【SAS精品讲义】Unit07【WORD可编辑版本】
最新SAS基础与金融计算7课件PPT

10
p 此外,还有一些较为复杂的制图命令,如运用 G3D过程绘制曲面图,运用GCONTOUR过程绘 制曲面对应的等高线图。
p 例如,我们想绘制一个二维正态分布曲面的图形 ,假设(X,Y)服从联合正态分布,其均值都是0 ,方差分别为1和a,相关系数为r。
12
Chart(或gchart)与plot(或gplot )
p chart和gchart过程可以绘制出的图形主要有条 形图(包括横条和竖条)、圆图、环形图和星形 图等;
p plot和gplot过程通常用一个记录中的两个变量值 表示点的坐标来绘制图形,如散点图和线图等。
13
gchart过程的一般格式
p (3)sumvar=变量名(数值变量),指定要进 行统计计算的变量,也就是“type=统计量关键 字”选项中统计量的计算所依据的变量。
17
清甘油三酯的测量结果(mmol/L )
0.91 0.88 1.41 0.96 1.48 1.46 0.91 1.10 1.26 1.69 1.14 1.24 0.98 0.68 0.83 1.77 1.23 1.04 1.08 0.62 1.10 1.33 0.73 0.52 1.01 1.71 1.37 0.51 1.01 1.11 1.09 0.96 1.37 1.20 0.61 1.17 0.71 1.16 0.80 0.73 1.66 0.96 1.37 0.95 1.30 0.76 1.39 0.94 1.25 1.60 1.54 1.34 1.56 1.54 0.85 1.54 0.96 0.82 1.50 1.14 1.70 1.30 1.59 1.07 1.17 1.32 1.44 1.12 0.70 0.68 1.52 0.76 1.60 1.27 1.43 1.27 1.09 0.75 0.64 0.97 1.20 1.34 1.19 1.08 0.66 1.42 1.46 0.59 1.22 1.32 1.67 1.20 1.33 1.31 1.02 0.83 0.90 1.09 0.96 1.10 0.85 1.06 1.67 0.78 0.91 1.18 1.20 1.11 0.89 1.08 1.27 0.85 1.24 1.58 0.71 1.46 1.52 0.91 1.47 1.01 1.20 1.30 1.05 1.44 1.15 1.12 1.15 0.65 1.04 1.24 1.30 1.11 1.65 0.87 0.82 0.76 1.30 0.63 1.14 0.83 1.24 1.48 1.15 0.99 1.49 1.02 1.17 0.99 0.61 1.33 0.79 0.95 1.05 1.65 1.20 1.24 0.84 1.40 0.72 1.06
SAS-7

返回总目录目 录第33章 SAS 系统内四种多变量分析程序概述 (3)33.1 四种多变量分析的统计程序 (3)33.2 主成份分析和传统式因子分析的比较.......................................................................4第34章 主成份分析统计程序PROC PRINCOMP (5)34.1 PROC PRINCOMP 程序概述 (5)34.2 如何撰写 PROC PRINCOMP 程序 (5)34.3 范 例.......................................................................................................................7第35章 因子分析统计程序PROC FACTOR .. (18)35.1 因子分析法中的因子一词指什么 (18)35.2 共因子分析法的模型 (18)35.3 PROC FACTOR 程序概述 (18)35.4 因子分析法的历史背景 (19)35.5 如何撰写 PROC FACTOR 程序 (19)35.6 五种合乎语法的输入资料文件形式 (27)35.7 范 例.....................................................................................................................28第36章 典型相关分析统计程序 PROC CANCORR (42)36.1 何谓典型相关 (42)36.2 PROC CANCORR 程序概述 (42)36.3 如何撰写 PROC CANCORR 程序 (42)36.4 范 例.....................................................................................................................47第37章多次元尺度法统计程序PROC MDS (53)37.1 PROC MDS 程序概述 (53)37.2 MDS 程序基本功能的示范 (54)37.3 如何撰写PROC MDS 程序 (56)37.4 范 例 (63)37.5 注 意 事 项 (67)第七部分多变量的分析第33章 SAS 系统内四种多变量分析程序概述33.1 四种多变量分析的统计程序本章将简要地介绍四种多变量分析的统计程序即主成份分析(PRINCOMP)传统式因子分析 (FACTOR)典型相关分析 (CANCORR) 和多次元尺度分析 (MDS)这四种统计程序的功能在于找寻多个变量之间的关系或简化数据的复杂性这些变量并不一定得视为自变量或因变量其中主成份分析传统式因子分析以及多次元尺度分析都是对一组变量作分析而典型相关则是对两组变量作分析SAS 还有其它的统计程序可以执行多变量的统计分析如CATMOD变异数分析回归分析集群分析及鉴别分析等若读者熟悉在SAS 旧版的环境下执行这些程序则建议直接参考附录D 有关这些程序增进的简介下面分别介绍这四种程序 PRINCOMP 程序主成份分析对同一组观察体的多个变量执行主成份分析主成份分析的目的是找出一组变量之间互相依赖的程度将这些线性相关以主成份值表示其分析的结果包括未经标准化及标准化后的主成份值这些主成份值可以代替变量的原始数据进行进一步的分析处理如制图执行回归分析或集群分析值得读者注意的是主成份分析 (Principal Component Analysis) 与主轴因子分析 (Principal Axis Common Factor Analysis) 不是同义词 FACTOR 程序 (传统式因子分析)对同一组观察体内的多个变量执行上述的主成份分析及传统式因子分析因子分析法还附带有因子的坐标转换以取得最大的诠释效果其分析结果可以是标准化的主成份值也可以是传统因子分析的值传统式因子分析的目的在寻求一小群隐藏的变量以解释原变量之间的相关和主成份分析不同的是这一小群隐藏的变量不直接由原变量间的线性组合导出一般国内教科书将因子分析翻译成 "因素分析"因此对本书读者而言这两个名词实系同义词 CANCORR 程序 (典型相关分析)对两组变量执行典型相关分析其分析的结果是典型变量值典型相关分析的目的是藉一小群有最高组间相关的组内变量之线性组合 (又称向量) 来解释并概述两组变量之间的关系构成向量的变量多少并没有限制若某个向量中只含一个变量则典型相关的作用与回归分析或皮尔森相关系数类似第七部分 多变量的分析4 MDS 程序 (多次元尺度分析)MDS 是 Multidimensional Scaling 的简称它代表一系列的分析法其目的在于从一组距离矩阵中找出观察体 (或变量或刺激词)的坐标如此读者可藉图形的视觉效果来检视点与点之间的关系以及潜在向度的意义33.2 主成份分析和传统式因子分析的比较如上所述FACTOR 程序除了涵盖 PRINCOMP 程序并且包括了另外几种常用的因子分析法当读者使用 FACTOR 程序时若不指明用那一种分析法则主成份分析便是 FACTOR 程序的内设值FACTOR 程序产生的主成份值是经过标准化的然而PRINCOMP 程序所产生的主成份值是未经标准化的不过读者也可额外地要求PRINCOMP 算出标准化的主成份值与 FACTOR 程序相比PRINCOMP 程序的优点如下(1) 最适用于变量多但主成份少的大型资料文件可节省电脑处理时间(2) 易于使用(3) 输入资料文件可以是一个净相关系数矩阵或一个净共变异数矩阵与 PRINCOMP 程序相比FACTOR 程序的优点如下(1) 产生的分析结果较 PRINCOMP 程序广泛包括误差值的检定因子坐标转换的角度及特性根由大到小的排列等(2) 包含好几种坐标转换的理论(3) 其输出矩阵较易了解(4) 所涵盖的因子分析法较完全PRINCOMP 程序只有一种分析法即主成份分析法然而 FACTOR 程序内有九种分析法供你选择第34章 主成份分析统计程序PROC PRINCOMP 34.1 PROC PRINCOMP 程序概述读者可用 PRINCOMP 程序对输入资料文件执行主成份分析其输入资料文件可以是原始数据也可以是一个相关系数矩阵或是一个变异数共变异数矩阵输出资料则包括特性根特性向量及(未经) 