《正弦函数、余弦函数的图象》教学设计
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生——利用诱导公式,回答两个函数之间的关系,再用坐标变换做出余弦函数图象.
7.类似于正弦函数图像的五个关键点,你能找出余弦函数图像的五个关键点吗请将它们的坐标写出来,然后做出函数y=cosx ,x∈ [0,2π]的简图.
设计意图:进一步让学生类比探究余弦函数图象的五个关键点,培养学生类比思维的习惯:类比正弦函数,学会“五点法”作余弦函数的简图.
师生活动:
教师——提示学生从诱导公式入手,进行思考.
学生——思考问题,总结规律,动手画图.
学生——因为终边相同的角有相同的三角函数值,三角函数值有周而复始的变化规律.所以函数y=sinx在x [2k ,2(k+1) ],k Z且k≠0的图象与y=sinx,x [0,2 ]函数的图象的形状完全一样,只是位置不同,于是只要将它向左、右平行移动(每次2 个单位长度),就可以得到正弦函数y=sinx,x R的图象,即正弦曲线.
师生活动:
教师——展示问题,启发学生思考.
学生——列表、描点、连线.
教师——怎样得到函数图象上点的两个坐标数据
学生——通过计算器得到,特殊角的函数值还可直接计算得到.
教师——很好,但是由于对一般角的正弦值都是近似值,作的图不够精确,你如何解决这个问题(留时间让学生思考)
预案二:几何描点法
师生活动:
学生——利用单位圆中的正弦线表示函数值.
学生——观察、分析、探究问题.
教师——让学生回答问题,给出利用图象变换作图的方法,并加以解释.把y =sinx , x∈ [0,2π]的图象向上平移1个单位可以得到y =1+sinx , x∈ [0,2π]的图象.作y =cosx , x∈ [0,2π]的图象关于x轴对称的图象即得y =-cosx , x∈ [0,2π]的图象.
3.培养学生灵活的思维方法和勇于探索、勇于创新的精神.
四、重难点分析
教学重点:正、余弦函数图象的作法、五点法作图
教学难点:利用正弦线作正弦函数图象、正弦函数与余弦函数图象间的关系、图象变换规律
重难点突破:本节课从先前的函数知识引入如何画函数图象的有关方法,画函数图象的时候,由如何精确的描一个点引入,从而找出画整个正弦函数的图象的方法,培养学生由点到面的能力.整个教学过程遵循由简单到复杂、由局部到整体的原则,让同学能够逐步掌握如何简单的画出正弦函数的图象的方法“五点(作图)法”及如何得到余弦函数的图象.在教学过程中充分体现学生的主体作用,引导学生如何画函数的图象,为什么这样画,使学生体会到波形曲线的流畅美,激发学生学习的兴趣.
设计意图:从学生熟悉的知识出发,培养学生独立观察能力和分析能力,自然找出画正弦函数的图象的方法.培养学生的动手操作能力,形成对正弦函数图象感知.
预案一:代数Biblioteka Baidu点法
第一步列表;第二步,根据表中每组x,y的取值逐一在直角坐标系下找到相应的点;第三步,用平滑曲线将所描各点连接.
此题函数定义域为[0,2 ],所以表中自变量x可选择此范围内的特殊角,依次为0, , , , , , , , , , , , , , , ,2 ,然后求出每个特殊角的正弦值即可完成列表:
8.例题讲解:.画出下列函数的简图:
????????????(1)y =1+sinx , x∈ [0,2π]?
(2)y =-cosx , x∈ [0,2π]?
设计意图:让学生学会“五点法”作图与图象变换作图.
师生活动:教师——分析、板书例l(1).作图步骤:列表(五点法)、描点、连线、延拓.
学生——独立完成例1(2).
2.通过《几何画板》软件,让学生掌握利用现代信息技术研究函数的方法;
3.课堂过程始终贯穿着由简单到复杂、由局部到整体的思想方法;
4.培养学生从特殊到一般与一般到特殊的辩证思想方法.
