化学奠定了唯物主义基石—原子。她得原子说把古代
1、什么就是化学?
化学就是在原子和分子层次上研究物质得组成、 结构、性质以及物质之间相互转化得科学。 研究层次:原子和分子 研究内容:
物质得组成、结构、性质与相互转化 核心与特征:合成新物质,对其性质进行表征,开发 其新得应用并探讨其中得机理。
2 、研究化学得目 得
人类生活得各个方面,社会发展得各种需要都与化学息息相关。 (1)化学对我们得衣食住行贡献巨大。 (2)化学对于实现农业、工业、国防和科学技术现代化具 有重要作用。 (3)促进其她基础学科和应用科学得发展和交叉学科得形 成。如:环境化学、能源化学、材料化学、地球化学 正如[美]Pimentel G C在《化学中得机会---今天和明天》一 书中指出得“化学就是一门中心学科,她与社会发展各方面得需 要都有密切关系。”
这就是唯物得,同时她又认为万物得本源就是四 种原始性质:冷、热、干、湿。元素由这些原始性 质依不同比例组合而成。

无机及分析化学 第一章 气体和溶液

无机及分析化学 第一章 气体和溶液
第一章 气体和溶液
学习要求
掌握理想气体状态方程及其应用。
掌握道尔顿分压定律 理解稀溶液的依数性及其应用 了解溶胶的结构、性质、稳定性及聚沉作用 了解大分子溶液与凝胶
1.1 气体
一、理想气体状态方程 1、理想气体 分子本身不占体积 分子间无相互作用力
为研究气体性质的方便而假设的状态,实 际不存在,但研究中在温度不太低,压强不太 大的情况下,可将实际气体近似地看作理想气 体。
1.2 溶液
3.分散系的分类 按照分散相颗粒的大小(直径d不同),可 将分散系分为三类。
二、稀溶液的通性 稀溶液的通性:稀溶液的性质中,与溶质的 本性无关只与溶液中所含溶质粒子数的多少 有关的性质,叫稀溶液的通性,又称稀溶液 的依数性。
1、溶液的蒸气压下降
相同的温度下,当把难挥发的非电解质 溶于溶剂形成稀溶液时,稀溶液的蒸气压比 纯溶剂的蒸气压低,其原因是溶剂的部分表 面被溶质占据,因此单位时间逸出液面的溶 剂分子数相应减少,(如图)达到平衡时,溶 液的蒸气压必然低于纯溶剂的蒸气压,这叫 溶液的蒸气压下降。
要施加的压力。
1.3 胶体溶液
一、溶胶的制备和性质 1、制备方法:分散法、凝聚法 2、性质: 动力性质——布朗运动:胶粒不断作不规则运 动。 光学性质——丁铎尔现象:光的散射。 电学性质——电泳。
பைடு நூலகம்
二、胶团结构和电动电势 1、AgNO3与KI制备AgI 溶胶的胶团结构示意图。
2、电动电势
三、溶胶的稳定性和聚沉 1、溶胶稳定性原因:布朗运动、胶粒带电、 溶剂化作用 2、聚沉:胶粒相互碰撞将导致颗粒聚集变大, 最后以沉淀形式析出,这种现象称为聚沉。
2、溶液的沸点升高和凝固点下降 (1)溶液的沸点升高:在纯溶剂中加入难挥 发非电解质后,溶液的沸点总是高于纯溶剂 的沸点。 (2)凝固点下降:在纯溶剂中加入难挥发非 电解质后,溶液的凝固点总是低于纯溶剂的 凝固点。

无机及分析化学----气体和溶液

无机及分析化学----气体和溶液

0.150mol 8.315kPa L mol 1 K 1 298K pH 2 3.00L 124 kPa
p H 2 O 3.17kPa(查表)
p 124kPa 3.17kPa 127.17kPa
1.2 溶液
一、分散系
分散系: 一种或几种物质以细小的粒子分散到 另一种物质里所形成的体系。 被分散的物质称为分散质(或分散相) 把分散质分散开的物质为分散剂(或分散介质)。
——道尔顿分压定律
(Partial Pressure of Dalton)
第一章
气体和溶液
§1.2 气体分压定律
(1). 表示式
p p1 p2 ... 或
p pi
理想气体状态方程式不仅适应于单一
组分气体
pV nRT
中各组分气体
(1)
理想气体状态方程式也适应混合气体
piV ni RT
在同一温度下, 纯溶剂的蒸气压 力与 溶液蒸气压 力之差 蒸气压下 降。
实验测定25C时,水的饱和蒸气压:p (H2O) = 3167.7 Pa; 0.5 mol · kg-1 糖水的蒸气压则为: p (H2O) = 3135.7 Pa;
1.0 mol · kg-1 糖水的蒸气压为: p (H2O) = 3107.7 Pa。
力比较小,分子间平均距离比较大,分子自身体积与气 体体积相比,完全微不足道,才能把它近似地看作理想 气体。
第一章
气体和溶液
§1.1 理想气体状态方程式
2.理想气体状态方程式
(1)表达式
pV nRT
其中, p:气体的压力,kPa
V:气体的体积,m3 ,L n:气体的物质的量,mol T:热力学温度,K R:摩尔气体常数