标准化的主成份值主成份分析是一个多变量的统计程序可用来检定多个数值变量之间的关系主成份分析除了用来概述变量间的关系外还可用来削减回归或集群分析中变量的数目它的主要目的是求出一组变量的线性组合 (即主成份)这些线性组合就是原变量矩阵的特性向量每一个向量的内乘积就是该向量对原变量群能解释的变异数百分比这些特性向量之间应该是彼此线性独立的主成份分析首由皮尔森氏 (Pearson) 于 1901 年提出其后经过赫德林氏 (Hotelling1933) 的发扬有关其应用可见罗氏 (Rao 1964)古氏及隆斯氏 (Cooleyand Lohnes 1971)和干那氏 (Gnanadesikan 1977) 的着作34.2 如何撰写 PROC PRINCOMP 程序PROC PRINCOMP 含六道指令它们的格式如下PROC PRINCOMP选项串V AR变量名称串PARTIAL变量名称串FREQ变量名称WEIGHT变量名称BY 变量名称串一般而言只须用到前两个指令亦即 PROC PRINCOMP 以及 V AR指令 #1 PROC PRINCOMP 选项串有下列十个选项可供选择(1) DATA=输入资料文件名称指明到底对那一个 SAS 资料文件执行 PROC PRINCOMP 的分析这个输入资料文件可以是原始数据也可以是一个相关系数矩阵 (TYPE=CORR 或UCORR)或是一个变异数共变异数矩阵 (TYPE=COV 或 UCOV)或TYPE=FACTOR SSCP ESP 等不同形式的资料文件若省略此选项则 SAS 会自动找出在此程序之前最后形成的资料文件对它执行主成份分析第七部分 多变量的分析6(2) OUT=输出资料文件名称这一个输出资料文件包括输入资料文件的数据以及主成份值(3) OUTSTAT=输出资料文件名称这一个输出资料文件包含下列的统计值算术平均数标准差观察体的总数相关系数 (或变异数共变异数)特性根和特性向量它们的代号与定义如下代号 (_TYPE_)定 义MEAN 每一变量的平均数STD 每一变量的标准差N 观察体的总个数CORR 每一变量与自己或其它的变量之间的相关系数COV 每一变量与自己或其它的变量之间的共变异数EIGENVAL特性根当选项 N= 界定成份个数少于实际导出的个数则以N=界定的个数为准其余的主成份以遗漏值 (.)表示SCORE 特性向量 (这些向量值一般是用来计算主成份值或被输送到FACTOR 程序作因子坐标的转换)SUMWGT 加权值的总和若读者在程序中包括了 PARTIAL 指令而且定V ARDEF=WDF则 SUMWGT 的值是加权值的总和减去PARTIAL 变量串的自由度当 SUMWGT 与 N 值相同时SUMWGT 的变量不会被纳入 OUTSTAT=输出资料文件内(4) NOINT要求相关矩阵或变异数共变异数矩阵不针对平均数作校正也就是说主成份分析不包括截距(5) COV ARIANCE (或 COV)要求以变异数共变异数矩阵为分析的数据若省略此选项则此统计分析将以相关系数矩阵为依据(6) N=正整数界定主成份的总数(7) STANDARD(或 STD)要求 OUT=输出资料文件中含标准化的主成份值若省略此选项则输出资料文件中将含未经标准化的主成份值 (这些值的变异数等于特性根的值)(8) PREFIX=主成份的名字为主成份命名内设值是PRIN1PRIN2... PRINn n 为正整数主成份的名字 (包括字母及数字) 不得超过八个字母或数字(9) NOPRINT不印出分析的结果(10) V ARDEF=DF (或 N 或 WGT 或 WDF)界定计算变异数与共变异数时所用的分母DF 代表自由度是此选项的内设值N 是样本总数WGT 是加权后的样本总数WDF 则是 (WGT-1)第34章 主成份分析统计程序PROC PRINCOMP 7指令 #2 VAR变量名称串指明对那些数值变量作主成份分析若省略此指令则本程序内其它指令里未曾提到的所有数值变量均将被纳入分析指令 #3 PARTIAL变量名称串此指令指明一组变量它们的值将会从其它的变量中净化出来净化后的变量值所形成的矩阵是净相关系数矩阵而非相关系数矩阵若读者在程序中同时界定 OUT= 或OUTSTAT=输出资料文件名则此输出资料文件也会含净化后的残差变量 (Residual Variable)这些残差变量的命名原则是 R_ 加上 V AR 指令所界定之变量名称的前六个字母所以如果 V AR 指令含X Y Z 三个变量则其所对应的残差变量就是R_X R_Y R_Z 了指令 #4 FREQ 变量名称此变量的值代表资料文件内各观察体重复出现的次数所以计算自由度时将以这个变量的总值为依据指令 #5 WEIGHT 变量名称当输入资料文件内各观察体的变异数不等时读者常须依这些不等变异数的倒数指派不同的加权值以区分各观察体的重要性这些加权值可被存入一个 WEIGHT 变量内以代表各观察体的加权值指令 #6 BY变量名称串此指令指示 SAS 将输入资料文件分成几个小的资料文件然后对每一个小的资料文件进行主成份分析当读者选用此指令时输入资料文件内的数据必须先依 BY 指令里所列举的变量值作从小到大的排列这个步骤可藉 PROC SORT 达成34.3 范 例例一一月和七月的气温分析本例的输入资料文件 (TEMPERAT) 是美国六十四个城市一月与七月的平均日温分析过程首先用 PROC PLOT 画出原始数据的分配图然后用 PRINCOMP 程序执行主成份分析求出两个主轴(PRIN1PRIN2)由于一月的温差较大而且选用 COV 选项使得一月在第一主成份上的负荷量较重最后用 PROC PLOT 画出两个主成份上各城市的负荷量读者可同时参阅第一次与第二次PLOT 程序所求得的两个图表来归纳出第一与第二主成份是原坐标轴旋转 30度的结果第七部分 多变量的分析8程 序DATA TEMPERAT;LENGTH CITY $ 16;TITLE 'Mean Temperature in January and July for Selected Cities';INPUT CITY $ :16. JANUARY :4.1 JULY :5.1 @@;CARDS;Mobile 51.2 81.6 Concord20.6 69.7Phoenix51.2 91.2 Atlantic_City 32.7 75.1Little_Rock 39.5 81.4 Albuquerque 35.2 78.7Sacramento 45.1 75.2 Albany 21.5 72.0Denver 29.9 73.0 Buffalo 23.7 70.1Hartford 24.8 72.7 New_York 32.2 76.6Wilmington 32.0 75.8 Charlotte 42.1 78.5Washington_DC 35.6 78.7 Raleigh 40.5 77.5Jacksonville 54.6 81.0 Bismarck 8.2 70.8Miami67.2 82.3 Cincinnati 31.1 75.6Atlanta42.4 78.0 Cleveland 26.9 71.4Boise29.0 74.5 Columbus 28.4 73.6Chicago22.9 71.9 Oklahoma_City 36.8 81.5Peoria23.8 75.1 Portland_OR 38.1 67.1Indianapolis27.9 75.0 Philadelphia 32.3 76.8Des_Moines19.4 75.1 Pittsburgh 28.1 71.9Wichita31.3 80.7 Providence 28.4 72.1Louisville33.3 76.9 Columbia 45.4 81.2New_Orleans52.9 81.9 Sioux_Falls 14.2 73.3Porland_ME21.5 68.0 Memphis 40.5 79.6Baltimore33.4 76.6 Nashville 38.3 79.6Boston29.2 73.3 Dallas 44.8 84.8Detroit25.5 73.3 El_Paso 43.6 82.3Sault_Ste_Marie 14.2 63.8 Houston 52.1 83.3Duluth 8.5 65.6 Salt_Lake_City 28.0 76.7Minneapolis 12.2 71.9 Burlington 16.8 69.8Jackson 47.1 81.7 Norfolk 40.5 78.3Kansas_City 27.8 78.8 Richmond 37.5 77.9St_Louis 31.3 78.6 Spokane 25.4 69.7Great_Falls 20.5 69.3 Charleston_WV 34.5 75.0Omaha 22.6 77.2 Milwaukee 19.4 69.9Reno 31.9 69.3 Cheyenne 26.6 69.1第34章 主成份分析统计程序PROC PRINCOMP 9;PROC PLOT; PLOT JULY*JANUARY=CITY / VPOS=31; RUN;PROC PRINCOMP COV OUT=PRIN;VAR JULY JANUARY; RUN;PROC PLOT;PLOT PRIN2*PRIN1=CITY / VPOS=19;TITLE2 'Plot of Principal