(三)情感态度与价值观
1.通过作正弦函数和余弦函数图象(尤其是图象的和谐与优美),培养学生对数学知识及学习数学的兴趣;
2.培养学生动手能力与认真负责,一丝不苟的学习和工作精神;
师生活动:
教师——类比正弦函数图象的五个关键点,你能找出余弦函数图象的五个关键点吗将它们的坐标填人下表,然后作出y=cosx ,x∈[0,2π]的简图.
x
y=cosx
学生——通过类比、探究,确定余弦函数图像的五个关键点,并填表、画图,做出在[0,2π]上的图像.
教师——巡视,个别辅导,并实物投影出学生填的表格与画的图象,给出总结性的评价.最后课件演示作图过程.
x
0
2
y
0
1
0
-
-
-
-1
-
-
-
0
(在完成此表时,当x∈[ ,2 ]时,也可使用诱导公式 sin( + )=-sin 来计算.)
根据此表在直角坐标系下描出相应的点.再用平滑曲线连接.如下图.
在这里应该提醒学生注意以下两点:
①在建立直角坐标系时,x轴的刻度应以π为单位长取值,而y轴单位长1的选
② 在这里取近似值, 取近似值.
预案一:代数描点法:列表——描点——连线
预案二:几何描点法:利用余弦线
教师——很好,我们可以从正弦函数图象的作法中得到启示,用代数描点法或几何描点法同样可以做出余弦函数图象,但是可以看出,利用描点法画函数图象是比较麻烦的,如果再让你用描点法去画余弦函数的图象,你可能会不耐烦,那么,你能找到一种不需要描点而画出余弦函数的图象的方法来吗充分利用已有的东西,如已作出的正弦函数图象.
学生——认真观察简谐运动的图象.
3.y=sinx,x [0,2 ]的图象
(1)提问:如何画一般函数的图象有哪些方法
设计意图:复习前知,为新知作铺垫.
师生活动:
教师——展示问题,启发学生思考
学生——画一般函数的图象的步骤是:列表、描点、连线,
作图方法有:描点法、图像变换法.
(2)如何画出函数y=sinx,x [0,2 ]的图象
y=f(x)────→y=f(-x)
y=f(x)────→y=-f(x)
y=f(x)────→y=-f(-x)
②三角函数线:如图,如何作出角 的正弦线
③诱导公式: ,
, .
设计意图:以上基础知识的复习为下面的新课教学做好准备.
师生活动:教师在上课前做好学案,学生在上课前完成上面的复习内容,课上用2~3分钟的时间,学生说出答案,教师评价.
教师——进一步提出思考问题:“你能否从函数图象变换的角度出发,利用函数y =sinx , x∈ [0,2π]的图象来得到y =1+sinx , x∈ [0,2π]?的图象同样的,能否从函数y =cosx , x∈ [0,2π]?图象得到函数y =-cosx , x∈ [0,2π]?的图象”训练学生除了掌握利用描点法作图的方法外,还能掌握利用图象变换的方法来作图.
学生——观察,思考.
教师——通过提问、说理,大家论证认可,将五个关键点明确出来.并演示“五点法”画y=sinx ,x∈[0,2 ]的简图
5.如何做出函数y=sinx,x R的图象
设计意图:引导学生利用诱导公式(一),只要将函数?y=sinx ,x∈[0,2 ]的图像左、右平移(每次2π个单位长度)就可以得到函数y=sinx ,x∈R的图像.
《正弦函数、余弦函数的图象》教学设计
一、学情分析
在初中,学生已经学习过代数描点作图法——列表,描点、连线,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌.因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础.在利用正弦线动手作出函数y=sinx的图象时,一般学生对作图的思路和步骤不会感到困难,但是部分动手能力欠佳的学生来说,可能会在平移、描点、连线时,出现描点不精确,连线不平滑,致使画出的图象与正弦函数图象误差较大.为了解决这部分学生的困难,教师应设计精确度较高的坐标纸,便于学生作图.
学生——动手作图
教师——巡视,个别辅导,发现问题,及时引导、点拨,并实物投影出学生做的较好图象,并予以表扬.最后课件演示作图过程.
4.在做出正弦函数y=sinx ,x∈[0,2 ]的图像时,应抓住哪些关键点
设计意图:从对图像的整体观察入手,引出“五点法”.
