液晶空间光调制器_图文
3.7-空间光调制器资料

c ,c m,c 2m
时间调制器
电光调制器:电场控制 (克尔效应或泡克耳斯效应)
磁光调制器(磁光效应)
声光调制器:用超声信号驱动
幅度大而速度快的光强时间调制器可 作光开关
幅度大而有规律的光方向时间调制器可作光扫描器
空间调制器:光强、偏振态或相位等随空间各点而变化, 进行调制,可产生光强的某种空间分布。
A(x,y)=A0T(x,y)
或者是形成随坐标变化的相位分布 A(x,y)=A0Texp[iθ(x,y)]
y x
或者是形成随坐标变化的不同的散射状态。顾名思义, 这是一种对光波的空间分布进行调制的器件。它的英文名 称是Spatial Light Modulator(SLM)。
空间光调制器含有许多独立单元,它们在空间排列成 一维或二维阵列,每个单元都可以独立地接受光信号或电 信号的控制,并按此信号改变自身的光学性质(透过率、反 射率、折射率等),从而对通过它的光波进行调制;控制这 些单元光学性质的信号称为“写入信号”,写入信号可以 是光信号也可以是电信号,射入器件并被调制的光波称为 “读出光”;经过空间光调制器后的输出光波称为“输出 光”。实时的二维并行处理。
3.电光数字式扫描
由电光晶体和双折射晶体组合而成,其结构原理如图5所示。
图中S为KDP晶体,B为方解石双折射晶体(分离棱镜),它能使线偏振
光分成互相平行、振动方垂直的两束光,其间隔 b为分裂度,为分裂角(也
称离散角)。
纵向电光调制器及其工作原理
T
Io Ii
sin 2
2
sin
2
2
V V
上述电光晶体和双折射晶体就构成了一个一级数字扫描器, 入射的线偏振光随电光晶体上加和不加半波电压而分别占据两 个“地址”之一,分别代表“0”和“l”状态 。
空间光调制器教材

DVI端口
DVI-I双通道 数字/模拟 可转换VGA DVI-I单通道 数字/模拟 可转换VGA DVI-D双通道 数字 不可转换VGA DVI-D单通道 数字 不可转换VGA
HDMI接口 制作:Alan
HDMI是基于DVI(Digital Visual Interface)制定的,是High Definition Multimedia Interface(高分数字多媒体接 口)的简称,可以看作是DVI的强化与延伸, 两者可以兼容。HDMI在保证高品质的情况 下能够以数码形式传输未经压缩的高分辨率 视频和多声道音频数据。HDMI可以支持所 有的ATSC HDTV标准,不仅能够满足目前 最高画质1080p的分辨率,还可以支持 DVDAudio等最先进的数字音频格式,支持 八声道96kHz或立体声192kHz数码音频传 递,而且只用一条HDMI线连接,可以用于 免除数码音频接线。与此同时HDMI标准所 具备的额外扩展空间,它允许应用在日后升 级的音频或视频的格式中。与DVI相比 HDMI接口的体积更小而且支持同时传输音 频及视频信号。
制作: Alan
其它配件 制作:Alan
高精度纯相位LCOS显示面板
RS232数据线
DVI数据线
软件部分 制作:Alan
HOLOEYES 的调制器可以直接通过 显卡的DVI 接口连接到计算机上。空间 光调制器能如此方便使 用离不开在 windows 平台上的灵活高效的帧速率图 形卡。该空间光调制器由HOLOEYE 软 件驱动, 该软件可工作在所有版本的 windows 操作平台上。该软件能方便的 控制所有相关的图像参数, 另外,精心 设计的空间光调制器软件能实现多种光 学函数,像,光栅、透镜、轴锥体和光 圈, 并且能够根据用户设定的图像设计 衍射光学器件(DOE)。完整的套件包 括调制器、视频分配器 和图像处理的所 有相关器件。由于它小的尺寸,可以容 易的被集成到光学系统中。为保证器件 的光学质量(如:相位调制), HOLOEYE 对每个器件都进行了测量。
计算全息实验二