Components'; RUN;结 果报表34.1 一月和七月的气温分析 Mean Temperature in January and July for Seleted CitiesPlot of JULY*JANUARY . Symbol is value of CITY .JULY|95 +||| P90 +|||85 + D| H| E N M| W O L C J M J80 + N M| K S AW NC| O L R RA| S WB75 + D P IB C A C S| S D CB| M AC H P D| B C70 + B M C BS| G C R| P P|65 + D| S||60 +| -+---------+---------+---------+---------+---------+---------+---------+-0 10 20 30 40 50 60 70JANUARYNOTE: 3 obs hidden.Principal Component Analysis64 Observations2 Variables Covariance MatrixSimple StatisticsJULY JANUARY JULY JANUARYJULY 26.292477746.8282912Mean 75.6078125032.09531250JANUARY 46.8282912137.1810888Std 5.1276191011.71243309Total Variance = 163.47356647第七部分 多变量的分析10 Eigenvalues of the Covariance Matrix EigenvectorsEigenvalueDifference Proportion Cumulative PRIN1PRIN2PRIN1154.311145.1480.9439480.94395JULY 0.3435320.939141PRIN29.163.0.056052 1.00000JANUARY 0.939141-.343532 Plot of Principal ComponentsPlot of PRIN2*PRIN1. Symbol is value of CITY .10 +|| P|PRIN2 | W| S O K O D| B M D S L| r S W r| I NPL N M C J0 + B AC HD B CW B R N H| D MC B A C RA M N| G B CP D J| P S| S C S| R M|||-10 + P -+---------+---------+---------+---------+---------+---------+---------+-30 -20 -10 0 10 20 30 40PRIN1NOTE: 4 obs hidden.例二犯罪率的分析本例的输入资料文件 (CRIME) 是一个五十个观察体乘以七个变量的原始数据矩阵它包含了美国五十个州在七种犯罪项目上的发生频率这七种罪名分别是谋杀(MURDER)强暴 (RAPE)抢劫 (ROBBERY)骚扰 (ASSAULT)夜间偷窃(BURGLARY)窃盗 (LARCENY) 及偷车 (AUTO)这样一个大型的资料文件可以用主成份分析法简化到只用两个或三个特性向量就可以圆满地表示程 序DATA CRIME;TITLE 'Crime Rates per 100,000 Population by State'; INPUT STATE $ 1-14 MURDER 18-21 RAPE 23-26 ROBBERY 28-32 ASSAULT 34-38BURGLARY 40-45 LARCENY 47-52 AUTO 53-59; CARDS;Alabama 14.2 25.2 96.8 278.3 1135.5 1881.9 280.7Alaska 10.8 51.6 96.8 284.0 1331.7 3369.8 753.3Arizona 9.5 34.2 138.2 312.3 2346.1 4467.4 439.5Arkansas 8.8 27.6 83.2 203.4 972.6 1862.1 183.4California 11.5 49.4 287.0 358.0 2139.4 3499.8 663.5Colorado 6.3 42.0 170.7 292.9 1935.2 3903.2 477.1第34章 主成份分析统计程序PROC PRINCOMP 11Connecticut 4.2 16.8 129.5 131.8 1346.0 2620.7 593.2Delaware 6.0 24.9 157.0 194.2 1682.6 3678.4 467.0Florida 10.2 39.6 187.9 449.1 1859.9 3840.5 351.4Georgia 11.7 31.1 140.5 256.5 1351.1 2170.2 297.9Hawaii 7.2 25.5 128.0 64.1 1911.5 3920.4 489.4Idaho 5.5 19.4 39.6 172.5 1050.8 2599.6 237.6Illinois 9.9 21.8 211.3 209.0 1085.0 2828.5 528.6Indiana 7.4 26.5 123.2 153.5 1086.2 2498.7 377.4Iowa 2.3 10.6 41.2 89.8 812.5 2685.1 219.9Kansas 6.6 22.0 100.7 180.5 1270.4 2739.3 244.3Kentucky 10.1 19.1 81.1 123.3 872.2 1662.1 245.4Louisiana 15.5 30.9 142.9 335.5 1165.5 2469.9 337.7Maine 2.4 13.5 38.7 170.0 1253.1 2350.7 246.9Maryland 8.0 34.8 292.1 358.9 1400.0 3177.7 428.5Masssachusetts 3.1 20.8 169.1 231.6 1532.2 2311.3 1140.1Michigen 9.3 38.9 261.9 274.6 1522.7 3159.0 545.5Minnesota 2.7 19.5 85.9 85.8 1134.7 2559.3 343.1Mississippi 14.3 19.6 65.7 189.1 915.6 1239.9 144.4Missouri 9.6 28.3 189.0 233.5 1318.3 2424.2 378.4Montana 5.4 16.7 39.2 156.8 804.9 2773.2 309.2Nebraska 3.9 18.1 64.7 112.7 760.0 2316.1 249.1Nevada 15.8 49.1 323.1 355.0 2453.1 4212.6 559.2New Hampshire 3.2 10.7 23.2 76.0 1041.7 2343.9 293.4New Jersey 5.6 21.0 180.4 185.1 1435.8 2774.5 511.5New Mexico 8.8 39.1 109.6 343.4 1418.7 3008.6 259.5New York 10.7 29.4 472.6 319.1 1728.0 2782.0 745.8North Carolina 10.6 17.0 61.3 318.3 1154.1 2037.8 192.1North Dakota 0.9 9.0 13.3 43.8 446.1 1843.0 144.7Ohio 7.8 27.3 190.5 181.1 1216.0 2696.8 400.4Oklahoma 8.6 29.2 73.8 205.0 1288.2 2228.1 326.8Oregon 4.9 39.9 124.1 286.9 1636.4 3506.1 388.9Pennsylvania 5.6 19.0 130.3 128.0 877.5 1624.1 333.2Rhode Island 3.6 10.5 86.5 201.0 1489.5 2844.1 791.4South Carolina 11.9 33.0 105.9 485.3 1613.6 2342.4 245.1South Dakota 2.0 13.5 17.9 155.7 570.5 1704.4 147.5Tennessee 10.1 29.7 145.8 203.9 1259.7 1776.5 314.0Texas 13.3 33.8 152.4 208.2 1603.1 2988.7 397.6Utah 3.5 20.3 68.8 147.3 1171.6 3004.6 334.5第七部分 多变量的分析12Vermont1.4 15.9 30.8 101.2 1348.2 2201.0 265.2Virginia 9.0 23.3 92.1 165.7 986.2 2521.2 226.7Washington 4.3 39.6106.2 224.8 1605.6 3386.9 360.3West