师生活动:
教师——正弦函数的图象和余弦函数的图象我们都有了直观的印象了,在进一步的学习和解决问题中,我们往往只是要它们的大致图象,也就是不必这么细致地、复杂地去画出,想着通过图象上的几个关键点而勾勒出函数的图象.那么,请你“观察正弦函数在[0,2 ]内的图象,思考在作出正弦函数的图象时,应抓住哪些关键点”
教师——很好,如何利用正弦线得到y=sinx的图象上的点(x,sinx)(留时间让学生思考)
学生——从单位圆与x轴交点A开始,将单位圆分成12等份,作出各个角的正弦线,然后通过平移可以得到12个点,再用平滑曲线把这些点连起来即可.
教师——很好,下面利用学案上的坐标纸作出函数y=sinx,x [0,2 ]的图象
由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此,利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.
在利用三角函数线和“五点法”作图的基础上,进一步复习图象变换的有关知识,利用图象变换的方法作三角函数图象,温故知新,让学生对前后知识的联系和应用融会贯通;从多个角度认识三角函数的图象,开拓思维,培养学生的创新能力.
2.由简谐振动的图象获得正、余弦函数图象的直观印象
设计意图:通过课件演示,让学生对正弦函数或余弦函数图象有一个直观印象
师生活动:
教师——正弦函数,余弦函数可以看成是以角的弧度数为自变量,分别以终边与单位圆的交点的纵坐标y、横坐标x为函数值的函数,它们的定义域是R.对函数的研究我们常常借助其图象,那么正弦函数、余弦函数的图象是怎样的呢我们知道,质点作简谐运动的图象是正弦曲线或余弦曲线,下面,我们看“简谐振动”的动画.感受正弦函数的图象.
三、教学目标
(一)知识与能力
1.会用正弦线画正弦函数的图象,培养学生观察能力;
2.会用平移法作余弦函数的图象,提高学生分析问题能力;
3.掌握“五点法”作正、余弦函数图象的方法,提高学生解决问题的能力.
(二)过程与方法
1.让学生动手作正弦线——平移——描点——连线的实际操作,绘出正弦函数图象,体会认识未知函数过程;通过“图象变换”和“五点法”的作图方法,让学生学会善于寻找、观察数学知识之间的内在联系,体会数形结合的思想;
在《数学(必修①)》中学生已经学习过图象变换,可能因为时间太长,部分学生遗忘,故上课前应指导学生复习这部分知识;另外,在前一节刚刚学习过诱导公式,为了有利于这节课的顺利进行,上课前也应指导学生复习一下诱导公式.
二、学习内容分析
本节课是在学生已经学习了任意三角函数的定义,三角函数线,三角函数的诱导公式等知识基础上进行学习的,主要是对正弦函数和余弦函数的图象进行系统的研究.正弦、余弦函数是继前面《数学(必修①)》学过的指数函数、对数函数、幂函数的函数内容,也是后面学习三角函数的性质的重要基础依据,及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.所以说本节课的内容对知识的掌握起到了承上启下的作用.
教师——几何画板演示利用正弦线得到y=sinx,x∈R的图象
6.y=cosx,x [0,2 ]的图象
问题:如何作出y=cosx,x [0,2 ]的图象
设计意图:使学生从函数解析式之间的关系思考函数图像之间的关系,进而学习通过图象变换画余弦函数图象的方法,让学生感受有了一个函数图象为基础时,可以通过图象变换得到另一函数的图象,降低作图的难度.
五、教学流程图
六、教学过程
1.复习回顾
①图象变换:
变换类型
变换规律
左右平移变换
y=f(x)────→y=f(x+a),(a>0)
y=f(x)────→y=f(x-a),(a>0)
上下平移变换
y=f(x)────→y=f(x) +a,(a>0)
y=f(x)────→y=f(x) -a,(a>0)
对称变换
学生——思考、讨论、交流
预案三:图象变换法
师生活动:
学生——思考.如果学生有困难,教师适时提出探究性问题“你能根据诱导公式,以正弦函数的图象为基础,通过适当的图形变换得到余弦函数的图象吗”
师生——教师引导学生哪组诱导公式可以把余弦转化为正弦哪组诱导公式更有利于作出余弦函数的图象呢通过探讨,总结余弦函数的图象的平移画法,作出余弦函数的图象,并指出正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线.
