电子式互感器原理与应用概述

合集下载

电子式互感器的工作原理及应用

电子式互感器的工作原理及应用

电子式互感器的工作原理及应用
电子式互感器是采纳磁光、电光变换原理或由无铁芯线圈构成的新型互感器,它包括电流(电压)传感器、传输系统、二次转换器,具有模拟量输出或数字量输出。

目前,有别于传统(电磁式互感器或电容式电压互感器)的互感器,包括采纳磁光效应、洛氏线圈、小型号输出、全光纤传输等类型的互感器统称为电子式互感器。

1、电压互感器
通常采纳简洁的电阻分压原理或电容分压原理实现电压信号的采集。

专用的高压电阻或电容,实现了电压信息的高精度与高稳定性采集。

采纳屏蔽电缆或光纤电缆传输。

2、电流互感器
采纳光隔离绝缘,它依靠高压母线磁场自励供应传感工作电源,高压侧的测量、爱护线圈输出的电流信号经数字采样后通过光钎传至二次设备,凹凸压间实现了光隔离,永久性解决了绝缘隔离难题。

传感头采纳小型纳米晶磁芯线圈及罗高斯基爱护线圈,具有测量精度高,爱护范围宽,免于维护,工作稳定牢靠的优点。

3、电子式互感器的应用
电子式互感器通过信号处理箱接收传感头输出的模拟感应信号,经信号处理箱进行滤波、幅值、相位仪校准后变成标准输出信号,供应给计量、爱护和测量设备。

由于输出信号为小信号(毫伏级),不存在二次短路(开路)危急。

电子式电流互感器原理

电子式电流互感器原理

电子式电流互感器原理
电子式电流互感器利用负载中的电流通过主线圈产生磁场,再由副线圈感应到的原理来测量电流。

其工作原理如下:
1. 工作原理:
电子式电流互感器由主线圈、副线圈、铁芯以及信号处理电路等部分组成。

当负载中有电流通过时,主线圈中会建立一个磁场。

2. 磁场感应:
主线圈产生的磁场会传导到副线圈中,副线圈中感应到的磁场与主线圈中的磁场方向相反,通过副线圈的磁场感应电流。

3. 信号处理:
通过增益放大器等信号处理电路将感应到的电流进行放大和滤波处理,然后将结果输出给后续的电路或设备进行处理或显示。

4. 铁芯的作用:
铁芯的存在可以加强磁场的传导效果,从而提高互感器的灵敏度和准确性。

5. 特点:
电子式电流互感器具有体积小、重量轻、精度高、能耗低的特点,适用于各种工业自动化控制系统中的电流测量和保护。

需要注意的是,在文中不能使用与标题相同的文字,以避免重复。

以上是电子式电流互感器的工作原理和特点的简要描述。

电子式互感器工作原理

电子式互感器工作原理

电子式互感器工作原理
电子式互感器是一种将电流和电压信号转化为电压输出的传感器。

它的工作原理基于法拉第电磁感应定律,即当变化的磁场穿过一定面积的线圈时,会在线圈中产生感应电动势。

电子式互感器通常由一对互相耦合的线圈组成,分别称为主线圈和次级线圈。

主线圈通常与被测信号相关的电流或电压输入相连接,而次级线圈则用于输出感应电动势。

当主线圈中的电流或电压发生变化时,它会产生一个变化的磁场。

这个变化的磁场会穿过次级线圈,并在其内部产生感应电动势。

次级线圈的输出电压与主线圈中电流或电压的变化成正比。

为了保证准确的信号转换,电子式互感器通常采用一些补偿措施来减小非线性和失真。

例如,使用磁芯可以增强磁场的感应效果,并提高传感器的灵敏度和稳定性。

此外,电子式互感器还通过电路设计来对感应电动势进行放大、滤波和线性化。

总的来说,电子式互感器的工作原理是基于通过变化的磁场产生感应电动势,将输入的电流或电压信号转换为输出的电压信号,实现信号的传感和测量。

电子式电流互感器的基本原理与应用

电子式电流互感器的基本原理与应用
➢ 电力系统中,电流互感器的数量远多于电压互感 器,市场规模更大。
9
电子式电流互感器的定义
➢ 《电子式电流互感器》标准:IEC60044-8: 2002, GB/T 20840.8—2007
➢ 电子式互感器:一种装置,由连接到传输系统和二次转 换器的一个或多个电压或电流传感器组成,用以传输正 比于被测量的量,供给测量仪器、仪表和继电保护或控 制装置。在数字接口的情况下,一组电子式互感器共用 一台合并单元完成此功能。
➢ 空心线圈电流互感器。以Rogowski线圈作为电流传 感器,在高压侧需要电源供电。
➢ 铁芯线圈式低功率电流互感器(LPCT)。通过一个分 流电阻将二次电流转换成电压输出,实现I/V变换,
具有低功率输出特性,动态测量范围大。
13
光学电流互感器
(全光纤电流互感器)
14
法拉第效应
➢ 1864年,法拉第发现在磁场的作用下,本来不具 有旋光性的物质也产生了旋光性,即光矢量发生旋 转,这种现象称作磁致旋光效应或法拉第效应。
基测电于流干值。涉检测方法的全光纤电流互感器
➢二束光在光纤末端被反射镜反
射,它们的旋转方向发生交换,
即左旋偏振光变为右旋偏振光,
单模传感光纤
右旋偏振光变为左旋偏振光。 ➢返程的二束光在电流作用下, 偏 y 反射器
载流导体
光纤 延时器 4 y
振角再次发生旋转,再经λ/4 波
片后,变为互相垂直的两束线偏
➢引入圆双折射。设法使光纤中的圆双折射远大于线 性双折射,常用的措施有采用扭转光纤或采用高圆双 折射光纤。扭转光纤就是将传感光纤沿轴向扭转多圈, 以增加其固有圆双折射,这样,电流磁场产生的法拉 第旋转将叠加在其固有圆双折射上,使测量灵敏度增 加。这种方法的主要问题是扭转产生的圆双折射随温 度变化,需要采取复杂的温度补偿措施。