Virginia 6.0 13.2 42.2 90.9 597.41341.7 163.3Wisconsin 2.8 12.9 52.2 63.7 846.9 2614.2 220.7Wyoming 5.4 21.9 39.7 173.9 811.6 2772.2 282.0;PROC PRINCOMP OUT=CRIMCOMP;RUN;PROC SORT; BY PRIN1;PROC PRINT; ID STATE;VAR PRIN1 PRIN2 MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY AUTO;TITLE2 'States Listed in Order of Overall Crime Rate'; TITLE3 'As Determined by the First Principal Component';PROCSORT; BY PRIN2;PROC PRINT; ID STATE;VAR PRIN1 PRIN2 MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENYAUTO ;TITLE2 'States Listed in Order of Property Vs. Violent Crime'; TITLE3 'As Determined by the Second Principal Component';RUN;PROC PLOT; PLOT PRIN2*PRIN1=STATE /VPOS=31; TITLE2 'Plot of the First Two Principal Components';PROC PLOT; PLOT PRIN3*PRIN1=STATE / VPOS=26; TITLE2 'Plot of the First and Third Principal Components';RUN;结 果由初步的分析结果看来前两个主成份加起来便可以解释 76% 的变异数若再加上第三个主轴则百分比升到 87%但第四个及以后的主成份便没有这么显著的影响 (见报表 34.2a)第一个主成份代表一般犯罪率的高低它的特性向量在这七个变量上差不多第二个主成份似乎在犯罪类型中分出财物偷窃和暴力犯罪的不同第三主成份的解释则不甚清楚为了诠释这些主成份的意义可将原始数据依各主成份的值重新排列然后印出整理过后的数据 (见报表 34.2b)另一种有效的方法是将各州主成份的值以坐标图表示然后试着去了解各区 (如中西部东南部) 在坐标图上的分布 (见报表 34.2c)现举一例说明如何在坐标图上识别各州如第一图上有四个 "A" 开头的州名即Alabama Arkansas Alaska 和 Arizona 在这四州中Alabama 的位置最靠近横轴其坐标值是 (-.0499-2.0961)请读者同时参第34章 主成份分析统计程序PROC PRINCOMP 13阅坐标值与图形以便识别各州在犯罪率上的分析报表34.2a 犯罪率的分析 ━ 初步结果Crime Rates per 100,000 Population by StatePrincipal Component Analysis50 Observations 7 VariablesSimple StatisticsMURDERRAPE ROBBERY ASSAULT BURGLARY LARCENY AUTOMean 7.44400000025.73400000124.0920000211.30000001291.9040002671.288000377.5260000Std3.86676894110.7596299588.3485672100.2530492432.455711725.908707193.3944175Correlation MatrixMURDERRAPEROBBERY ASSAULT BURGLARY LARCENY AUTO MURDER 1.00000.60120.48370.64860.38580.10190.0688RAPE 0.6012 1.00000.59190.74030.71210.61400.3489ROBBERY 0.48370.5919 1.00000.55710.63720.44670.5907ASSAULT 0.64860.74030.5571 1.00000.62290.40440.2758BURGLARY 0.38580.71210.63720.6229 1.00000.79210.5580LARCENY 0.10190.61400.44670.40440.7921 1.00000.4442AUTO0.06880.34890.59070.27580.55800.44421.0000Eigenvalues of the Correlation MatrixEigenvalueDifferenceProportion CumulativePRIN1 4.11496 2.876240.5878510.58785PRIN2 1.238720.512910.1769600.76481PRIN30.725820.409380.1036880.86850PRIN40.316430.058460.0452050.91370PRIN50.257970.035930.0368530.95056PRIN60.222040.097980.0317200.98228PRIN70.124060.0177221.00000EigenvectorsPRIN1PRIN2PRIN3PRIN4PRIN5PRIN6PRIN7MURDER 0.300279-.6291740.178245-.2321140.5381230.2591170.267593RAPE 0.431759-.169435-.2441980.0622160.188471-.773271-.296485ROBBERY 0.3968750.0422470.495861-.557989-.519977-.114385-.003903ASSAULT 0.396652-.343528-.0695100.629804-.5066510.1723630.191745BURGLARY 0.4401570.203341-.209895-.0575550.1010330.535987-.648117LARCENY 0.3573600.402319-.539231-.2348900.0300990.0394060.601690AUTO0.2951770.5024210.5683840.4192380.369753-.0572980.147046第七部分 多变量的分析14报表34.2b 犯罪率的分析━第一与第二主成份值的排列Crime Rates per 100,000 Population by State States Listed in Order of Overall Crime Rate As Determined by the First Principal ComponentB R A U L M O S R A S P P U B S G R T R R R R B A LC A A I ID AE U A E U T N N E P R L R N T E12R E Y T Y Y O NorthDakota -3.964080.387670.99.013.343.8446.11843.0144.7SouthDakota -3.17203-0.25446 2.013.517.9155.7570.51704.4147.5WestVirginia -3.14772-0.81425 6.013.242.290.9597.41341.7163.3Iowa-2.581560.82475 2.310.641.289.8812.52685.1219.9Wisconsin -2.502960.78083 2.812.952.263.7846.92614.2220.7NewHampshire -2.465620.82503 3.210.723.276.01041.72343.9293.4Nebraska -2.150710.22574 3.918.164.7112.7760.02316.1249.1Vermont -2.064330.94497 1.415.930.8101.21348.22201.0265.2Maine -1.826310.57878 2.413.538.7170.01253.12350.7246.9Kentucky -1.72691-1.1466310.119.181.1123.3872.21662.1245.4Pennsylvania -1.72007-0.19590 5.619.0130.3128.0877.51624.1333.2Montana -1.668010.27099 5.416.739.2156.8804.92773.2309.2Minnesota -1.55434 1.05644 2.719.585.985.81134.72559.3343.1Mississippi -1.50736-2.5467114.319.665.7189.1915.61239.9144.4Idaho-1.43245-0.00801 