7.类似于正弦函数图像的五个关键点,你能找出余弦函数图像的五个关键点吗请将它们的坐标写出来,然后做出函数y=cosx ,x∈ [0,2π]的简图.
设计意图:进一步让学生类比探究余弦函数图象的五个关键点,培养学生类比思维的习惯:类比正弦函数,学会“五点法”作余弦函数的简图.
师生活动:
教师——提示学生从诱导公式入手,进行思考.
学生——思考问题,总结规律,动手画图.
学生——因为终边相同的角有相同的三角函数值,三角函数值有周而复始的变化规律.所以函数y=sinx在x [2k ,2(k+1) ],k Z且k≠0的图象与y=sinx,x [0,2 ]函数的图象的形状完全一样,只是位置不同,于是只要将它向左、右平行移动(每次2 个单位长度),就可以得到正弦函数y=sinx,x R的图象,即正弦曲线.
师生活动:
教师——展示问题,启发学生思考.
学生——列表、描点、连线.
教师——怎样得到函数图象上点的两个坐标数据
学生——通过计算器得到,特殊角的函数值还可直接计算得到.
教师——很好,但是由于对一般角的正弦值都是近似值,作的图不够精确,你如何解决这个问题(留时间让学生思考)
预案二:几何描点法
师生活动:
学生——利用单位圆中的正弦线表示函数值.
学生——观察、分析、探究问题.
教师——让学生回答问题,给出利用图象变换作图的方法,并加以解释.把y =sinx , x∈ [0,2π]的图象向上平移1个单位可以得到y =1+sinx , x∈ [0,2π]的图象.作y =cosx , x∈ [0,2π]的图象关于x轴对称的图象即得y =-cosx , x∈ [0,2π]的图象.
3.培养学生灵活的思维方法和勇于探索、勇于创新的精神.
四、重难点分析
教学重点:正、余弦函数图象的作法、五点法作图
教学难点:利用正弦线作正弦函数图象、正弦函数与余弦函数图象间的关系、图象变换规律
重难点突破:本节课从先前的函数知识引入如何画函数图象的有关方法,画函数图象的时候,由如何精确的描一个点引入,从而找出画整个正弦函数的图象的方法,培养学生由点到面的能力.整个教学过程遵循由简单到复杂、由局部到整体的原则,让同学能够逐步掌握如何简单的画出正弦函数的图象的方法“五点(作图)法”及如何得到余弦函数的图象.在教学过程中充分体现学生的主体作用,引导学生如何画函数的图象,为什么这样画,使学生体会到波形曲线的流畅美,激发学生学习的兴趣.
设计意图:从学生熟悉的知识出发,培养学生独立观察能力和分析能力,自然找出画正弦函数的图象的方法.培养学生的动手操作能力,形成对正弦函数图象感知.
预案一:代数Biblioteka Baidu点法
第一步列表;第二步,根据表中每组x,y的取值逐一在直角坐标系下找到相应的点;第三步,用平滑曲线将所描各点连接.
此题函数定义域为[0,2 ],所以表中自变量x可选择此范围内的特殊角,依次为0, , , , , , , , , , , , , , , ,2 ,然后求出每个特殊角的正弦值即可完成列表:
8.例题讲解:.画出下列函数的简图:
????????????(1)y =1+sinx , x∈ [0,2π]?
(2)y =-cosx , x∈ [0,2π]?
设计意图:让学生学会“五点法”作图与图象变换作图.
师生活动:教师——分析、板书例l(1).作图步骤:列表(五点法)、描点、连线、延拓.
学生——独立完成例1(2).
2.通过《几何画板》软件,让学生掌握利用现代信息技术研究函数的方法;
3.课堂过程始终贯穿着由简单到复杂、由局部到整体的思想方法;
4.培养学生从特殊到一般与一般到特殊的辩证思想方法.