电子式电流互感器原理

电子式电流互感器原理

电子式电流互感器原理电子式电流互感器是一种用于测量电流的传感器,它能够将高电流转换成低电流,并通过电子设备进行测量和处理。

在电力系统中,电流互感器是非常重要的设备,它能够实现电流的测量、保护和控制功能。

本文将详细介绍电子式电流互感器的原理和工作机制。

首先,电子式电流互感器通过感应原理将高电流转换成低电流。

当高电流通过主绕组时,会在副绕组中感应出相应的低电流。

这是通过互感器的铁芯和线圈来实现的,铁芯能够集中磁场,而线圈则能够感应出相应的电流。

通过这种方式,电子式电流互感器能够将高电流转换成适合电子设备测量的低电流信号。

其次,电子式电流互感器采用了电子器件进行信号处理和输出。

经过副绕组感应的低电流信号会经过放大、滤波、线性化等处理,最终输出为标准的电流信号。

这样的设计能够保证互感器输出的电流信号稳定、准确,并且符合标准要求。

同时,电子式电流互感器还可以通过数字接口输出信号,方便与其他设备进行数据交互和远程监测。

最后,电子式电流互感器具有高精度、低功耗、抗干扰能力强等特点。

由于采用了先进的电子器件和信号处理技术,电子式电流互感器能够实现高精度的电流测量,满足电力系统对电流测量的严格要求。

同时,电子式电流互感器的功耗较低,对电力系统的影响较小。

而且,它能够抵抗外部干扰,保证测量结果的准确性和稳定性。

总的来说,电子式电流互感器是一种基于电子技术的高精度、稳定性强的电流测量设备,它通过感应原理将高电流转换成低电流,并通过电子器件进行信号处理和输出。

在电力系统中,电子式电流互感器扮演着重要的角色,它能够实现电流的测量、保护和控制功能。

相信随着科技的不断进步,电子式电流互感器将会有更广泛的应用和更高的发展。

科兴电器电子式互感器简介

科兴电器电子式互感器简介

电气工程应用2012.2一、电子式电流互感器原理及结构二、电子式电压互感器原理及结构三、电子式互感器应用范围四、电子式互感器的优点五、电子式互感器应用前景六、电子式互感器订货注意事项一电子式电流互感器产品原理及结构目前我公司生产的中压电子式电流互感器原理主要有以下两种:1.1、采用罗氏线圈(也叫空心线圈)原理的互感器。

1.1.1、原理图:1.1.2原理说明:此类电子式电流互感器一次传感部分采用了罗哥夫斯基线圈的原理,它由罗哥夫斯基线圈、积分器、A/D 转换等单元组成,将一次侧大电流转换成二次的低电压模拟量输出或数字量输出。

此类电子式电流互感器不使用铁芯,使用了原理上没有饱和的罗哥夫斯基线圈,由这个罗哥夫斯基线圈得到了与一次电流I 1的时间微分成比例的二次电压E 2,将该二次电压E 2进行积分处理,获得与一次电流成比例的电压信号。

1.2采用低功率线圈(感应式宽带线圈)原理的互感器。

1.2.1原理图:科兴电器电子式互感器简介由罗氏线圈组成的电子式电流互感器原理、实物图由低功率线圈组成的电子式电流互感器原理、实物图34电气工程应用2012.21.2.2、原理说明此类电子式电流互感器的这种原理是采用低功率线圈(感应式宽带线圈)的原理,它代表着经典感应电流互感器的发展方向。

它由一次绕组、小铁芯和损耗最小化的二次绕组组成。

二次绕组上连接着分流电阻R A ,该电阻是电流互感器一体化元件,分流电阻R A 是以使互感器消耗的功率接近为零这种方式设计的。

二次电流I 2在分流电阻R A 两端的电压降U 2与一次电流I 1成比例,U 2可以根据需要设计在0-5V 之间,这种互感器比传统互感器的电流测量范围大很多,甚至同一个线圈可以同时满足测量和保护的要求。

二电子式电压互感器产品原理及结构目前我公司生产的中压电子式电压互感器原理主要有以下两种:2.1采用电阻分压原理的电子式电压互感器2.1.1、原理图2.1.2原理说明此类电子式电压互感器采用优化的高压电阻及低压电阻设计,其分压器的特性无比优越,其准确度误差特性表明,电子式电压互感器可同时满足电压测量和保护的要求,测量准确度可达0.2级,保护级可达3P 级;电子式电压互感器的二次电压正比于一次电压,二次电压可以根据需要设计在0-6.5V 或6.5/之间,很容易与二次智能化设备接口,满足当代智能化、数字化二次仪表及保护的需要,又因其没有铁芯,因而从根本上消除了产生铁磁谐振的危险。