实验注意事项(必读)1.提前预习,没有弄清楚实验内容者,禁止接触实验仪器。
2.注意激光安全。
绝对不可用眼直视激光束,或借助有聚光性的光学组件观察激光束,以免损伤眼睛。
3.注意用电安全。
He-Ne激光器电源有高压输出,严禁接触电源输出和激光头的输入端,避免触电。
4.注意保持卫生。
严禁用手或其他物品接触所有光学元件(透镜、反射镜、分光镜等)的光学表面;特别是在调整光路中,要避免手指碰到光学表面。
5.光学支架上的调整螺丝,只可微量调整。
过度的调整,不仅损坏器材,且使防震功能大减。
6.实验完成后,将实验所用仪器摆放整齐,清理一下卫生。
实验过程中要切记以上注意事项。
如有违犯,将严重影响你的实验成绩!计算全息(二)修正离轴干涉型与相息图编码计算全息是利用计算机设计制作全息图或衍射光学元件的技术。
从原理上,计算全息和光学全息没有什么本质差别,所不同的是产生全息图的方法。
光学全息是直接利用光的干涉特性,通过物波和一束相干参考波的干涉将物波的振幅和位相信息转化成一幅干涉条纹的强度分布图,即全息图。
光学全息记录的物体必须是实际存在的。
而计算全息则是利用计算机程序对被记录物波的数学描述或离散数据进行处理,形成一种可以光学再现的编码图案,即计算全息图。
他不需要被记录物体的实际存在。
由于计算全息图编码的多样性和波面变换的灵活性,以及近年来计算机技术的飞速发展,计算全息技术已经在三维显示、图像识别、干涉计量、激光扫描、激光束整形等研究领域得到应用。
最近计算全息领域的新进展是利用高分辨位相空间光调制器实现了计算全息图的实时再现,这种实时动态计算全息技术已经在原子光学、光学微操纵、微加工、软物质自组织过程的控制等领域得到成功的应用,显示了计算全息技术的巨大应用发展前景。
计算全息除了其在工业和科学研究方面的应用价值,也是一个非常好的教学工具。
要做好一个计算全息图,既要熟悉衍射光学、光全息学等物理知识,还要了解抽样理论、快速傅里叶变换、调制技术和计算机编程方面的知识。
直接调制和空间光调制

1.6.3 几种典型的空间光调制器
1、泡克尔斯读出光调制器(PROM) 为了满足实时处理的要求,陆续出现了多种结构
原理的器件,其中以硅酸铋(简写为BSO)晶体材 料制成的空间光调制器的倒了较快的发展。BSO不 但具有光电效应,而且还具有线性电光效应,半波 电压较低,BSO-PROM空间光调制器的结构示意图如 图:
4
1.5.2 半导体光源的模拟调制
无论是使用LD或LED作为光源,都要施加偏置电流Ib, 使工作点处于LD后LED的线性工作区。调制线性好坏与 调制深度m有关:
LD: m=
调制电流幅度
偏置电流-阈值电流
LED: m=
调制电流幅度 偏置电流
5
由这两个图可以看出,m大时,调制信号幅度大,但 线性差;m小时。线性好,但调制幅度小,因此要选 择合适的m值。
1.5.1 半导体激光器(LD)直接调制原理
由半导体的激光输出特性图可以看出:
半导体激光器有一个阈值电流It,到驱动电流小于It时,激 光器基本上不发光或只发出微弱的荧光;当驱动电流大于It 时,开始发射激光。
其光谱特性图如图:
输 出 功 率
高于阈值
相
对
强
低于阈值
度Leabharlann 驱动电流波长1
若把调制信号加到激光器上,就可以直接改变激光 器输出光信号的强度。 半导体激光器调制原理示意图:
13
(2)非相干光—相干光转换 在实时处理系统中,可以把写入的非相干光信号转换
成输出的相干光信号。因为实时处理系统的对象往往是 一个实际物体,一般的光学系统只能使它形成一个非相 干图像,但在处理中却要求一个相干图像,以便进行频 域处理或进行基于光干涉的处理等。
IW
近代光信息处理第7章空间光调制器