(三)情感态度与价值观
1.通过作正弦函数和余弦函数图象(尤其是图象的和谐与优美),培养学生对数学知识及学习数学的兴趣;
2.培养学生动手能力与认真负责,一丝不苟的学习和工作精神;
师生活动:
教师——类比正弦函数图象的五个关键点,你能找出余弦函数图象的五个关键点吗将它们的坐标填人下表,然后作出y=cosx ,x∈[0,2π]的简图.
x
y=cosx
学生——通过类比、探究,确定余弦函数图像的五个关键点,并填表、画图,做出在[0,2π]上的图像.
教师——巡视,个别辅导,并实物投影出学生填的表格与画的图象,给出总结性的评价.最后课件演示作图过程.
x
0
2
y
0
1
0
-
-
-
-1
-
-
-
0
(在完成此表时,当x∈[ ,2 ]时,也可使用诱导公式 sin( + )=-sin 来计算.)
根据此表在直角坐标系下描出相应的点.再用平滑曲线连接.如下图.
在这里应该提醒学生注意以下两点:
①在建立直角坐标系时,x轴的刻度应以π为单位长取值,而y轴单位长1的选
② 在这里取近似值, 取近似值.
预案一:代数描点法:列表——描点——连线
预案二:几何描点法:利用余弦线
教师——很好,我们可以从正弦函数图象的作法中得到启示,用代数描点法或几何描点法同样可以做出余弦函数图象,但是可以看出,利用描点法画函数图象是比较麻烦的,如果再让你用描点法去画余弦函数的图象,你可能会不耐烦,那么,你能找到一种不需要描点而画出余弦函数的图象的方法来吗充分利用已有的东西,如已作出的正弦函数图象.
学生——认真观察简谐运动的图象.
3.y=sinx,x [0,2 ]的图象
(1)提问:如何画一般函数的图象有哪些方法
设计意图:复习前知,为新知作铺垫.
师生活动:
教师——展示问题,启发学生思考
学生——画一般函数的图象的步骤是:列表、描点、连线,
作图方法有:描点法、图像变换法.
(2)如何画出函数y=sinx,x [0,2 ]的图象
y=f(x)────→y=f(-x)
y=f(x)────→y=-f(x)
y=f(x)────→y=-f(-x)
②三角函数线:如图,如何作出角 的正弦线
③诱导公式: ,
, .
设计意图:以上基础知识的复习为下面的新课教学做好准备.
师生活动:教师在上课前做好学案,学生在上课前完成上面的复习内容,课上用2~3分钟的时间,学生说出答案,教师评价.
教师——进一步提出思考问题:“你能否从函数图象变换的角度出发,利用函数y =sinx , x∈ [0,2π]的图象来得到y =1+sinx , x∈ [0,2π]?的图象同样的,能否从函数y =cosx , x∈ [0,2π]?图象得到函数y =-cosx , x∈ [0,2π]?的图象”训练学生除了掌握利用描点法作图的方法外,还能掌握利用图象变换的方法来作图.
学生——观察,思考.
教师——通过提问、说理,大家论证认可,将五个关键点明确出来.并演示“五点法”画y=sinx ,x∈[0,2 ]的简图
5.如何做出函数y=sinx,x R的图象
设计意图:引导学生利用诱导公式(一),只要将函数?y=sinx ,x∈[0,2 ]的图像左、右平移(每次2π个单位长度)就可以得到函数y=sinx ,x∈R的图像.
《正弦函数、余弦函数的图象》教学设计
一、学情分析
在初中,学生已经学习过代数描点作图法——列表,描点、连线,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌.因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础.在利用正弦线动手作出函数y=sinx的图象时,一般学生对作图的思路和步骤不会感到困难,但是部分动手能力欠佳的学生来说,可能会在平移、描点、连线时,出现描点不精确,连线不平滑,致使画出的图象与正弦函数图象误差较大.为了解决这部分学生的困难,教师应设计精确度较高的坐标纸,便于学生作图.
学生——动手作图
教师——巡视,个别辅导,发现问题,及时引导、点拨,并实物投影出学生做的较好图象,并予以表扬.最后课件演示作图过程.
4.在做出正弦函数y=sinx ,x∈[0,2 ]的图像时,应抓住哪些关键点
设计意图:从对图像的整体观察入手,引出“五点法”.