《无机及分析化学》教学课件-气体、溶液和胶体

《无机及分析化学》教学课件-气体、溶液和胶体

10
p p1 p2 p3 ……
分压定律的 一种表达
p
pi
ni V
RT
pi
p
ni
RT V
n RT V
pi ni pn
xi: 摩尔分数
pi
ni n
p
xi
ni n
pi xi p
xi ?
2020/8/4
Template copyright 2005
2020/8/4
Template copyright 2005
14
冰和水两相体系
2020/8/4
Template copyright 2005
15
表1 按分散质颗粒大小分类的分散系
颗粒直径大小 类 型
主要特征
实例
小于1nm(10–9) 分子离子 分散系
第一章 气体、溶液和
胶体
制作: 理学院化学系
➢气 体 ➢溶 液 ➢ 溶液的依数性 ➢胶 体 ➢练ight 2005
2
第一节 气 体
✓ 理想气体状态方程式 ✓ 道尔顿分压定律
2020/8/4
Template copyright 2005
16
表2 按物质聚集状态分类的分散系
分散剂
液 固 气
分散质
气 液 固 气 液 固 气 液 固
实例
肥皂泡沫 牛奶 Fe(OH)3溶胶、泥浆水 泡沫塑料 珍珠 有机玻璃 空气
云、雾 烟、尘
2020/8/4
Template copyright 2005
17
分子分散系 (d<1 nm)

2020/8/4
Template copyright 2005

中国农业大学无机及分析化学教研组编普通化学(第二版)习题答案

中国农业大学无机及分析化学教研组编普通化学(第二版)习题答案

rHm(2)
rHm(3)
CO(g)+H2(g)+O2(g)
rHm(1)= rHm(2)+ rHm(3)
rHm(1) - rHm(3) = rHm(2)>0
由题意知,rHm(1)<0, rHm(3)<0 故:以水煤气作燃料时放热较多
2.7 均为熵增过程。
3
2.8 标准状态下:
2反应式(4)-反应式(5)得:
N2H4(l)+ )O2(g)= N2(g)+2H2O(l) rHm=2rHm(4)- rHm(5)=2(-286 kJmol-1)- 50.5kJmol-1= -622.5 kJmol-1 2.4 rHm=2fHm(CO2,g)+3fHm( H2O,l)+(-1) fHm(CH3OCH3,l)+(- 3)fHm(O2,g)
p(I2 )

p(H2 )

x(I2 )
p

0.021mol 116kPa 0.20mol
12.2kPa
p(HI) p p(I2 ) p(H2 ) 91.6kPa
K

{ p(HI)/p}2 {p(H2 ) / p}{ p(I2 ) /
p}

56
K

c(O2 ) / c p(O2 ) / p
5
K (293K) c(O2 ) / c 1.37 103 0.21
故: c(O2,aq) = 2.88×10-4 mol·L-1 (2) K = 85.5/1.37×10-3 = 6.24×104
3.7 Q = 4
逆向自发
Q = 0.1
逆向自发
3.8 Ag2CO3(s) = Ag2O(s) + CO2(g) Δ rGm(383K) = 14.8kJ·mol-1 ln K(383K) = -Δ rGm(383K)/RT = -4.65 K(383K) = 9.56×10-3