(2)处理和运算功能器件 放大器 乘法器与算术运算功能 对比度反转 量化操作和阈值操作
第7节 非线性变换
逻辑运算
(3)存储功能器件
例: Pockels 光调制器 (PROM) ;
光折变器件等
第7章
光学信息处理
4
目 录 2020/7/15
光学信息处理
第1节 第2节 第3节 第4节 第5节
第7节
系统的输出端(O-SLM).
第7章
6
目 录 2020/7/15
光学信息处理
第1节 2、寻址方式
第2节
空间光调制器是一个二维器件,可看成一个
第3节 透过率受到写入信号控制的滤光片。
第4节 寻址(adressing):写入信号把信息传递到SLM上 第5节 相应位置,以改变SLM的透过率分布的过程。
钇铁 石榴石
1280×1022
1920×480
1280×1024
256×256
128×128 786×576 ×3DMD
2048×1152
52×36
60
100
0.40
14×44
60
300
0.35
34×24
60
400
0.27
56×56
30 1000
0.54
56×56 2000
0.54
17×17 180 >100
(2)电寻址是通过条状电极来传递信息的, 电极尺寸的减小有一个限度,所以像素尺
寸也有限度,影响了SLM的分辨率.
第7章
8
目 录 2020/7/15
第1节 例如:
光学信息处理
第2节 磁光空间光调制器(MOSLM):256×256,
液晶空间光调制器

液晶SLM的特点
4. 光学分辨率:Meadowlark Optics 公司的 Dielectric Mirror Coating 技术有助于优化像素对之 间的2π 相位转换,最大化空间带宽,提高光学分 辨率!
液晶SLM的特点
5. 调制速度:Meadowlark Optics 公司采用高速液 晶材料与高电压模式实现高速纯相位调制,能够提 供目前世界上响应速度最快的纯相位液晶空间光调 制器。实现2π 相位调制量,512x512 SLM 的调制 速度可达500Hz@532nm。同时,Meadowlark Optics 公司还在致力于研发调制速度更快的纯相位 液晶空间光调制器,持续保持在业内的领先地位。
液晶空间光调制器的应用领域
生物 领域 激光 领域
投影 领域
教学 领域
信息光 学领域
视觉测 量领域
光镊
光镊技术是利用光的力学效应实现对微观粒 子的操控,具有非接触,无损伤特性。
全息光镊
激光光束整形
量子通信-涡旋光
光束偏转
SLM的产品系列
类型 功能 特点
标准位相型 P512
高速高效位相型 HSPDM512 位相振幅混合调制型 Customed512 铁电液晶纯振幅型 A512
液晶SLM的特点
9. 损伤阈值:普通液晶空间光调制器的损伤阈值较 低,仅2W/cm2。Meadowlark Optics 独特的Mirror Coating 技术不仅可以大幅度提高光能利用效率, 也能大幅度提高液晶空间光调制器的损伤阈值对于 532nm的连续激光可达10W/cm2。 10. 像素间串扰:Meadowlark Optics 公司液晶空间 光调制器通过精确控制驱动电压与液晶层厚度,大 大降低像素间的串扰,为实现更高效的分辨率与生 成更准确的全息效果提供了保证。
空间光调制器

现各向异性的特性 。
2、 液晶双折射现象
液晶的取向效应
当外加电场 E 足够小(小于其响应阈值)时, 则分子取向不受电场 影响; 当外加电场足够大(超过其阈值)时,分 子取向发生变化。 可以利用液晶这一特性来进行光调制
液晶的双折射
电控双折射效应
在外加电场作用下,液晶分子取向变化, 而使液晶对某一方向入射的光产生双折射。
液晶光阀是利用无电压时候向列型液晶扭曲 效应和外加电压大于阈值时候的双折射效应 来工作的。当无写入光照射时光导层呈高阻 状态电压主要降落在光导层上。液晶上电压 很小,不足以引起双折射效应,液晶显示扭 曲效应。线偏振读出光两次经过液晶,偏振 态没有改变。通过正交检偏器,呈现暗场。 线偏振光经当有写入光照射时候光导层呈低 阻状态。液晶上压降增大,出现双折射效应。 此时偏振读出光被液晶调制为椭圆偏振光。 通过正交检偏器时候呈现亮场。
输入控制信号方式
光寻址 电寻址
按读出方式
反射式 投射式
相ห้องสมุดไป่ตู้调制 强度调制
调制方式
国内首个光控SLM演示
两种写入方式
①电写入的 SLM:代表待输入系统的信息的电信号直接驱动一个器件(空间光
调制器),方式是控制其吸收或相移的空间分布。 光写入的 SLM :信息一开始是光学图像的形式,而不是以电子形式输入到 SLM,在这种情况下,SLM 的功能是将非相干光图像转化成相干光图像,接着 用相干光学系统做下一步处理。
写入光/信号:控制像素的光信号或者电信号。
读出光:照明整个器件并被调制的输入光。 输出光:被像素单元调制后的出射光
应用
目前已有多种空间光调制器实用化,主要 有下面几种:
空间光调制器的基本功能
1、变换器功能电光转换、串行并行转换、相干非相干转换、对比度反转。 2、放大功能 弱光写入,强光读出。可获得增强的相干光图象。
纯相位空间光调制器进行振幅调制和相位调制

