代数式求值的十种常用方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式求值的十种常用方法
代数式求值问题是历年中考试题中一种极为常见的题型.它除了按常规直接代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧,本文结合近几年各地市的中考试题,介绍十种常用的求值方法,以供参考。
一、利用非负数的性质
若已知条件是几个非负数的和的形式,则可利用"若几个非负数的和为零,则每个非负数都应为零”来确泄字母的值,再代入求值。目前,经常出现的非负数有lai,a2,需等。
例1若TTW和I8b-3I互为相反数,贝IJ丄「-27= ___________ o
' ab丿
____ 1 q 解:由题意知,VT石+I8b-3I=O,则l-3a=0 且8b-3 = 0,解得a = b =—
3 8 因为ab = lx- = l> 所以(丄「-27 = 8—27 = 37,故填37。
3 8 8 lab丿
练习:(2010年深圳市)若(a_2)2 + lb + 3l=0,则(a + b)2007的值是()
A.O
B. 1
C.-l
D. 2007
提不:a = 2» b = —3,选Co
二.化简代入法
化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。
例2 先化简,再求值:(a2b —2ab2 -b')^-b —(a + bXa —b)* 其1= b
=—1 °
2 解:原式=a? -2ab-b2 -(a2 -b2)=a2 -2ab-b2 -a2 + b2 =-2ab。
11 a = — > b =—1 时 >
2
练习:(2009年河北省)已知a = 3,b = —2,求卩+丄]・一-——的值。la b丿+2ab
+ b-
提示:原式=丄。
a + b
当a = 3,b = -2时,原式=1。
三、整体代入法
当单个字母的值不能或不用求岀时,可把已知条件作为一个整体,代入到待求的代数式
中去求值的一种方法。通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。
例3(2010年已知丄+丄=4,则a-%b + b = _______________ o
a b2a + 2
b - 7ab
解:由卜卜4,即a + b = 4ab。
所以原式叮+賈;二(a + b)-3ab
2(a + b)-7ab
4ab 一 3ab ab = ------------ = ---- =]O 8ab-7ab ab 故填1。
练习:代数式3X 2-4X +6的值为9,则X 2--X + 6的值为
-
3 A.7
B. 18
C. 12
提示:x 2--x = b 选仏
3
四、赋值求值法
赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的 值的一种方法。这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围。
例4请将式子竺二1x (1 +丄j 化简后,再从0, 1, 2三个数中选择一个你喜欢且使 x-1 I x
+ 1 丿
原式有意义的X 的值代入求值。
解:原式=二1)(注1 +丄]
x-1 lx+1 X+1丿
=(X + 1) =X + 2 a
x + 1
依题意,只要XH I 就行,当x=0时,原式x + 2 = 2或当x=2时,原式x + 2=4° 练习:先将式子(i+丄L12;1化简,然后请你自选一个理想的x 值求岀原式的值。
I X 丿 X- 提示:原式=亠。只要XH0和XH-1的任意实数均可求得其值。
X-1
五、倒数法
倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。
A. 1
B.-l
C. __1
7
解:由
——取倒数得,
2y 2+3y + 7
4
空土= 即2y 2+3y = lo
2 所以 4屮 +6y-l = 2(2y 2 +3y )-l =2xl-l=l*
则可得 --------- 故选A 。
4厂 +6y _]
练习:已知x_丄=4,贝IJ _____ 匚—的值是 __________ o
x
x" -5x~ +1
is — x 4 -5x 2 +1 1 匕 “ i f 小—+古 1 挂刀I ----- ; -- = x~ + — -5= x -3 = 13 > 绘一。
x 2 x 2 X 丿
13
D.9
2
2y 2+3y + 7
的值为丄,则
—— 4
4y ・+6y-l
的值为
六.参数法
若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字 母来表示另一个字母。
例6如果2 = 2, b
则『一 ab + b‘的值臬
a 2 +
b 2
A. 4
B. 1
C. 2
D ・2
5
5
解:由-=2得, a = 2b o
b
所以原式』7b + b2=(2b)-(2b)b + b 「
a' +,
(2br+b z
3b 2 3
5b 2 5
故选c 。
练习:若
则a "b
的值是
b 3
b
A. 1
B. 1
C. 1
D. i 3
3
3
提不:设n = 4k ,b = 3k ,选 A *
七、配方法
若已知条件含有完全平方式,则可通过配方,把条件转化成几个平方和的形式,再利用 非负数的性质来确定字母的值,从而求得结果。
例 7 己知 a? +b 2 +2a-4b + 5=0» 求 2a 2 +4b-3 的值。 解:由a 2 +b 2 +2a-4b + 5 = 0*
得(a 2 +2a + l)+(b 2 -4b + 4)=0 » 即(a +1)2+(b-2)2 =0 » 由非负数的性质得 a+ 1=0, b-2 = 0,解得 a = -l ,b = 2。所以原式= 2a? +4b-3 = 2x(-l)2 + 4x2-3 = 7 o
练习:*「a + 2b + 3c = 12,^a 2 +b 2 +c 2 =ab + bc + ca * 则a + b ,+c'= -------------------- c 提不:a = b=c = 2‘ 境 14° 八. 平方法
在直接求值比较困难时,有时也可先求岀其平方值,再求平方值的平方根(即以退为进 的策略),但要注意最后结果的符号。
例8已知x + y = 7且xy=12・则当xvy 时,
又因为xvy,所以丄一丄>0,
x y
所以
9 J / \ y-x
I w 解:因为x + y = 7,xy =12, (x - y)2 (x + y),-4xy _亍-4xl2_ 1 xV _ 123-"144 丄一丄的值等于 _____ x y