电子式电压互感器

电子式电压互感器

电子式电压互感器引言电子式电压互感器是一种用于测量高压电力系统中的电压的先进设备。

与传统的电抗式电压互感器相比,电子式电压互感器具有更高的精度、更低的负载和更广泛的应用范围。

本文将介绍电子式电压互感器的工作原理、特点、应用和未来发展趋势。

工作原理电子式电压互感器主要由电压分压模块和数字化处理模块组成。

电压分压模块通过高电阻的电阻器将高电压信号分压为低电压信号,然后将信号传递到数字化处理模块。

数字化处理模块将低电压信号进行放大、滤波和数字化处理,然后输出精确的电压测量结果。

特点1. 高精度:电子式电压互感器具有很高的测量精度,通常在0.2级或更高。

2. 低负载:传统的电抗式电压互感器在负载方面存在一定的问题,而电子式电压互感器具有非常低的内部负载。

3. 广泛应用:电子式电压互感器可以广泛用于电力系统中的电压测量,包括变电站、输电线路和配电系统等。

4. 抗干扰性强:电子式电压互感器采用了数字化处理技术,具有较强的抗干扰能力,可以减少外界干扰对测量结果的影响。

应用1. 变电站:电子式电压互感器可以用于变电站的电压测量,实时监测电力系统的运行状态。

2. 输电线路:电子式电压互感器可以安装在输电线路上,用于检测电力系统中的电压变化。

3. 配电系统:在配电系统中,电子式电压互感器可以用于电压测量和保护装置的输入信号。

4. 能源管理:电子式电压互感器可以与其他能源管理设备结合使用,实现对电力系统的智能监控和管理。

未来发展趋势1. 高性能数字化处理器的应用:随着数字化处理技术的不断进步,未来电子式电压互感器将采用更高性能的数字化处理器,提高测量精度和抗干扰能力。

2. 多功能集成设计:为了满足不同应用场景的需求,未来的电子式电压互感器将具备更多的功能模块,如电流测量、频率测量等。

3. 无线通信技术的应用:未来电子式电压互感器可能会采用无线通信技术,实现与其他设备的远程通信和数据传输。

4. 智能化管理系统的发展:未来电子式电压互感器将结合智能化管理系统,实现对电力系统的自动控制和远程监控。

全光纤电子式电流互感器及光学电压互感器产品介绍20130328

全光纤电子式电流互感器及光学电压互感器产品介绍20130328
1、应用概述
*
电磁感应原理的电流互感器已经应用了一百多年,但已不能完全满足智能电网建设的需求。 (1)安全性较差 充油、气,有爆炸危险,存在电磁谐振、二次开路等危险;
爆炸现场
*
1、应用概述
(2)存在磁饱和、动态测量精度差 电磁互感器中的铁磁材料在电网故障时可能出现磁饱和现象,难以适应特高压继电保护快速、准确的要求。
*
率先在国内武高所、西高所通过全光纤电流互感器、光学电压互感器型式试验,电流测量精度0.2S/5TPE,电压测量度0.2/3P,并通过直流测量、63kA(峰值171kA)大电流暂态试验等。
4、成果及应用业绩:成果鉴定
具有优异的频率特性及暂态特性,3dB带宽达10kHz,能够满足IEC60044-8品质测量50次谐波(2.5kHz)测量要求 。
发明专利
已公开
15
201110288611.7
基于电光效应的无源光学电压互感器
发明专利
已公开
4、成果及应用业绩:成果鉴定
*
我公司光纤电流、电压互感器已应用于我国49个智能化变电站重点项目,总数超过1650相,工程应用量居世界首位,运行时间最长超过4年,并实现产品向发达国家的出口(德国西门子公司)。
一种用于GIS腔体的光纤气密引出方法
发明专利
已授权
7
ZL200810226869.2
高可靠光纤耦合器制备方法
发明专利
已授权
8
ZL200810226744.X
一种电光调制器线性度测试装置
发明专利
已授权
9
PCT/CN2011/081579
基于电光效应的光学电压互感器
发明专利
欧洲专利 已公开
10

有源电子式互感器的原理

有源电子式互感器的原理
有源电子式互感器的原理
变电站综合自动化
有源电子式互感器的原理
◆利用电磁感应等原理感应被测信号 CT:空心线圈(RC);低功率线圈(LPCT) PT:分压原理 电容、电感、电阻
◆传感头部分具有需用电源的电子电路 ◆利用光纤传输数字信号 ◆独立式、GIS式
2
重庆电力高等专科学校
变电站综合自动化
有源电子式互感器的原理
是利用空芯线圈及低功率线圈传感被测一次电流。 低功率线圈(LPCT)的工作原理与常规CT的原理相 同,只是LPCT的输出功率要求很小,因此其铁芯截 面就较小。空芯线圈是一种密绕于非磁性骨架上的螺 线管,如图所示。空芯线圈不含铁芯,具有很好的线 性度。
空芯线圈的输出信号e与被测电流i有如下关系:
3
重庆电力高等专科学校
变电站综合自动化
有源电子式互器的原理
是利用电容分压器测量电压。电容分压器的输出 信号U0 与被测电压Ui有如下关系:
利用电子电路对电压传感器的输出信号进行积分变换 便可求得被测电压。
4
重庆电力高等专科学校