纯相位空间光调制器进行振幅调制和相位调制文章标题:深度探究纯相位空间光调制器的振幅调制和相位调制一、引言纯相位空间光调制器(SLM)是一种能够在空间领域中对光进行精确调控的装置,它可以实现光的振幅调制和相位调制。
在本文中,我们将深入探讨纯相位空间光调制器的原理和应用,重点分析其在振幅调制和相位调制方面的特点和优势。
二、纯相位空间光调制器的原理和结构纯相位空间光调制器是一种基于液晶技术的光电器件,其根本原理是通过控制液晶分子的取向来改变光的相位和幅度。
其结构包括基板和液晶层,通过施加电场来改变液晶分子的取向从而控制光的相位和幅度。
三、纯相位空间光调制器的振幅调制特点及应用1. 振幅调制原理纯相位空间光调制器实现振幅调制的原理是通过调制输入的光强,具体来说就是通过控制光的衍射量来改变光的振幅。
这种振幅调制的特点是精细度高、速度快、实时性强。
2. 振幅调制应用在激光传输、光学成像、数字全息成像等领域,振幅调制技术都有着广泛的应用。
而纯相位空间光调制器作为一种理想的振幅调制装置,其在这些领域的应用也日益广泛。
四、纯相位空间光调制器的相位调制特点及应用1. 相位调制原理纯相位空间光调制器实现相位调制的原理是通过改变光的波前形状来实现相位的调制。
通过在空间上精确地调制光的相位,可以实现光的相位调制。
2. 相位调制应用相位调制在干涉成像、数字全息成像、光学通信等领域都有着重要的应用。
纯相位空间光调制器作为一种理想的相位调制装置,其在这些领域的应用也逐渐受到重视。
五、纯相位空间光调制器的综合应用通过对振幅调制和相位调制两种调制方式的深入理解,我们可以更好地实现纯相位空间光调制器在实际应用中的综合调控。
在光学成像领域,可以通过综合应用振幅调制和相位调制来实现更加精细的成像效果,提高成像的分辨率和清晰度。
六、个人观点和总结从以上的分析可以看出,纯相位空间光调制器具备着在振幅调制和相位调制方面的独特优势,并在光学成像、数字全息成像、光通信等领域有着广泛的应用前景。
空间光调制器

制作:Alan
概念
基本功能:
空间光调制器的基本功能,就是提供实时或 准实时的一维或二维光学传感器件和运算器 件。在光信息处理系统中,它是系统和外界信 息交换的接口。它可以作为系统的输入器件, 也可在系统中用作变换或运算器件。作为输 入器件时,其功能主要是将待处理的原始信息 处理成系统所要求的输入形式。此时,空间光 调制器作为输入传感器,可以实现电-光转换、 串行-并行转换、非相干光-相干光转换、波长
制作: Alan
其它配件 制作:Alan
高精度纯相位LCOS显示面板
RS232数据线
DVI数据线
软件部分 制作:Alan
HOLOEYES 的调制器可以直接通过 显卡的DVI 接口连接到计算机上。空间 光调制器能如此方便使 用离不开在 windows 平台上的灵活高效的帧速率图 形卡。该空间光调制器由HOLOEYE 软 件驱动, 该软件可工作在所有版本的 windows 操作平台上。该软件能方便的 控制所有相关的图像参数, 另外,精心 设计的空间光调制器软件能实现多种光 学函数,像,光栅、透镜、轴锥体和光 圈, 并且能够根据用户设定的图像设计 衍射光学器件(DOE)。完整的套件包 括调制器、视频分配器 和图像处理的所 有相关器件。由于它小的尺寸,可以容 易的被集成到光学系统中。为保证器件 的光学质量(如:相位调制), HOLOEYE 对每个器件都进行了测量。
That's all
谢谢倾听
制作:Alan
用。需要加载到调制器上的光学传递函数或图像信
息可直 接由光学设计软件生成,并直接可以通过 计算机加载。 空间光调制器英文名称是Spatial Light Modulator,在文献上常缩写成SLM。顾名思
义,它是一种对光波的空间分布进行调制的器件,一般地说,空间光调制器是指在信号源
液晶空间光调制器