师生活动:
教师——正弦函数的图象和余弦函数的图象我们都有了直观的印象了,在进一步的学习和解决问题中,我们往往只是要它们的大致图象,也就是不必这么细致地、复杂地去画出,想着通过图象上的几个关键点而勾勒出函数的图象.那么,请你“观察正弦函数在[0,2 ]内的图象,思考在作出正弦函数的图象时,应抓住哪些关键点”
教师——很好,如何利用正弦线得到y=sinx的图象上的点(x,sinx)(留时间让学生思考)
学生——从单位圆与x轴交点A开始,将单位圆分成12等份,作出各个角的正弦线,然后通过平移可以得到12个点,再用平滑曲线把这些点连起来即可.
教师——很好,下面利用学案上的坐标纸作出函数y=sinx,x [0,2 ]的图象
由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此,利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.
在利用三角函数线和“五点法”作图的基础上,进一步复习图象变换的有关知识,利用图象变换的方法作三角函数图象,温故知新,让学生对前后知识的联系和应用融会贯通;从多个角度认识三角函数的图象,开拓思维,培养学生的创新能力.
2.由简谐振动的图象获得正、余弦函数图象的直观印象
设计意图:通过课件演示,让学生对正弦函数或余弦函数图象有一个直观印象
师生活动:
教师——正弦函数,余弦函数可以看成是以角的弧度数为自变量,分别以终边与单位圆的交点的纵坐标y、横坐标x为函数值的函数,它们的定义域是R.对函数的研究我们常常借助其图象,那么正弦函数、余弦函数的图象是怎样的呢我们知道,质点作简谐运动的图象是正弦曲线或余弦曲线,下面,我们看“简谐振动”的动画.感受正弦函数的图象.
三、教学目标
(一)知识与能力
1.会用正弦线画正弦函数的图象,培养学生观察能力;
2.会用平移法作余弦函数的图象,提高学生分析问题能力;
3.掌握“五点法”作正、余弦函数图象的方法,提高学生解决问题的能力.
(二)过程与方法
1.让学生动手作正弦线——平移——描点——连线的实际操作,绘出正弦函数图象,体会认识未知函数过程;通过“图象变换”和“五点法”的作图方法,让学生学会善于寻找、观察数学知识之间的内在联系,体会数形结合的思想;
在《数学(必修①)》中学生已经学习过图象变换,可能因为时间太长,部分学生遗忘,故上课前应指导学生复习这部分知识;另外,在前一节刚刚学习过诱导公式,为了有利于这节课的顺利进行,上课前也应指导学生复习一下诱导公式.
二、学习内容分析
本节课是在学生已经学习了任意三角函数的定义,三角函数线,三角函数的诱导公式等知识基础上进行学习的,主要是对正弦函数和余弦函数的图象进行系统的研究.正弦、余弦函数是继前面《数学(必修①)》学过的指数函数、对数函数、幂函数的函数内容,也是后面学习三角函数的性质的重要基础依据,及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.所以说本节课的内容对知识的掌握起到了承上启下的作用.
教师——几何画板演示利用正弦线得到y=sinx,x∈R的图象
6.y=cosx,x [0,2 ]的图象
问题:如何作出y=cosx,x [0,2 ]的图象
设计意图:使学生从函数解析式之间的关系思考函数图像之间的关系,进而学习通过图象变换画余弦函数图象的方法,让学生感受有了一个函数图象为基础时,可以通过图象变换得到另一函数的图象,降低作图的难度.
五、教学流程图
六、教学过程
1.复习回顾
①图象变换:
变换类型
变换规律
左右平移变换
y=f(x)────→y=f(x+a),(a>0)
y=f(x)────→y=f(x-a),(a>0)
上下平移变换
y=f(x)────→y=f(x) +a,(a>0)
y=f(x)────→y=f(x) -a,(a>0)
对称变换
学生——思考、讨论、交流
预案三:图象变换法
师生活动:
学生——思考.如果学生有困难,教师适时提出探究性问题“你能根据诱导公式,以正弦函数的图象为基础,通过适当的图形变换得到余弦函数的图象吗”
师生——教师引导学生哪组诱导公式可以把余弦转化为正弦哪组诱导公式更有利于作出余弦函数的图象呢通过探讨,总结余弦函数的图象的平移画法,作出余弦函数的图象,并指出正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线.