电子式高压电力互感器在电力系统中的运用

电子式高压电力互感器在电力系统中的运用

电子式高压电力互感器在电力系统中的运用摘要:随着国家电力系统的发展,早就朝着数字化方向迈进,与此同时传统电力互感器早就以后你为一些原因而不能适应时代需求。

电子式高压电力互感器早就将传统的电磁式互感器替代,发展为当前适应时代需求的机器之一。

在此基础上,本文探究电子式高压电力互感器应用在电力系统。

关键词:高压电力互感器;电力系统;电力工程引言:我国国民经济的发展让电力系统在传送容量上逐渐扩大,也让电压等级发展日渐提高。

现如今,我国电压最高等级是1000KV,可以预料到在之后的发展里也会不限于此等级,实现整个电力行业又好又快发展。

同时,广泛应用电子式高压电力互感器必要性明显。

一、电子互感器的概述电力系统的发展让发电、输变电等在容量上有所强化。

想要尽可能减少变电站自身的占地面积、建设空间,显著提升电力系统其自动化程度,当前设计的电流互感器需要智能、数字等一体化发展,同时也需要满足光纤化要求。

对于如今电力系统的发展可以预见的是,电子式电流互感器肯定会成为其代表,能够合乎智能、数字化、一体化等要求。

针对电力系统的安全运行、成本管控探究中,对高压电、大电流等强化精确度测量意义明显。

也就是说,对于诸多电压和电流值的精确测量实际是电力系统完成安全运行探究的前提。

电力互感器更多涵盖了电压互感器、电流互感器等内容,它会在整个电力系统里担负起电能核算、取得继电保障信息等关键性智能。

不过在当前条件之上,发电、输变电容量等始终都在增加,电网电压也在显著提升,如此就会对电流、电压互感器在职能和能效等方面要求更多。

传统电磁式电力互感器因为本身的不足,早就难以满足当前电力系统的需求,比如电磁式店里互感器本身绝缘设置较为繁杂,体积也很大,不易于安装、管控等,此外造价很高,尤其是超高压电力系统里应用的时候,能够充分满足较大短路容量的动、热等稳定性要求,如此就让电磁式电力互感器一定会被新式互感器所替换;传统互感器在进行稳态电流实施测量的时候,呈现出的线性度特性极为稳定。

电子式电流互感器的基本原理与应用

电子式电流互感器的基本原理与应用

电子式电流互感器的基本原理与应用电子式电流互感器是一种用于测量电流的装置,通过电流变换,将高电流转换为低电流以提供安全的测量,并且可以输出电压或电流信号。

本文将介绍电子式电流互感器的基本原理和应用。

原理电子式电流互感器的基本原理是利用磁性材料的磁通量比例转换电流大小。

电子式电流互感器通常使用铁心线圈,当导体通过线圈时,会产生磁场,线圈会感应出电势,根据法拉第电磁感应原理,当导体中的电流变化时,导体周围的磁场强度也会变化,因此线圈感应的电势也会发生变化。