向列型液晶的扭曲效应 液晶分子是夹在两片玻璃之间的, 两片玻璃面向分子的一面都经过 了预处理,有沟槽,使液晶分子 顺着沟槽整齐排列,当上下两块 玻璃没有施加电压时,液晶排列 会依照两块配相膜而定,两配相 膜角度差为90度,液晶分子会自 下而上旋转90度再通过检偏器。 当两玻璃间加上电压时,液晶分 子层的旋转角发生转动,导致偏 振光与检偏器的夹角发生变化, 从而使透射光收到幅度和相位调 制。
五、扭曲相列液晶的调制原理
扭曲向列液晶(TwistedNematicLiquldCrystal,TNLC)是液晶屏的主 要材料之一,它是一种各向异性的媒质,可以看作是同轴晶体,它的 光轴与液晶分子的长轴平行TNLC分子自然状态下扭曲排列,在电 场作用下会沿电场方向倾斜,过程中对空间光的强度和相位都会产 生调制。N.Konforti等人对它的解释是:当液晶盒上电压逐渐增加, 大于Freedericksz转变阈值,而小于光学阈值的时候,液晶分子开始 旋转,有效的双折射作用逐渐减小,但液晶分子的扭曲还保持着当初 的格局,此时液晶盒相当于光波导,在这个区域内相位调制占据主要 因素。而当电压大于光学闭值,分子将沿电场方向排列,双折射和光 波导作用都很小,为强度调制区域。
由于液晶分子具有液体的流动性,亦即是说其没有固定的排列, 可以自由移动,且液晶分子具有介电各向异性和电导各向异性 的电学特性,故而在外电场的作用下,液晶分子的排列状态也将 随之发生变化。又因为液晶分子的光学特性也是各向异性的,从 而使得整个液晶盒的光学效应随之改变,这就是液晶盒电场影响 其光学特性的原理。另外由于液晶分子的双折射特性,使得液晶 盒显现出光散射、光干涉和旋光等特殊的光学性质 液晶的电光效应主要包括:电控双折射效应、扭曲效应、宾主 效应、动态散射效应、热光学效应等。
FSLM-2K39-P02空间光调制器用户手册说明书

空间光调制器FSLM-2K39-P02西安中科微星光电科技有限公司目录1 空间光调制器主要参数 (2)2 外形尺寸 (3)3 产品特点 (3)4 基础操作 (4)5 典型光路 (5)6 配置清单 (6)7 软件介绍 (7)空间光调制器产品手册1 空间光调制器主要参数图1 FSLM-2K39-P02产品实物图2外形尺寸图2 FSLM-2K39-P02产品尺寸结构图3产品特点像元更小:4.5μm;支持彩色显示模式;更优信赖性:采用陶瓷背板,散热效果更好,信赖性更可靠;首次采用Type-C接口的标准5V 2A电源适配器作为电源,可兼容市面上大部分电源适配器;首次使用MiniDP接口作为视频信号的输入接口,具备更高的带宽;首次具备光源驱动的功能,可同步驱动低功率的光源,便于系统集成;具备场同步信号及光源使能信号的输出,可同步外部的光源或采集设备; 驱动板体积小型化(55*80mm)。
4基础操作启动计算机。
按图3所示连接各部件,打开电源开关。
图3 各部件连接示意图注意:1.首先连接视频线,再连接电源线。
2.空间光调制器的电源为专用电源,切勿与其他电源混用,损坏调制器。
以Windows系统为例,在桌面右击,点击“屏幕分辨率”,识别当前显示器,单击另一个显示器,将屏幕分辨率设置为1920×1080,将“多显示器”中设置为“拓展这些显示”,点击“应用”,然后点击“确定”,此时完成将桌面图像扩展到第二个显示器的设置。
在空间光调制器液晶光阀表面放置偏振片,旋转偏振片,观察液晶光阀中显示的图像是否正常,确保计算机桌面的图片顺利扩展到第二个显示器上,如图像不正常,检查接线。
将空间光调制器用配置的支架固定在光学平台上。
搭建所需的光路(该款调制器使用时要求入射光的偏振方向与液晶光阀长边夹角为45°)。
根据需要更换桌面图像。
方法为右击桌面,单击“个性化”,点击下方“桌面背景”,找到所需的图像单击,根据需要设置“图片位置”,一般建议设置为“平铺”。
液晶光调制器的调制特性及应用研究