无机及分析化学计算公式1-4章节

无机及分析化学计算公式1-4章节

无机及分析化学计算公式第一章:溶液和胶体理想气体方程:PV=nRT,其中T为开尔文温度表示物质的量浓度:C a=n aV质量摩尔浓度:b a=n am b,其中n a为溶质的量,m b为溶剂的质量质量分数:w a=m am,m a为溶质的质量,m为溶液的质量摩尔分数:x b=n bn,n b为b溶质的物质的量,n为总体物质的量拉乌尔定律:p=p0x b,p为稀溶液的蒸汽压,p0为同种情况下溶剂的饱和蒸汽压,x b为溶剂的摩尔分数沸点和凝固点的计算:k b和k f为沸点和凝固点常数,b B为溶剂的质量摩尔分数沸点:∆T b=k b b B凝固点:∆T f=k f b B渗透压公式:π=cRT第二章:化学反应基本原理反应进度:ξ=∆n b v b∆n b:反应中任意物质的变化量v b:化学计量系数,反应物为负值,生成物为正值热力学第一定律:△U =Q + W焓:H =U +pV吉布斯函数:G =H −TS ,T 为开尔文温度,S 为熵∆G <0,过程可正向自发进行; ∆G = 0,系统处于平衡态; ∆G >0,过程正向不能自发进行 标准平衡常数:① 气相反应,物质的分压用相对分压(p /p)表示2SO 2(g ) + O 2(g ) = 2SO 3(g )K θ=② 液相反应,物质的浓度用相对浓度(c /c) 表示 K θ=第三章:化学分析概论 采样公式:m =Kd a m :采取试样的最低质量/kg d : 试样中最大颗粒的直径/mmK, a : 经验常数, K值在0.02~ 0.15,a 值在1.8 ~ 2.5{p (SO 2)/p Ө}2 {p (O 2)/p Ө}2HAc= H + + Ac -{c (H +)/c Ө}⋅ {c (Ac -)/c Ө}其中X 为测量值,T 为真实值 绝对误差:E a =X −T 相对误差:E r =E a T×100%di 为偏差,X i 为测量值,X 为平均值 平均值:X =X 1+X 2+⋅⋅⋅+X nn绝对偏差:d =X i −X 相对偏差:d r =X ×100%平均偏差:d =|d 1|+|d 2|+⋅⋅⋅+|d n |n=∑|d i |n i=1n相对平均偏差:r =dX×100%μ为总体平均值 总体标准偏差:σ=√∑(X i −μ)2n i=1n相对标准偏差:s r =X×100%第四章:酸碱平衡 解离度:α=√K a θ/c 0 一元酸的型体分布:δ(A -)=K aθc(H +)+K aθ二元酸的型体分布:δ(A 2−)=K a 1θK a 2θ2+a 1θ+a 1θa 2θ三元酸的型体分布:δ(A3−)K a 1θK a 2θK a 3θc 3(H +)+K a 1θc 2(H +)+K a 1θK a 2θc(H +)+K a 1θK a 2θK a 3θ一元弱酸的酸度计算[弱碱同理]:若c 0K a θ≥20K w θ,c 0/K a θ≥500,则c(H +)=√c 0K a θ 若c 0K a θ≥20K w θ,c 0/K a θ<500则,c(H +)=−K a θ+√K aθ2+4c 0K a θ2若c 0K a θ<20K w θ,c 0/K a θ≥500则,c(H +)=√c 0K a θ+K wθ两性物质酸度计算:c 0K a2θ≥20K w θ,c 0<20K a 1θ则c(H +)=√c 0K a1θK a 2θK a 1θ+c 0c 0K a 2θ≥20K w θ,c 0≥20K a 1θ则c(H +)=√K a 1θ×K b 1θ c 0K a 2θ<20K w θ,c 0≥20K a 1θ,则c(H +)=√K a 1θ(c 0K a 2θ+K w θ)c 0缓冲溶液pH 的计算: pH =pK aθ− lg c ac b,其中c a 为共轭酸浓度,c b 为共轭碱浓度缓冲溶液的缓冲范围:pH =pK a θ±1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2 稀溶液的通性
★ 溶液
(1) 溶液的一般概念 分子或离子分散体系 单相 按聚集状态:气态溶液、液态溶液、固态溶液 (2) 溶解过程与溶液的形成 溶解:溶质均匀分散于溶剂中的过程。 是个既有化学变化,又有物理变化的复杂过程。
常伴随:颜色变化,体积变化,能量变化。
(3) 溶解度的概念 单位溶剂中最多能溶解的溶质的量——溶解度 溶解度与温度、压力等因素有关。 (4) 相似相溶原理 溶剂与溶质的分子结构相似,就能较好地相互溶解。
体来说,只要温度不是太低(高温,高于273K),压力不
是太高(低压 , 低于数百 kPa ),都可以近似用理想气体 状态方程作有关p、V、T、n 的计算。
2. 理想气体状态方程
理想气体的温度(T)、压力(p)、体积(V)和物质的 量(n)之间, 具有如下的方程式关系: pV = nRT 在SI制中,p—Pa,V—m3,T—K,n—mol。 标准状况(p=101.325 kPa,T=273.15 K)下,1 mol 气 体的标准摩尔体积为 22.414×10-3 m3 ,摩尔气体常数 R 的 单位及数值为: pV 1.01325 105 Pa 22.414 103 m3
自发有序仍能流动的状态(有序流体)。
等离子态—物质原子内的电子在高温下脱离原子核的吸引 而形成带负电的自由电子和带正电的离子共存
的状态。由于此时物质正、负电荷总数仍然相
等,因此叫做等离子态(又叫等离子体)。
1.1


