全等三角形总复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题总复习(一)全等三角形、轴对称
一、复习目标:
1、理解全等三角形概念及全等多边形的概念.
2、掌握并会运用三角形全等的判定和性质,能应用三角形的全等解决一些实际问题.
3、通过复习,能够应用所学知识解决一些实际问题,提高学生对空间构造的思考能力.
二、重难点分析:
1、全等三角形的性质与判定;
2、全等三角形的性质、判定与解决实际生活问题.
三、知识点梳理:
知识点一:全等三角形的概念——能够完全重合的两个三角形叫全等三角形.
知识点二:全等三角形的性质.
(1)全等三角形的对应边相等. (2)全等三角形的对应角相等.
知识点三:判定两个三角形全等的方法.
(1)SSS (2)SAS (3)ASA (4)AAS (5)HL(只对直角三形来说)
知识点四:寻找全等三形对应边、对应角的规律.
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.
③有公共边的,公共边一定是对应边.
④有公共角的,公共角一定是对应角.
⑤有对顶角的,对顶角是对应角.
⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角).
知识点五:找全等三角形的方法.
(1)一般来说,要证明相等的两条线段(或两个角),可以从结论出发,看它们分别落在哪两具可能的全等三角形中.(常用的办法)
(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等.
(3)可以从已知条件和结论综合考虑,看它们能否一同确定哪两个三角形全等.
(4)如无法证证明全等时,可考虑作辅助线的方法,构造成全等三角形.
知识点六:角平分线的性质及判定.
(1)角平分线的性质:角平分线上的点到角两边的距离相等.
(2)角平分线的判定:在角的内部到角的两边距离相等的点在角平分线上.
(3)三角形三个内角平分线的性质:三角形三条角平分线交于一点,且到三角形三边距离相等.
知识点七:证明线段相等的方法.(重点)
(1)中点性质(中位线、中线、垂直平分线)
(2)证明两个三角形全等,则对应边相等
(3)借助中间线段相等.
知识点八:证明角相等的方法.(重点)
(1)对顶角相等;
(2)同角或等角的余角(或补角)相等;
(3)两直线平行,内错角相等、同位角相等;
(4)角平分线的定义;
(5)垂直的定义;
(6)全等三角形的对应角相等;
(7)三角形的外角等于与它不相邻的两内角和.
知识点九:全等三角形中几个重要的结论.
(1)全等三角形对应角的平分线相等;
(2)全等三角形对应边上的中线相等;
(3)全等三角形对应边上的高相等.
知识点十:三角形中常见辅助线的作法.(重难点)
(1)延长中线构造全等三角形(倍长线段法);
(2)引平行线构造全等三角形;
(3)作垂直线段(或高);
(4)取长补短法(截取法).
O
D
C
B
A
E
F N
B
M
120°
A
E
D
C
B A
四、例题精讲:
考点一:考查全等三角形的性质定理及判定定理.
类型1 下列三角形全等的判定中,只适用于直角三角形的是( )
A 、SSS
B 、SAS
C 、ASA
D 、HL
类型2 下列条件中,不能判定两个直角三角形全等的是( )
A 、一锐角和一直角边对应用相等
B 、两直角边对应相等
C 、两锐角对应相等
D 、斜边、直角边对应相等.
类型3 如图,AC 和BD 相交于点O ,BO =DO ,AO =CO ,则图中的全等三角形共有多少对( )
A 、1对
B 、2对
C 、3对
D 、4对
考点二:考查全等三角形与垂直平分线的应用.
类型1 在ABC ∆中,AB cm BC A AC AB ,,,6120=︒=∠=的垂直平分线交BC 于点M ,交AB 于
E ,AC 的垂直平分线交BC 于点N ,交AC 于
F ,求证:NC MN BM ==.
类型2 如图所示,在ABC ∆中,AC AB =,BD 平分ABC ∠,AD BC BD ==,DE AB ⊥. (1)求A ∠的度数; (2)求证:AE BE =.
图2
图1C
A
D B
E A
E
D
C
N M E
F
D
C
B A
Q
A
E
B
D
C
P
考点三:全等三角形与等边三角形的综合运用.
类型1 已知ABC ∆和DEB ∆为等边三角形,点B D A 、、在同一直线上,如图1所示. (1)求证:AE DC =;
(2)若AE BN CD BM ⊥⊥,,垂足分别为N M 、,
如图2,求证:BMN ∆是等边三角形.
类型 2 如图所示,ABC ∆是边长为1的等边三角形,︒=∠=120BDC CD BD ,,F E 、分别在
AC AB 、上,且︒=∠60EDF ,求AEF ∆的周长.
类型3 如图所示,ABC ∆是等边三角形,AD BQ CD AE ⊥=,于点Q BE 交AD 于点P , (1)求PBQ ∠的度数;
(2)请判断PQ 与PB 的数量关系,并说明理由; (3)若31PQ PE ==,,求AD 的长.