光互连、 光束变换、 光运算、 光存储和神经网络 中得到 广泛的应用, 并有希望在未来的光计算机中作为接1器 : 3
Z
件, 因此它的光调制特性越来越 为人们所关注。
一
一
》
1 液 晶光 调 制器 的调 制原 理
一
y
偏 振 片
检 偏 片
般 的液 晶 空 间 光调 制器 是 由液 晶 片在 两 边
维普资讯
王
丽等 :
文章编号 :0 6 6 6 (0 8 0— 0 10 10 — 2 82 0 )3 0 4 — 3
液晶光调制器的调制特性及应用研究
王 丽
( 州学 院物 理 系 。 东德 州 2 3 2 ) 德 山 5 0 3
摘
要: 重点 对 纯相位 光调 制 器的特 性 及 其在 光 束动 态偏转 系统 中的应 用进 行 了分析 , 并介 绍
i a pct n n e m tei sse a d bq e— c e c c aatrt o t ' p lai i S i o b a s r g ytm n o lu —n i ne h rcei i f e n i i d sc
p rl lain d N-L a al — l e e— g CSL a d an w z o to p t lih o ua o . M n e a oc n r l a i g tm d l r s al t
电光效应来达 到对光波 的某个参量进行调制 的一种新
型的衍射光学元件 , 具有尺寸小、 质量轻、 驱动 电压低 、 功 耗低、 无机械惰性等特点 , 已经在相关光学、 自适应 光学 、
振 镜 的状 态 分 别 由 1 和 2表 示, 它们是 各 自的偏
GCS-SLM空间光调制器参数测量与创新应用实验讲义

空间光调制器参数测量与创新应用实验实验讲义前言空间光调制器是一类能将信息加载于一维或两维的光学数据场上,以便有效的利用光的固有速度、并行性和互连能力的器件。
这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化成相干光。
由于它的这种性质,可作为实时光学信息处理、光计算等系统中构造单元或关键的器件。
空间光调制器是实时光学信息处理,自适应光学和光计算等现代光学领域的关键器件,很大程度上,空间光调制器的性能决定了这些领域的实用价值和发展前景。
空间光调制器一般按照读出光的读出方式不同,可以分为反射式和透射式;而按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM) 。
最常见的空间光调制器是液晶空间光调制器,应用光-光直接转换,效率高、能耗低、速度快、质量好。
可广泛应用到光计算、模式识别、信息处理、显示等领域,具有广阔的应用前景。
本实验是传统光信息处理实验与计算机等先进技术手段相结合的现代光学实验,旨在让学生了解空间光调制器的广泛应用和科研价值。
本实验注重学生对光信息处理中关键器件的理解,同时利用SLM解决实际科研与产业应用问题的能力,实验直观且有很强的指导性,可作为相关专业学生的研究型实验。
实验一SLM 液晶取向测量实验一、 实验目的1. 了解空间光调制器的基础知识。
2. 理解空间光调制器的透光原理。
3. 测量空间光调制器的前后表面液晶分子取向,计算液晶扭曲角。
二、 实验原理根据液晶分子的空间排列不同,可将液晶分为向列型、近晶型、胆甾型3类。
其中扭曲向列液晶 (Twisted Nematic Liquld Crystal ,TNLC)是液晶屏的主要材料之一,它是一种各向异性的媒质,可以看作是同轴晶体,它的光轴与液晶分子的长轴平行。
TNLC 分子自然状态下扭曲排列,在电场作用下会沿电场方向倾斜,过程中对空间光的强度和相位都会产生调制。
液晶空间光调制器相位调制特性研究