描述气体状态的物理量
物理量 压力 体积 温度 p V T 单 位
帕斯卡 Pa (N· m-2 ) 立方米 (m3) 开尔文 (K) 摩尔 (mol)

蔗 糖 溶 液

蔗 糖 溶 液
由于 p0 > p,此时水并未与蒸气达到平衡, 水将继续蒸发,致使蒸气压大于 p。 于是水蒸气分子开始凝聚到糖水中。 这又使得蒸气压不能达到 p0 于是, H2O 分子从水中蒸出而凝聚入糖水。
6) 溶液的蒸气压下降多少?
——拉乌尔定律(Raoult’s Law) (1887年提出,拉乌尔——法国物理学家) 在一定温度下,稀溶液的饱和蒸气压等于纯溶剂的饱和 蒸气压与溶剂的摩尔分数之积。
被分散
分散剂(分散介质)
起分散作用
(2) 三种常见的分散系
a)分子或离子分散系--真溶液(单相体系):
0.1~1 nm (< 10-9 m), 分子/离子分散系,例如NaCl水溶液 等。是一种稳定的体系。
b)胶体分散系:
1~1000 nm (10 -9~10-6 m), 胶体分散系,例如天然水中的 杂质、蛋清等。外观与溶液相似,但透光可观察到“丁铎尔效 应”。能保持相对的稳定。
4) 为什么溶液的蒸气压会下降?
当溶质分散于溶
剂之中,溶液表面的 部分位置,被溶质分 子所占据,使得单位 表面所能逸出的溶剂 的分子个数减少,因 此溶液蒸气压较之纯
溶剂有所降低。
实验现象的解释
蔗 糖 溶 液 蔗 糖 溶 液


过程开始时,水和糖水均以蒸发为主。
蔗 糖 溶 液


蔗 糖 溶 液
当蒸气压等于 p 时, 糖水与上方蒸气达到平衡。
第一章 气体和溶液
学习要求
1. 掌握理想气体状态方程及其应用。
2. 掌握道尔顿分压定律。
3. 理解稀溶液的依数性及其应用。
4. 熟悉溶胶的结构、性质、稳定性及聚沉 作用。 5. 了解大分子溶液与凝胶。
物质的聚集状态
气态——气体 液态——液体 固态——固体 液晶态——物质的第四态或中介态,液体和晶态之间,




冰 水
铁粉和硫磺粉
注意:
(1) 不论有多少种气体组分都只有一个相(即气相)。这种 只有一个相的体系称为单相体系或均匀体系。
(2) 除固溶体(固体溶液)外,每一种固态物质即为一个相, 体系中有多少种固态物质即有多少相。含有两个或多个 相的体系称为多相体系或非均匀体系。
(3) 液态物质视其互溶程度通常可以是一相(例如水与酒精 的混合物)、两相(例如水和油的混合物)、甚至三相 共存(例如水、油和汞的混合物)。 (4) 单相体系中不一定只有一种组分物质(例如气体混合物 即由多种物质所组成);同一种物质也可因聚集状态的 不同而形成多相体系(例如水、水蒸气和冰三相共存); 聚集状态相同的物质在一起也不一定就是单相体系(例 如油水分层的液态体系有两相)。
Tb Kbb
Kb:溶剂沸点升高常数,只与溶剂的本性有关。
结论: 难挥发非电解质稀溶液的沸点升高(Tb)
只与溶质的质量摩尔浓度(b)成正比,
而与溶质的本性无关。
说明
纯溶剂的沸点是恒定的,但溶液的沸点却
在不断变化。
应用——测定溶质的摩尔质量。
分压力pi: 某一组分气体对器壁产生的(施加的)压力
叫该组分气体的分压力 pi。
道尔顿分压定律:
某一组分气体的分压力等于该气体单独占有
该容器时产生的压力。
* 分压力与总压力的关系
假如容器中有1, 2, 3, · · · 等多种气体,则: p= p1 + p2 + p3 +…=Σpi= nRT/V (总压力等于分压力之和) (理想气体方程也适合混合气体)
相应纯溶剂的沸点(Tbo)。
原因:溶液的蒸气压下降。
p po
固态纯 溶剂 A C
溶液的沸点升高
B B’
纯溶剂
A’
溶液 Tbo Tb T
溶液的沸点升高与蒸气压下降成正比,
Tb Tb Tbo K ' p
根据Raoult定律: Tb
o b
K’-比例常数
Tb T K ' Kb Kbb
物质的量 n
1.1.1 理想气体状态方程
1. 理想气体
定义:分子本身不占体积,分子间没有相互作用力的气体。 理想气体分子间的作用力忽略不计。分子与分子之间、 分子与器壁之间的碰撞,是完全弹性碰撞-无动能损失。 理想气体分子本身占有的体积忽略不计,将分子看成有质 量的几何点。 ■ 严格意义上的理想气体实际上是不存在的。但对实际气
pi= niRT/V
pi ni p n
* 只有理想气体才严格遵守道尔顿分 压定律,实际气体只有在低压和高温 下,才近似地遵守此定律。 (其中:xi = ni/ n称作摩尔分数)
pi = xi p
混合气体中各组分的摩尔分数之和等于1
1.2
1.2.1 分散系