5.519.439.6172.51050.82599.6237.6Wyoming -1.424630.06268 5.421.939.7173.9811.62772.2282.0Arkansas -1.05441-1.345448.827.683.2203.4972.61862.1183.4Utah-1.049960.93656 3.520.368.8147.31171.63004.6334.5Virginia-0.91621-0.692659.023.392.1165.7986.22521.2226.7NorthCarolina -0.69925-1.6702710.617.061.3318.31154.12037.8192.1Kansas-0.63407-0.02804 6.622.0100.7180.51270.42739.3244.3Connecticut -0.54133 1.50123 4.216.8129.5131.81346.02620.7593.2Indiana -0.499900.000037.426.5123.2153.51086.22498.7377.4Oklahoma -0.32136-0.624298.629.273.8205.01288.22228.1326.8RhodeIsland -0.20156 2.14658 3.610.586.5201.01489.52844.1791.4Tennessee -0.13660-1.1349810.129.7145.8203.91259.71776.5314.0Alabama -0.04988-2.0961014.225.296.8278.31135.51881.9280.7NewJersey 0.217870.96421 5.621.0180.4185.11435.82774.5511.5Ohio 0.239530.090537.827.3190.5181.11216.02696.8400.4Georgia 0.49041-1.3807911.731.1140.5256.51351.12170.2297.9Illinois 0.512900.094239.921.8211.3209.01085.02828.5528.6Missouri 0.55637-0.558519.628.3189.0233.51318.32424.2378.4Hawaii0.82313 1.823927.225.5128.064.11911.53920.4489.4Washington 0.930580.73776 4.339.6106.2224.81605.63386.9360.3Delaware 0.96458 1.29674 6.024.9157.0194.21682.63678.4467.0Masssachusetts 0.97844 2.63105 3.120.8169.1231.61532.22311.31140.1Louisiana 1.12020-2.0832715.530.9142.9335.51165.52469.9337.7NewMexico 1.21417-0.950768.839.1109.6343.41418.73008.6259.5Texas 1.39696-0.6813113.333.8152.4208.21603.12988.7397.6Oregon1.449000.586034.939.9124.1286.91636.43506.1388.9第34章 主成份分析统计程序PROC PRINCOMP15SouthCarolina 1.60336-2.1621111.933.0105.9485.31613.62342.4245.1Maryland 2.18280-0.194748.034.8292.1358.91400.03177.7428.5Michigen 2.273330.154879.338.9261.9274.61522.73159.0545.5Alaska 2.421510.1665210.851.696.8284.01331.73369.8753.3Colorado 2.509290.91660 6.342.0170.7292.91935.23903.2477.1Arizona 3.014140.844959.534.2138.2312.32346.14467.4439.5Florida 3.11175-0.6039210.239.6187.9449.11859.93840.5351.4NewYork 3.452480.4328910.729.4472.6319.11728.02782.0745.8California 4.283800.1431911.549.4287.0358.02139.43499.8663.5Nevada5.26699-0.2526215.849.1323.1355.02453.14212.6559.2Crime Rates per 100,000 Population by StateStates Listedin Orderof Property Vs. Violent Crime As Determined by the Second Principal ComponentB R A U L M O S R A S P P U B S G R T R R R R B A LC A A I ID AE U A E U T N N E P R L R N T E12RE Y T Y Y O Mississippi -1.50736-2.5467114.319.665.7189.1915.61239.9144.4SouthCarolina 1.60336-2.1621111.933.0105.9485.31613.62342.4245.1Alabama -0.04988-2.0961014.225.296.8278.31135.51881.9280.7Louisiana1.12020-2.0832715.530.9142.9335.51165.52469.9337.7NorthCarolina -0.69925-1.6702710.617.061.3318.31154.12037.8192.1Georgia 0.49041-1.3807911.731.1140.5256.51351.12170.2297.9Arkansas -1.05441-1.345448.827.683.2203.4972.61862.1183.4Kentucky -1.72691-1.1466310.119.181.1123.3872.21662.1245.4Tennessee -0.13660-1.1349810.129.7145.8203.91259.71776.5314.0NewMexico 1.21417-0.950768.839.1109.6343.41418.73008.6259.5WestVirginia -3.14772-0.81425 6.013.242.290.9597.41341.7163.3Virginia -0.91621-0.692659.023.392.1165.7986.22521.2226.7Texas 1.39696-0.6813113.333.8152.4208.21603.12988.7397.6Oklahoma -0.32136-0.624298.629.273.8205.01288.22228.1326.8Florida 3.11175-0.6039210.239.6187.9449.11859.93840.5351.4Missouri 0.55637-0.558519.628.3189.0233.51318.32424.2378.4SouthDakota -3.17203-0.25446 2.013.517.9155.7570.51704.4147.5Nevada5.26699-0.2526215.849.1323.1355.02453.14212.6559.2Pennsylvania -1.72007-0.19590 5.619.0130.3128.0877.51624.1333.2Maryland 2.18280-0.194748.034.8292.1358.91400.03177.7428.5Kansas -0.63407-0.028046.622.0100.7180.51270.42739.3244.3Idaho -1.43245-0.00801 5.519.439.6172.51050.82599.6237.6Indiana -0.499900.000037.426.5123.2153.51086.22498.7377.4Wyoming -1.424630.06268 5.421.939.7173.9811.62772.2282.0Ohio 0.239530.090537.827.3190.5181.11216.02696.8400.4Illinois 0.512900.094239.921.8211.3209.01085.02828.5528.6California 4.283800.1431911.549.4287.0358.02139.43499.8663.5Michigen 2.273330.154879.338.9261.9274.61522.73159.0545.5Alaska 