结论: 1)整个过程没有光强衰减 2)实现了对光相位调制
Page 21
应用于反射式空间光调制器
入射到其下表面的光被反射膜反射,光经过反射式SLM被调制后,光的相位 调制相当于连续经过两个透射式光调制器
反射式空间光调制器位相调制量
Page 22
4.3 斜入射情况下调制分析
正入射时需用分光镜等元件将入射光和出射光分开,光强被极大衰减,实际 应用常采用斜入射。
(112)
这个矩阵通常称为琼斯矢量。这种描述偏振光的方法是一种确定光波 偏振态的简便方法。 2. 琼斯矩阵表示法 考虑到光强 I E x2 E y2 ,有时将琼斯矢量的每一个分量除以 I ,得到 标准的归一化琼斯矢量。 例如, x 方向振动的线偏振光、y 方向振动的线偏振光、45度方向振动的线 偏振光、振动方向与 x 轴成θ角的线偏振光、左旋圆偏振光、右旋圆偏振光 的标准归一化琼斯矢量形式分别为:
由以上结论可知:若要实现纯相位调制,需选择入射光的特定偏振状 态。液晶盒的琼斯矩阵:
其中:
Φ为液晶盒的扭曲角度,这里为0,λ为入射波长,Δn=n//-n⊥,dL为液晶盒的厚度。
液晶盒与偏振片(透光轴沿x轴)的琼斯矩阵分别为:
Page 20
两个分量的偏振光通过液晶盒和偏振片后:
Ex光的最大调制分量:
液晶空间光调制器(LC-SLM)相位调制特性
光的偏振
偏振器件的琼斯矩阵
液晶的光学特性
液晶空间光调制器对光的调制特性
Page 2
自然光和偏振光
1. 自然光 由于光源发光是由大量原子发光组成,每个原子发光的电矢量 E 和磁矢量
一 光的偏振
电矢量 E (光矢量).
H的振动方向都是随机的, E 和 H 在各方向的振动都存在;感光作用决定于
液晶光子学第2章液晶光场调控技术ppt课件

04
2.2 基于倾角控制的液晶调光技术
2.实例
液晶叉形光栅
1)涡旋光Ψ1 = exp(imθ)与平面波Ψ2 = exp(ikx)干涉:
H 1 1 2 exp(im ) exp(ikx) 2 2[1 cos(kx - m )]
上式计算全息图像叉子的结构,故称为叉形光栅。 2)可产生一系列的涡旋光束衍射级次,在不同的衍射级 次n上可得到拓扑荷为nm的涡旋光束。 3)右图为刻蚀的m = 2的叉形光栅电极结构及得到的涡旋 光束衍射光斑。
(2.1)
其中k = 2π/λ为波矢。柱坐标系,傍轴条件下的解:
E(r,, z,t) u(r,, z) exp[i(kz t)]
(2.2)
利用慢变包络近似条件
2u z 2
k 2u ,
2u z 2
k u,可得:
z
1 r
r
(r
u ) r
1 r2
2u 2
2ik
u z
0
利用分离变量r, θ,得到拉盖尔-高斯解(LGmp模式):
效折射率分布,当入射的平面波经过液晶区域后,其波前便 会被调制成汇聚或发散的球面波。
16 of 40
02
2.2 基于倾角控制的液晶调光技术
2.实例
液晶透镜—盒厚不均匀型
1)由偏振片、液晶层、平面玻璃衬底、ITO导电层、
反平行取向层、凹透镜衬底等构成。
2)液晶层的透镜焦距为:
fLC
neff
R (V ) 1
(a)无限能量与(b) a = 0.05时有限能量的艾里光传播动态,插图里 为起始位置时艾里光的光强分布
8 of 40
2.1 光场调控的基本介绍
第二章 液晶光场调控技术