通过变压器原理,电子式电流互感器可以将电流变换为输出电压或电流信号,从而进行测量。

电子式电流互感器通常具有高精度、高线性、低温漂移和宽频带等优点。

同时,它们还可以支持多路输入和输出,以适应各种应用场景。

应用电子式电流互感器广泛应用于各种领域,例如能源计量、电力质量监测、电力保护和控制、电池管理等。

1.能源计量在工业和民用电网中,电子式电流互感器可以用于测量电网中的实际电流,并且可以输出电流或电压信号,以监测和记录电网中的能源消耗情况。

同时,电子式电流互感器还可以进行电能质量评估,以确保电网运行正常。

2.电力质量监测电子式电流互感器可以用于监测电力系统中的电压和电流波形,以评估电力质量。

如果功率因数低或电压不稳定,电子式电流互感器可以及时检测这些问题并进行修复。

3.电力保护和控制电子式电流互感器也可以用于电力保护和控制。

它们可以检测电网中的故障电流,并在故障发生时进行保护,以避免电线过载或短路。

此外,电子式电流互感器还可以用于配电系统中的电流变化控制。

4.电池管理在一些用于储能的电池系统中,电子式电流互感器可以测量电池的电流和电压,以便管理和控制电池的充放电状况,以保护电池系统的安全性和稳定性。

总结电子式电流互感器是一种广泛应用的电流测量装置,具有高精度、高线性、低温漂移和宽频带等特点。

它们在能源计量、电力质量监测、电力保护和控制、电池管理等领域得到了广泛应用。

电子式互感器原理

电子式互感器原理

电子式互感器原理电子式互感器是一种利用电磁感应原理来测量电流、电压和功率的装置。

它的工作原理是基于法拉第电磁感应定律,通过在电路中引入互感器来实现电流、电压的测量和功率的计算。

在电力系统中,电子式互感器扮演着至关重要的角色,它能够准确地测量电流和电压,为电力系统的安全稳定运行提供了重要的数据支持。

首先,我们来看一下电子式互感器的基本原理。

电子式互感器由铁芯、绕组和外壳组成。

当通过互感器的一侧通入电流时,产生的磁场会穿过铁芯并感应出另一侧的电压。

这个原理正是法拉第电磁感应定律的应用,通过互感器的相对运动来实现电流和电压的测量。

其次,电子式互感器的工作过程也值得我们深入了解。

当电流通过互感器的一侧绕组时,产生的磁场会感应到另一侧绕组中,从而产生感应电压。

这个感应电压与通过的电流成正比,因此可以通过测量感应电压来确定电流的大小。

而对于电压的测量,则是通过改变绕组的匝数比来实现的,从而将高压的电压转变成低压的感应电压,以便进行测量和计算。

此外,电子式互感器的优势也是显而易见的。

相比于传统的电流互感器和电压互感器,电子式互感器具有体积小、重量轻、精度高、响应快的特点。

它无需独立的电源供电,可以直接输出模拟或数字信号,方便接入各种监控系统和数据采集设备。

同时,电子式互感器的线性度和频率特性也更好,能够满足不同电力系统的需求。

最后,我们需要注意的是电子式互感器的应用范围。

电子式互感器广泛应用于电力系统的监测和保护中,能够实现对电流、电压、功率等参数的准确测量和监控。

它还可以用于电能计量、智能电网、电力质量分析等领域,为电力系统的安全稳定运行提供重要的技术支持。

总之,电子式互感器作为一种基于电磁感应原理的测量装置,具有精度高、响应快、体积小、重量轻等优点,广泛应用于电力系统的监测和保护中。

通过对电子式互感器的原理和工作过程的了解,我们可以更好地理解其在电力系统中的重要作用,为电力系统的安全稳定运行提供技术支持。

基于电容分压的电子式电压互感器分析

基于电容分压的电子式电压互感器分析

基于电容分压的电子式电压互感器分析
电子式电压互感器是一种将高电压转换为低电压的设备,广泛应用于电力系统中。

基于电容分压的电子式电压互感器是一种常见的互感器类型。

本文将对基于电容分压的电子式电压互感器进行分析。

基于电容分压的电子式电压互感器的工作原理如下:电容分压是利用电容器的电压与电容值之间的关系,通过改变电容器的电容值来改变电压分压比的方法。

在电子式电压互感器中,一般使用变压器和电容器的组合来实现电压分压。

基于电容分压的电子式电压互感器具有以下优点:
1. 精度高:通过调节电容器的电容值,可以实现电压分压比的灵活调整,从而确保输出的电压信号精确。

2. 响应快:电容分压的过程相对较快,可以实现对输入电压信号的快速响应。

3. 体积小:相比传统的电压互感器,基于电容分压的电子式电压互感器具有较小的体积,方便安装和维护。

基于电容分压的电子式电压互感器也存在一些问题:
1. 电容器的选择:电容器的选择对电压分压比的精度和稳定性有着重要的影响。

需要选择合适的电容器来满足互感器的工作要求。

2. 温度的影响:电容器的电容值会随着温度的变化而发生变化,因此在高温或低温环境下,电子式电压互感器的性能可能会受到影响。

3. 电容器的寿命:电容器具有一定的寿命,需要定期检测和更换,以确保互感器的正常运行。

基于电容分压的电子式电压互感器是一种常见的互感器类型,具有精度高、响应快和体积小的优点。

对电容器的选择、温度的影响和电容器的寿命等问题需要引起注意。

通过对这些问题的研究和解决,可以进一步提高基于电容分压的电子式电压互感器的性能和可靠性。

电子式互感器原理

电子式互感器原理

电子式互感器原理
电子式互感器是一种用于测量电流和电压的装置,常用于电力系统的监测和控制中。

它通过电子技术实现了对电流和电压的测量,相比传统的电流互感器和电压互感器,具有体积小、精度高、频率特性好等优点。

电子式互感器利用电子电路将被测量的电流或电压转换为与之成比例的电信号进行处理。

其基本原理是利用电流和电压之间的比例关系,借助电阻、电容、电感等元器件,将电流或电压信号转换为与之成比例的电压、电流信号。

然后,通过运算放大器、滤波器等电子元件对转换后的信号进行增强和滤波,以提高测量的精度和稳定性。

电子式互感器的关键元件是电流互感器和电压互感器。