2.421510.1665210.851.696.8284.01331.73369.8753.3Nebraska -2.150710.22574 3.918.164.7112.7760.02316.1249.1Montana-1.668010.27099 5.416.739.2156.8804.92773.2309.2NorthDakota -3.964080.387670.99.013.343.8446.11843.0144.7NewYork3.452480.4328910.729.4472.6319.11728.02782.0745.8第七部分 多变量的分析16Maine -1.826310.57878 2.413.538.7170.01253.12350.7246.9Oregon 1.449000.58603 4.939.9124.1286.91636.43506.1388.9Washington 0.930580.73776 4.339.6106.2224.81605.63386.9360.3Wisconsin -2.502960.78083 2.812.952.263.7846.92614.2220.7Iowa-2.581560.82475 2.310.641.289.8812.52685.1219.9NewHampshire -2.465620.82503 3.210.723.276.01041.72343.9293.4Arizona3.014140.844959.534.2138.2312.32346.14467.4439.5Colorado 2.509290.91660 6.342.0170.7292.91935.23903.2477.1Utah -1.049960.93656 3.520.368.8147.31171.63004.6334.5Vermont -2.064330.94497 1.415.930.8101.21348.22201.0265.2NewJersey 0.217870.96421 5.621.0180.4185.11435.82774.5511.5Minnesota-1.554341.056442.719.585.985.81134.72559.3343.1Delaware 0.96458 1.29674 6.024.9157.0194.21682.63678.4467.0Connecticut -0.54133 1.50123 4.216.8129.5131.81346.02620.7593.2Hawaii 0.82313 1.823927.225.5128.064.11911.53920.4489.4RhodeIsland -0.20156 2.14658 3.610.586.5201.01489.52844.1791.4Masssachusetts 0.978442.631053.120.8169.1231.61532.22311.31140.1报表34.2c 犯罪率的分析 ━ 第一与第二主成份第一与第三主成份的坐标图Crime Rates per 100,000 Population by State Plot of the First Two Principal Components Plot of PRIN2*PRIN1. Symbol is value of STATE. 3 + || M || R 2 +| H | C || D1 + V M U N C | WN W A PRIN2 | M O|N N| N M MA C 0 + I KI O I| S P M N || V O M T F | W-1 + N | K T| A G | N |-2 + A L | S || M | -3 +-+--------------------+-------------------+-------------------+-------------------+--------------------+ -4 -2 0 2 4 6PRIN1 NOTE: 2 obs hidden.第34章 主成份分析统计程序PROC PRINCOMP 17Crime Rates per 100,000 Population by State Plot of the First and Third Principal Components Plot of PRIN3*PRIN1. Symbol is value of STAT E.3 +| N | M | | 2 + | PRIN3 | || I 1 + P R | M C| W K TA N M M | O L M| I G C 0 +N A N T A | S N N M V O| W M K N | I VM I U D S | H -1 + N| O C F | W || A -2 +-+---------- ----------+---------------------+---------------------+-------------------+-------------------+ -4 -2 0 2 4 6PRIN1 NOTE: 1 obs hidden.第35章因子分析统计程序PROC FACTOR35.1 因子分析法中的因子一词指什么许多人对因子分析法中所指的因子 一词不甚了解本节特就此说明之因子分析法中提到两种因子共同因子 (又称共因子) 和独特因子 这两种因子都是指一个(或一组) 假设的抽象的变量所谓共同因子指一个假设的抽象的变量它可用来解释两个或两个以上的原始变量然而独特因子则指一个假设的抽象的变量它只能用来解释一个原始的变量与其它变量完全无关如上所述因子指假设的抽象的变量它的功能在于诠释原始变量之间的关系或结构然而主成份是指原始变量间的线性组合它的功能在于简化原有的变量群35.2 共因子分析法的模型共因子分析法的模型允许每一变量有一独特因子所以Y ij = X i1b 1j + X i2b 2j +...+ X iq b qj + E ij其中Y ij = 第 i 个观察体在第 j 个变量上的值X ik = 第 i 个观察体在第 k 个共因子上的值b kj = 被第 k 个共因子用来预测第 j 个变量的回归系数又称因子负荷量(FactorLoading)Ei j = 第 i 个观察体在第 j 个独特因子上的值q = 共同因子的总数这个模型的两项假设如下独特因子之间是互相独立的共因子与独特因子之间是互相独立的35.3 PROC FACTOR程序概述因子分析及坐标的转换PROC FACTOR 可以对输入资料文件执行许多种不同的共因子分析及主成份分析也可将分析的结果经过坐标的转换以利于诠释第35章 因子分析统计程序PROC FACTOR 19输入资料文件PROC FACTOR 的输入资料文件可以是多变量数据一个相关系数矩阵一个变异数共变异数矩阵因子型态 (Factor Pattern)或是一个因子分数系数 (Factor Score Coefficient) 的矩阵FACTOR 程序也接受其它程序的输出资料文件所以输入资料文件变化很多详情见本章的第 35.6 节 因子提炼的方法FACTOR 程序提供九种因子提炼的方法供读者选用这九种方法将在介绍选项METHOD= 中详加解释另外FACTOR 程序也提供了六种方法来预估变量间的共通性见选项 PRIORS= 的说明 因子坐标的转换一般而言因子坐标的转换可分正交及斜交两大类FACTOR 程序提供了八种坐标转换的方法供读者选择见选项 ROTATE= 的说明 输出资料文件FACTOR 程序所产生的输出资料文件不止一个它们分别在选项 OUTSTAT= 中逐一说明35.4 因子分析法的历史背景共因子分析由史氏 (Spearman) 于 1904 年首创 读者可参阅古德氏 (Gould 1981)及金氏与穆勒氏 (Kim and Mueller 1978) 的书籍以便对分析法的目的及模型有初步的认识较深入的讨论可参看慕雷克 (Mulaik 1972) 与哈门 (Harman 1976) 的着作35.5 如何撰写 PROC FACTOR 程序PROC FACTOR 含七道指令它们的格式如下PROC FACTOR选项串PRIORS 变量共通性的预估值V AR 变量名称串PARTIAL 变量名称串FREQ 变量名称WEIGHT 变量名称BY变量名称串通常读者只须用到 PROC FACTOR 及 V AR 两道指令第七部分多变量的分析20指令 #1PROC FACTOR 选项串PROC FACTOR 的选项可分下列五大类讨论第一类选项与资料文件的界定有关第二类与因子提炼有关第三类与因子坐标的转换有关第四类选项控制报表的印出第五类含其它选项第一类选项 下列四选项与资料文件的界定有关(1) DATA=输入资料文件名称为输入资料文件命名若省略此选项则 SAS 会自动找出在此程序之前最后形成的 SAS 资料文件对它执行因子分析(2) TARGET=资料文件名称这一个资料文件内含有 Procrustes 坐标转换后理想的值必须与 ROTATE=PROCRUSTES 选项并用(3) OUT=输出资料文件名称这一个输出资料文件包括原输入资料文件的观察值以及因子分数 (Factor Score)这些值以 FACTOR1FACTOR2 等表示读者必须同时用 NFACTOR=选项界定因子个数上限(4) OUTSTAT=第二个输出资料文件名称这一个输出资料文件较上述 