(1) 什么是“分散系”?
一种或几种物质以细小的粒子分散在另一种物质里 所形成的系统 分散质 (分散相)
质量浓度
溶质A的质量(mA)除 以溶液的体积(V)
物质的量浓度 溶质A的物质的量(nA) 除以混合物的体积(V)
常用mol/L 或mmol/L
难挥发非电解质稀溶液的依数性
(Colligative properties of dilute solutions)
与溶解有关的性质分为两类: (1) 溶液的颜色、比重、导电性等性质,与溶质的本性有关; (2) 溶液的蒸气压、沸点、凝固点等性质,与溶质的本性无关。 稀溶液的依数性: 只与溶液的浓度有关,而与溶质的本性无关的性质。 只有溶质的浓度低,即所谓“稀溶液”才具有依数性。
p = p0•x剂
用p 表示稀溶液饱和蒸气压下降值,则有 p = p0 - p = p0 - p0•x剂
故有
p = p0• x质
p = p0• x质
Δp: 纯溶剂蒸气压与稀溶液蒸气压之差 对于稀溶液: n质 << n剂, 所以 n质+n剂 n剂 p p0b/55.6mol kg-1 Kb 结论:在一定温度下,难挥发非电解质稀溶液 的蒸气压下降(p)与溶质的质量摩尔浓
1. 溶液的蒸气压下降
什么是物质的饱和蒸气压?


Hale Waihona Puke 什么是溶液的饱和蒸气压?“溶液的蒸气压下降”是什么意思? 为什么溶液的蒸气压会下降? 溶液的蒸气压下降多少由什么决定?

蔗 糖 溶 液

蔗 糖 溶 液
放置一段时间后,水自动转移到糖水中去。

饱和蒸气压
气化(蒸发):液体表面能量较大的分子,克服分子间的引 力,逸出液体表面进入液体上面的空间。 凝聚:气相中的分子,可能与液体表面发生碰撞,并被周围 的液体分子所吸引,重新回到液相。 饱和蒸气压:当:凝聚速度 = 蒸发速度 达到平衡,此时 的蒸气压为一定值,称为饱和蒸气压。
液体




气体
达到平衡后,若使蒸气压小于 p0,则平衡右移,液体气化;
p0
p0
若使蒸气压大于p0,则平衡左移,气体液化。
2) 溶液的饱和蒸气压
——溶液中,作为溶剂的那种物质所具有的饱和蒸 气压(分压力)。 溶液的饱和蒸气压同样与温度密切相关(表1-1):
溶剂的表面 难挥发溶质的分子
溶液的表面 溶剂分子
c)粗分散系:
1000 nm (> 10-6 m), 例如:泥浆水(悬浊液)、牛奶、豆 浆等。肉眼或在显微镜下可观察到微粒,静置易沉淀,是一种 不稳定的体系。
相与界面
相(phase):体系中物理性质和化学性质完全相同的部分。 相界面(简称界面,interface):将相与相分隔开来的部分。 相与相之间在指定的条件下具有明确的界面,在界面两边体 系的性质会有突跃变化。处于界面上的原子或分子的受力情况 与相内部的不同,往往存在剩余引力,具有界面能。一般来说, 体系中存在的界面越多,能量就越高,体系也越不稳定。
单位
溶质A的质量mA与溶 液质量m之比值 摩尔分数 物质A的物质的量(nA) 与混合物的物质的量 ( i ni )之比 质量摩尔浓度 溶质A的物质的量(nA) 除以溶剂的质量(mB)
相关文档
最新文档