电流互感器通常采用霍尔元件或磁致伸缩元件,通过变压器原理实现电流的感应和测量。

电压互感器则通过电容分压原理实现电压的感应和测量。

这些元件将电流或电压转换为与之成比例的电压信号,然后经过电路的处理得到最终的测量值。

需要注意的是,由于电子式互感器采用了电子技术,对电源稳定性和抗干扰能力要求较高。

此外,由于电子式互感器需要进行非线性校正和温度补偿,因此在设计和使用过程中需要考虑这些因素,以确保测量结果的准确性和可靠性。

总之,电子式互感器利用电子技术实现了对电流和电压的测量,具有体积小、精度高、频率特性好等优点。

它的工作原理是利
用电流和电压之间的比例关系,并通过电子元件进行信号转换、放大和滤波,最终得到准确可靠的电流和电压测量值。

电子式互感器原理

电子式互感器原理

电子式互感器原理
电子式互感器是一种将电流和电压转换为电子信号的设备。

它基于互感器原理,通过将被测电流或电压与一个或多个磁性材料的磁场相互耦合,实现电能的测量、监测和控制。

电子式互感器的原理可以简单描述为以下几个步骤:
1. 电流测量:当被测电流通过主线圈时,主线圈中会产生一个磁场。

2. 磁场传输:主线圈中的磁场会通过铁芯传输到次级线圈上。

3. 次级线圈感应:次级线圈中的磁场变化会感应出一个电压信号。

4. 信号放大:感应出的电压信号会经过一个放大电路进行放大。

5. 数字化处理:放大后的信号经过模数转换器转换为数字信号。

6. 输出信号:数字信号可以通过接口输出给其他设备或系统进行进一步处理和分析。

电子式互感器相比传统的电力互感器具有许多优势。

首先,它们可以实现对电流和电压信号的高精度测量,减小了传统电力互感器由于线性误差和相位误差带来的测量偏差。

其次,电子式互感器具有较宽的测量范围和频率响应,可以适应不同场景的需求。

此外,由于采用数字化处理,电子式互感器的输出信号稳定可靠,并且具有较强的抗干扰能力。

综上所述,电子式互感器通过巧妙地利用磁场感应原理,将被测电流或电压转换为数字信号,实现了高精度、稳定可靠的电能测量和监测。

它在电力系统、工业自动化以及能源管理等领
域得到了广泛应用,并对提高电能测量的精度和可靠性发挥了重要作用。

电子式互感器其发展和应用

电子式互感器其发展和应用

浅谈电子式互感器及其发展和应用摘要:电子式互感器以其优越数字化输出、网络化接线使得电网更安全、更环保、更利于一次设备乃至整个输配电系统的智能化的特性,在互感器行业得到了迅猛的发展。

关键词:电子式互感器原理、特点,发展状况。

一电子式电流电压互感器分类第一种是无源型的,利用法拉第效应做的光纤电流互感器和利用珀尔效应的电压互感器,都是磁光效应原理做的,是通过光的变化来感测电流或电压的变化的。

第二种是有源型的,就是在高压侧构造一个电源,向用电子原理测量的电子电路、a/d转换电路以及光电转换电路供电,反映电流或电压变化的数字编码信号再通过光纤传输到低压侧,光纤在此作为传输介质。

二电子式互感器的基本原理1.电子式电流互感器原理:(如图1)电子式电流互感器采用罗哥夫斯基(rogowski)线圈和轻载线圈的基本原理。

罗哥夫斯基线圈由于采用非磁性的骨架,不存在磁饱和现象。

一次电流通过rogowski线圈得到了与一次电流i1的时间微分成比例的二次电压e,将该二次电压e进行积分处理,获得与一次电流成比例的电压信号,通过微处理器将该信号进行变换、处理,即可将一次电流信息变成模拟量和数字量输出。

轻载线圈它代表着经典感应电流互感器的发展方向。

它由一次绕阻、小铁芯和损耗最小化的二次绕组组成。

二次绕组上连接着分流电阻ra,二次电流i2在分流电组ra两端的电压降u2与一次电流i1成比例,电子式电流互感器比传统的电磁式电流互感器拥有更大的电流测量范围。

2.电子式电压互感器原理:(如图2)电子式电压互感器采用电阻分压原理,互感器由高压臂电阻、低压臂电阻、屏蔽电极、过电压保护装置组成。

通过分压器将一次电压转换成与一次电压和相位成比例的小电压信号。

采用屏蔽电极的方法改善电场分布状况和杂散电容的影响,在二次输出端并联一个过电压保护装置,防止在二次输出端开路时将二次侧电压提高。

也可采用电容(阻容)分压的原理制作电子式电压互感器。

三电子式互感器与传统电磁式互感器性能对比电子式电流电压互感器,二次输出为小电压信号,无需二次转换,可方便地与数字式仪表、微机保护控制设备接口,实现计量、控制、测量、保护和数据传输的功能,且消除了传统电磁式电流互感器因二次开路、电压互感器二次短路给电力系统设备和人身安全带来的故障隐患。

浅论电子式互感器及其应用

浅论电子式互感器及其应用

由电磁式互感器提供能量进行工作 。 只需要 电流 电压互感器 以极小 的功率将采集的电流电压信号
准 确 和 及 时地 传 递 到 控制 或 运 行 系统 的相 应 接 口 即可 满 足要 求 。 由于 无 能量 传 递 要求 ,只需 送 出 数 字 化 信 号 ,原 来 体形 笨 重 、测 量性 能差 的 电磁
无 需考 虑 供 电 问题 。但 传 感 头 的光 学 系统 较 为 复 杂 ,易受 环 境影 响 ,调试 困难 ,稳 定性 不 高 ,是 影 响实用 性 的主要原 因。 ( 3 )有源 与无 源 电子 式互感 器 的 比较 有 源 电子 式 互感 器 目前 有三 个 难 题 ,其 ~ 是 电路 供 电技 术 ,其 二 是 可 靠 性 ,其 i 是 可 维 护 性 。 电源 供 电 技 术 目前 采 用 激 光 供 电 和 微 波 供 电 。有源 电子 式互 感 器 的安 装 调试 简 单 ,运 行 不
态 范 围 变小 ,通 频 带变 窄 ,易 发 生磁 饱 和 ,造 成
( 3 )V C T 不会产生危险铁磁谐振现象 。由于 不使用铁芯结构 ,也就不会产生铁磁谐振 而损害
设备 。
保护拒动或者误动;易产生铁磁谐振 ,损坏设备。
收稿 日期 :2 0 1 2 —0 9 —1 9