OUT=输出资料文件详尽下页的表是 OUTSTAT 文件所含因子分析的各项统计值之代号及它们的定义有些概念会在后面的章节中进一步解释代号 (_TYPE_=) 定 义MEAN 变量的平均数STD 变量的标准差N 观察体的总数CORR 相关系数矩阵矩阵内各横列的变量名字以 _NAME_ 表示IMAGE 映象系数矩阵 (Image Coefficient Matrix)矩阵内各横列的变量名字以 _NAME_ 表示IMAGECOV 映象的共变异数矩阵 (Image Covariance Matrix)矩阵内各横列的变量名字以 _NAME_ 表示COMMUNAL 各变量共通性的最终估计值PRIORS 各变量共通性的预估值WEIGHT 变量的加权值EIGENVAL 特性根UNROTATE 未经坐标转换的因子系数型态RESIDUAL 独特因子的相关系数矩阵TRANSFOR 坐标转换矩阵FCORR 共因子间的相关系数矩阵PA TTERN 因子系数的型态RCORR坐标轴间的相关系数矩阵REFERENC 参考结构矩阵 (Reference Structure Matrix)STRUCTUR 因子结构矩阵 (Factor Structure Matrix)SCORE 共因子分数的系数 (可输入 SCORE 程序以便产生共因子分数见第 12 章的例一)USCORE未经平均数矫正过的共因子分数的系数第二类选项下列十一个选项与因子提炼有关(1) METHOD=因子提炼的方法 (简写为 M=)一般而言此选项的内设值是 MEHTOD=PRINCIPAL 但当输入资料文件是TYPE=FACTOR 的情况下内设值是 METHOD=PATTERN 下列九种因子提炼的方法可供读者选用M=PRINCIPAL此选项的因子提炼方法视选项 PRIORS= 而定当此选(或 PRIN 或 P)项不与PRIORS= 并用或与 PRIORS=ONE 并用时它的因子提炼方法是主成份分析法否则它的因子提炼法是主轴因子分析法 (Principal Axis Common Factor Analysis)M=PRINIT界定循环式主轴因子分析 (Iterative Principal Axis Method)M=ULS (或 U)界定未加权的最小误差平方之因子分析 (Unweighted Least Squares Method)M=ALPHA (或 A)界定阿尔法因子分析(Alpha Factor Analysis)M=ML (或 M)界定最大可能率因子分析此法要求一个满秩的相关系数矩阵M=HARRIS (或 H)界定哈里斯氏 (Harris) 于 1962 年提出的 S -1RS -1 主轴分析此处S是变量的变异数共变异数矩阵R 是变量间的相关系数矩阵此法要求一个满秩的相关系数矩阵M=IMAGE (或 I)针对映象共变异数矩阵作主成份分析 (Principal Component Analysis of Image Covariance Matrix)此法要求一个满秩的相关系数矩阵请读者注意比法与凯斯(Kaiser 196319701974) 所提的映象分析 (Image Analysis) 无关M=PATTERN从输入资料文件 (其 TYPE=FACTOR CORR 或 COV)内取得因子负荷量矩阵若因子之间有线性相关则其间的相关系数也必须同时输入 (TYPE='FCORR' 的数据)M=SCORE从输入资料文件 (其 TYPE=FACTOR CORR 或 COV)内取得因子分数的系数这个输入资料文件必须同时包括变量间的相关系数或其变异数共变异数矩阵(2) PRIORS=变量共通性的预估值PRIORS=ONE (或 O)设定所有共通性的预估值为1PRIORS=MAX (或 M)取每一变量与其它变量的最大相关系数绝对值为该变量共通性的预估值PRIORS=SMC (或 S)取每一变量与其它变量的复相关平方值为该变量共通性的预估值PRIORS=ASMC(或 A)将上述的复相关 (SMC) 调整使其总和等于最大相关系数绝对值的总和而共通性预估值将与此值成正比 (Cureton 1968)PRIORS=INPUT(或I)如果输入资料文件的TYPE=FACTOR 则读者可选用此选项SAS 会进入资料文件内寻找 _TYPE_='PRIORS' 或_TYPE_='COMMUNAL'的变量此变量的第一个观察值就成为共通性的预估值PRIORS=RANDOM(或 R)随机取 0 与 1 之间的任何值为共通性的预估值下表列出因子提炼方法与共通性预估值的内设值之配对因子提炼的方法 共通性预测值的内设值 METHOD= PRIORS= PRINCIPAL ONEPRINITONE ALPHA SMC ULS SMC ML SMC HARRIS (不适用) IMAGE (不适用) PA TTERN(不适用)SCORE (不适用)(3) RANDOM=正整数起始随机随机数表的起始值与选项 (2) PRIORS=RANDOM 联用(4) MAXITER=正整数界定METHOD=PRINITULS ALPHA 或 ML 等因子分析法中循环分析的次数内设值是30(5) CONVERGE (或 CONV)= 正实数界定METHOD=PRINITULS ALPHA 或 ML 等因子分析法中循环分析的收敛值它的定义是两次循环所求得变量之共通性的差距当这个差距小于此选项所定的值时循环分析停止内设值是.001(6) COV ARIANCE (或 COV)要求 FACTOR程序对变异数共变异数矩阵 (而非相关系数矩阵) 执行因子分析此选项必须与 METHOD=PRINCIPAL PRINIT ULS 或 IMAGE适用(7) WEIGHT要求 FACTOR 程序对一个经过加权调整的相关系数矩阵或变异数共变异数矩阵执行因子分析选用此项时必须同时满足下列的条件METHOD=PRINCIPALPRINIT ULS 或IMAGE输入资料文件的TYPE=CORR COV UCORR UCOV 或FACTOR 各变量的加权值由 _TYPE_='WEIGHT'提供下面三个选项都可用来决定因子的总数如果读者在下面三选项中同时选用两个或三个选项则 SAS 会自动挑选最小的值(8) NFACTORS (或 NFACT 或 N)=正整数界定因子个数的上限内设值是所有被分析变量的总个数(9) PROPORTION (或 PERCENT 或 P)=百分比(正实数不带 % 符号)界定一个共因子至少要能解释的变量之变异数百分比内设值是 1 (即百分之百)此选项不可与 METHOD=PATTERN 或 SCORE 合用(10) MINEIGEN (或 MIN)=最小特性根的值要求 SAS 保留特性根大于此选项所设定的那些因子此选项不可与METHOD=PATTERN 或SCORE 合用一般而言其内设值是0若读者对未加权过的相关系数矩阵进行因子分析则其内设值等于1但如果读者同时省略NFACTORS=PROPORTION= 及 MINEIGEN= 三选项时SAS 会依下面的原则自行设定 MINEIGEN 的值当 METHOD= 则 MINEIGEN 的值为 ALPHA 或 HARRIS 1 IMAGE 映象的总变异数 (Total Image Variance)变量的总个数其它 的方法而且经过加权调整的总变异数PRIORS=1 变量的总个数一般而言当共通性的预估值超过 1 时 METHOD=PRINIT ULS ALPHA 和ML 立刻停止分析的过程并设因子的总个数为0下列两个选项可以让分析过程恢复(11) HEYWOOD (或 HEY)将大于 1 的变量共通性重新调整为 1如此分析可以继续进行(12) ULTRAHEYWOOD (或 ULTRA)改变规定允许变量的共通性大于 1此选项极可能导致不合理的分析结果因此应慎重使用之第三类选项 下列六个选项与坐标转换有关(1) ROTATE (或 R)=坐标转换法有八种方法可供选择R=V ARIMAX (或 V)界定最大变异数转换法R=QUARTIMAX (或 Q)界定四次方最大值转换法R=EQUAMAX (或 E)界定平衡最大值坐标转换法。
【SAS精品讲义】Unit10【WORD可编辑版本】

第十课建立SAS系统的数据集(FILE/IMPORT或EXPORT)用SAS/ACCESS访问外部数据库,只是建立了SAS系统访问外部数据库的访问通道,外部数据库并没有真正转换成SAS数据集,也没有新增一个外部数据库文件大小的存储空间,仅仅是创建了.ACCESS和.VIEW文件,且占用了很少的存储空间,例如我们将外部数据库文件移去,SAS系统中对应的那个*.VIEW就不能显示了。
而我们使用FILE/IMPORT或EXPORT方法是真正地输入或输出了一个数据库文件,要新增一个与原外部文件大小相当的SAS数据集,且这个数据库文件格式也转换成SAS数据库文件格式。
我们这里主要介绍Excel的*.XLS数据库文件与SAS数据集的转换。
一、Excel的XLS文件输入变成SAS的DATA文件Mircrosoft Office套装软件中一员Excel,是一个功能强大的管理和决策工具软件,被大多数用户熟悉和常用。
虽然Excel中也为用户提供了大量的统计函数和可调入的统计宏模块程序,但遇到需要大数据量的、多种类型的、复杂的大型统计分析,Excel就会显得力不从心。