G月 技 术
Hale Waihona Puke ( 2 )靠惰性气体绝缘 ,绝缘结构复杂 ,体形
笨 重 ,造 价高 ,难维 护 。
置及综合 自动化设备在变 电站 的普及应用 ,整个
电力 控 制 系统 和运 行 系统 ,不 再 需要 或逐 步 减 少
( 3 )采集 的信 号均 为模 拟量 ,与 电网的计
量 、保 护 及监 控 的智 能 化 、数 字 化 与 网络 化不 配

电子式互感器的原理及应用

电子式互感器的原理及应用

电子式互感器的原理及应用1. 什么是电子式互感器?电子式互感器是一种常用的电测量装置,它利用电子技术来实现电流和电压的测量。

相比传统的电流互感器和电压互感器,电子式互感器具有体积小、重量轻、精度高、可编程等优点,因此在工业自动化、电能监测等领域得到了广泛的应用。

2. 电子式互感器的工作原理电子式互感器的工作原理是通过感应原理实现电流和电压的测量。

电子式互感器通常由传感器、信号处理电路和输出接口组成。

2.1 电流测量原理电子式互感器中的电流测量是通过感应电路实现的。

当被测电流通过感应电路时,感应电路会产生感应电压,通过对感应电压进行采样和处理,可以得到被测电流的大小和相位信息。

2.2 电压测量原理电子式互感器中的电压测量是通过感应原理实现的。

感应原理是指当被测电压作用于感应电路时,感应电路会产生感应电流,通过对感应电流进行采样和处理,可以得到被测电压的大小和相位信息。

3. 电子式互感器的应用电子式互感器由于具有体积小、重量轻、精度高等优点,被广泛应用于各个领域。

3.1 工业自动化在工业生产过程中,电子式互感器可以用于电流和电压的测量,对电力、电力质量进行监控和控制。

通过实时监测电流、电压等参数,可以及时发现异常情况,并采取相应的措施,提高生产效率和产品质量。

3.2 电能监测电子式互感器可以用于电网的电能监测,可以实时采集电能计量数据,包括电流、电压、功率因数等。

通过对电能数据的分析和处理,可以实现对电能使用情况的监测和管理,并进行能源效率分析,从而为能源节约和环保提供有力支持。

3.3 物联网应用随着物联网技术的发展,电子式互感器可以与传感器、网络等结合,实现对电力设备的远程监测和管理。

通过接入云平台,可以对电力设备进行远程控制和故障诊断,提高设备运行的稳定性和可靠性。

3.4 新能源领域在新能源领域,电子式互感器可以用于太阳能发电系统、风能发电系统等的电流和电压测量。

通过实时监测电能输出情况,可以评估新能源设备的性能和效益,为新能源的开发和利用提供数据支持。

电子式电流互感器的原理和应用

电子式电流互感器的原理和应用
压 等级 的变 电站得 到较 为广 泛 的应用 。天津 地 区也
5 绝 缘结 构简 单 , 次 高 压 与二 次 设 备 通 过 光 ) 一 纤连 接 , 电磁式 互感 器 的绝缘 问题 ; 无 6 体 积小 、 量轻 、 价 低 , ) 重 造 随着 电压 等 级 的 升
高这 些优 势更 加 明显 ; 7 )二次 侧可 直 接 输 出数 字 信 号 与其 他智 能 电
和 I C6 0 4— E 0 4 8电子 式 电流互 感器 标 准 , 电子 式 对
有 源 电子 式 电流互 感 器主要 有低 功耗 铁 芯线 圈 和 R gw k 线圈原 理 两种 。 oo si
2 1 低 功 耗 铁 芯 线 圈 .
互感 器 的特点 、 能 指标 和检 定原 则进 行 了规 范 。 性 目前 , 电子 式 电流互 感 器 主要 采 用 R gw k 线 oo si 圈、 光学装 置或传 统 电流 互 感 器 等 方 式 实 现 一次 电
与传统 电磁式 互感 器 相 比。电子式 互 感器 主要 有 以下特点 :
1 电子 式 互 感 器 可从 实 现 原 理 上 根 本 地 避 免 )
2 2 1 基 本原 理 .. R gw k 线 圈为拆 绕 在非铁 磁材 料上 的空 心 线 oo si 圈 。如 图 2所示 。
磁路 饱 和、 铁磁谐 振 等问 题 , 高 采集精 度 ; 提
4 二 次侧 信号 通 过 光纤 传 输 , 有 电缆 传 输 方 ) 没
式 的 电磁干扰 问题 ;.
部分 , 的测量 精度 和 运 行 稳 定 性 直 接 影 响 到 变 电 它 站乃至 电网 的安 全稳 定 运 行 。 目前 , 中 国 电力 系 在 统 中, 已经有不 同原 理 的 电 子式 互 感 器 在 不 同的 电
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子式互感器原理与应用概述
摘要:电子式互感器是随着现代技术发展新型互感器,因其特殊的技术优势将逐步替代传统的电磁式互感器产品。

本文将着重从电子式互感器的原理与应用方面进行深入的分析,以供参考。

关键词:电子式互感器原理应用
1、引言
随着计算机技术和电力设备二次系统测量、保护装置的数字化发展,电力系统对测量、保护、控制和数据传输智能化、自动化及电网安全、可靠和高质量运行的要求越来越高,具有测量、保护、监控、传输等组合功能的智能化、小型化、模块化、机电一体化电力设备,对电网安全、可靠和高质量运行具有重要意义。

这已成为国内外著名电力设备生产企业进行产品研发的主流。

传统的电磁式电流电压互感器难以直接完成计算机技术对电流电压完整信息进行数字化处理的要求,难以实现电网对电量参数变化的在线监测,阻碍了电力系统自动化向更高水平发展,因此寻求一种能与数字化网络配套使用的新型电流电压互感器成为电网安全高效运行的迫切需要。

2、电子式互感器
电子式互感器(electronic instrument transformer)是由传感元件和数据处理单元组成的互感器,用以测量和监控电流、电压等参数。

由于其传感机理先进,绝缘相对简单,动态范围大,频率响应宽,准确度高,适应电能计量、保护数字化和自动化发展方向,将成为传统电磁式互感器的换代产品。

电子式电流电压互感器,二次输出为小电压信号,无需二次转换,可方便地与数字式仪表、微机保护控制设备接口,实现计量、控制、测量、保护和数据传输的功能,且消除了传统电磁式电流互感器因二次开路、电压互感器二次短路给电力系统设备和人身安全带来的故障隐患。

作为传统电磁式互感器理想的换代产品,电子式互感器可广泛用于中压领域电力监测、控制、计量、保护系统、工矿企业、高层建筑、配、变电等场所,能有效降低变电站(配电所)的建设成本和运行维护成本,提高电网运行质量、安全可靠性和自动化水平,因其几乎不消耗能量、无铁心(或仅含小铁心)、且减少了许多有害物质的使用而使其成为节能和环保产品。

电子式电流电压互感器在发达国家已被广泛采用,国内也有越来越多的产品投入使用。

3、电子式互感器的原理
3.1 电子式电流电压互感器原理
电子式电流互感器采用罗哥夫斯基(Rogowski)线圈和轻载线圈的基本原理。

Rogowski线圈由于采用非磁性的骨架,不存在磁饱和现象。

一次电流通过Rogowski线圈得到了与一次电流I1的时间微分成比例的二次电压E,将该二次电压E进行积分处理,获得与一次电流成比例的电压信号,通过微处理器将该信号进行变换、处理,即可将一次电流信息变成模拟量和数字量输出。

轻载线圈它代表着经典感应电流互感器的发展方向。

它由一次绕阻、小铁芯和损耗最小化的二次绕组组成。

二次绕组上连接着分流电阻Ra,二次电流I2在分流电组Ra两端的电压降U2与一次电流I1成比例,电子式电流互感器比传统的电磁式电流互感器拥有更大的电流测量范围。

3.2 电子式电压互感器采用电阻分压原理
互感器由高压臂电阻、低压臂电阻、屏蔽电极、过电压保护装置组成。

通过分压器将一次电压转换成与一次电压和相位成比例的小电压信号。

采用屏蔽电极的方法改善电场分布状况和杂散电容的影响,在二次输出端并联一个过电压保护装置,防止在二次输出端开路时将二次侧电压提高。

也可采用电容(阻容)分压的原理制作电子式电压互感器。

4、电子式互感器的应用
4.1 与微机综合保护测量装置成套使用
这一装置可由电子式电流、电压互感器与微机测量保护装置有机组合而成,电子式互感器与微机综合保护测量装置之间的接口,在产品出厂前就已调试完成,用户不再需要考虑两者的接口参数匹配,使用起来十分方便。

同时,它还具有自检测、自诊断、自处理功能,能准确测量电流、电压、频率等参数,准确计算功率,可灵活设置保护定值,并设有标准通讯接口,可可以输出模拟信号或数字信号,通过光纤与通讯系统连接,实现四遥及远方通讯。

4.2 与户外高压真空断路器配套使用
采用电子式电流电压组合互感器采集和传输一次电流电压信息,与ZW□-12/MZ、ZW□-40.5/MZ型户外高压真空断路器、分段器和重合配套使用,组成新一代智能高压电器产品,可提高电力系统信息的数字化传输,提高了城网、农网的配网自动化水平。

4.3 与各种高压开关柜配套使用
由于电子式电流、电压互感器具有体积小、重量轻的特点,可方便的置于已有的各种高压开关柜中,将其用于新型开关柜的设计中,可大大减小开关柜的尺寸,减小设备的占地面积,降低变电站的建设成本。

5、结语
综上所述,使用电子式互感器有助于提高电力系统自动化、数字化的发展水平、促进智能化、数字化电器设备成套应用技术的进步,对改善我国电网运行质量和稳定性、确保电力设备和人身安全,为我国互感器行业的发展进步起到积极的促进作用,其发展正处于产业化发展的初期,它的广泛使用还将带动相关行业的发展,其产业化前景极为广阔。

参考文献
[1]郭志忠.电子式互感器评述[J].电力系统保护与控制,2008,36(15):1-5.
[2]钱政,李童杰,张翔等.电子式互感器校验方法的设计与实现[J].北京航空航天大学学报,2006,32(11):1316-1319,1323.
[3]吴明波,梁振飞,李鹏等.电子式互感器对电力系统的应用分析[J].中国电力教育,2011,(12):92-93.
[4]李长安,汪影.浅谈电子式互感器及其发展和应用[J].城市建设理论研究(电子版),2011,(17).
[5]李九虎,郑玉平,古世东等.电子式互感器在数字化变电站的应用[J].电力系统自动化,2007,31(7):94-98.。

相关文档
最新文档