常常采用将Excel中原始分析数据转入到SAS系统,借助SAS系统的强大的专业的统计分析能力进行分析处理,能使用Excel所不具备的统计模块,能生成独有的专业统计报表和图形。
例如我们有一个上证综合指数的Excel文件,文件名为1a0001w.xls,存放的目录为d:\sasdata\mydir,存放内容是从1990年12月21日开市到2000年1月07日的周K线指数数据,如图10.1所示。
1图10.1 上证周K线数据的XLS文件将上述的1a0001w.xls文件输入到SAS系统,创建一个名为XLSSAS.DATA的SAS数据集,操作步骤如下:1.选择File/Import命令,进入选择输入文件类型窗口,在下拉菜单中选择Excel如图10.2所示。
鼠标单击输入框右边的向下箭头,弹出下拉菜单,选择Excel 5 or 7 Spreadsheet (*.xls)选项,然后单击Next按钮,进入下一个菜单窗口。
SAS讲义-第七课

SAS讲义-第七课今天我们开始第七课,首先我们简要回顾一下前六课所学的知识。
第一课介绍了SAS的基本概念,掌握逻辑库是重点。
第二课我们介绍了SAS 中的变量与常量,特别引起重视的是自动变量,所谓自动变量,就是系统自动帮你生成的。
第三课介绍了SAS中的运算符,数值型与字符型之间的转换,还有就是函数的概念,实际上第三课还有很多内容,尤其函数部分,但是我们都省略了。
总之,第二课与第三课非常繁琐与无聊,是我们学习SAS基础了解的知识,目的是为了后面的课程。
第四课开始是我们的重点,我们开始没完没了的一个一个关键词了。
Set是我们重点中的重点,接着第五课还有by、merge、update,这些都属于数据集获取的关键词。
什么是数据集获取关键词呢?就是通过这些关键词我可以先打开一个我们需要的数据集,实际上input-cards组合也是数据集获取关键词,只不过这是要通过自己输入数据了,而不是用现成的。
第六课我们开始学习赋值语句、累加语句、rename、label、keep关键词。
这些是什么呢?这些是数据集变量操作关键词!什么是变量操作关键词呢?比如我通过set打开了一个数据集,我对打开数据集的变量作些修改或者限制,我们可以增加一个变量,修改一个变量的名字或者标签,总之,都是对变量做些操作。
今天第七课呢?我们完整介绍观测值操作关键词。
什么是观测值操作关键词呢?就是通过这些关键词我可以筛选到我需要的观测,也就是要对一条一条的数据进行操作。
实际上我们之前已经碰到了,比如where、delete、stop,只是现在我们再拿来细细研究一下。
最后,我们人为的去区分关键词是哪类型也只是更好地理解这些词。
很烦很散,可是这又有什么办法呢?关于变量操作的关键词我们没有说完,以后我们还会回头,从这次讲义之后我会不断加以总结与归纳!好吧!SAS观测值操作有哪些观测值呢?Output、if、where、replace、remove、delete、stop。
山东大学SAS课程第7章PPT

u= X1 − X 2
σ 12
n1
+
2 σ2
• (3)拒绝域 1》|u| > z1-α/2 2》u < zα 3》u> z1-α 其中如 zα 是 N(0,1) 的α 分位数。
• 3. 假设检验
– 3.1 独立组的检验:两独立总体均值的检验
• 假设有两个总体,总体均值分别是 μ1 和 μ2 。我们 得到两个样本,分别来自上述两个总体,我们要对 μ1 和 μ2 的大小进行检验。 • 对两总体均值 μ1 和 μ2 可做如下假设检验: 1》H0 : μ1 = μ2 ↔ H1 : μ1 ≠ μ2 2》H0 : μ1 ≥ μ2 ↔ H1 : μ1 < μ2 3》H0 : μ1 ≤ μ2 ↔ H1 : μ1 > μ2
1
1
2
2
⎦
则
X1 − X 2 t= 1 1 S + n1 n2
• (3)拒绝域 1》| t | > t1-α/2(n1+ n2 - 2) 2》t < tα(n1+ n2 - 2) 3》t > t1-α(n1+ n2 - 2) 其中如 tα (df )是自由度为 df 的 t 分布的 α 分位数。
– 2.3 t′ 检验
• (4)PAIRED语句 PAIRED 变量对列表; 指定成对组中成对比较的变量名。 变量对列表的形式:由一到多个变量对组成。 变量对:以“*”或“:”连接的变量或变量列表,
– * 左端列表中的变量依次与右端列表中的变量任意组合进行比较; – : 左端列表中的变量依次与右端列表中同一位置的变量进行比较; – 例: PAIRED语句
《SAS编程入门》讲义

SAS过程名及其功用
❖ MEANS 计算基本统计量 ❖ CHART 制作次数分布表 次数分布图 ❖ UNIVARIATE PLOT 正态分布检验 ❖ PRINT 数 据 输 出 ❖ SORT 数 据 排 序 ❖ Tabulate 制作表格 ❖ ANOVA 方差分析 ❖ GLM 协方差分析 ❖ CORR 相关系数的计算 ❖ REG 直 线 回 归 ❖ PRINCOMP 主 成 分 分 析
《SAS编程入门》讲义
SAS算符
❖ 比较算符:建立两个量之间的一种关系,并 要求SAS确定这种关系是成立不成立。如果 它成立,输出的运算结果是1;如果不成立, 运算结果为0
❖ 算术算符:就是数学运算中常用的五种运算 符号
❖ 逻辑算符:通常用来连接一系列比较式
《SAS编程入门》讲义
SAS算符
❖ 运算次序:下面给出复杂表达式运算次序的 准则。
《SAS编程入门》讲义
SAS数据集
❖ SAS数据集是关系型结构,分为两个部份: 描述部份和数据部份
❖ 描述部份包含了一些关于数据属性的信息即 变量名称、类型及次序等信息;数据部份的 结构完全等同于我们一般所理解的数据表, SAS数据值被安排在一个矩阵式的表状结构 中,由字段和记录所构成,字段就是统计学 中研究的变量,而记录就是每个研究对象的 观测。
❖
Input 语句;
❖
(用于DATA步的其它语句)
❖
Cards;
❖
[数据行]
❖
;
《SAS编程入门》讲义
DATA步入门
❖ 从外部文件读入数据集。数据若已经包含在某个 外部文件(文本文件或数据文件)中,可用此方 法输入数据到数据集文件中。在以上介绍的data 语句后,写入以下语句:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七课建立SAS系统的数据集
(FSP/FSEDIT)
与使用SAS/ASSIST软件相比,SAS/ASSIST只要用MOUSE点击就行了,而用SAS/FSP,需要在PROGRAM EDITOR窗口中输入一些简单程序,主要是调用FSEDIT过程,其他操作的环境和步骤很相似。
但是用FSEDIT过程所编写的一些数据产生程序比用SAS/ASSIST软件更容易控制产生所需的数据集。
仍然通过创建一个相同SURVEY数据集,并对这个数据集进行一些简单修改的例子,来说明SAS/FSP软件的FSEDIT过程的具体的操作步骤:
一、在PROGRAM EDITOR 窗口中输入如下程序
Libname study 'd:\sasdata\mydir';
Proc fsedit new=study.survey;
Run;
中,提交运行。
后面课件中的程序都可以进行类似操作。
在程序中过程FSEDIT用以创建一个新的SAS数据集study.survey。
●如果study.survey数据集不是第一次新建,而是一个已经存在的SAS数据集,则
将上面的程序修改为如下:
Proc fsedit data=study.survey ;
Run ;
在程序过程FSEDIT中使用DATA=选项,来指定所要修改的数据集。
二、发布SUBMIT命令提交这段程序
出现了一个标题为FSEDIT new STUDY.SURVEY的变量描述窗口。
●要注意,如果库标记STUDY指定的目录“d:\sasdata\mydir”下已经存在此SAS数
据集SURVEY,就不会出现变量描述窗口。
1
解决的办法是到目录下将文件SURVEY.SD2删除。
三、单击主菜单Locals,选择Format /
Informat
这样的操作将把窗口中的输出格式Format,修改成输入格式Informat。
同样操作也可以将输入格式Informat修改成输出格式Format。
注意,不要认为只能定义输入和输出格式两者中的一个,可以同时定义两者。
四、输入将要创建的数据集的所有变量及其属性
如下表所示,是我们将要键入的study.survey数据集的变量名、对应的类型(字符型或数字型)、长度、变量标签(用以说明该变量)和该变量的输入格式。
上表中我们定义了一个新的数据集study.survey所有变量的属性,但没有包括输出格式的属性。
按表格中的内容输入到窗口中相应的位置。
在输入各个变量和它的属性时,注意用非Insert编辑状态(即Overstrike状态)、用Delete键删除已输入的字符和用空格键向右移动光标,描述完一个变量(即一行)后按Enter键。
五、发布END,进入FSEDIT编辑窗口,输入数据
开始输入前:
要单击工具栏上Add Record按钮增加一条空白记录
2
●然后用户可以用交互的方式输入数据值,且每次输入一条观测
如图7.1所示,第一条观测的BDATE字段具体输入日期值的是01/01/80,因为未定义日期输出格式,显示的是SAS日期存储值7305,SDATE字段具体输入的日期值是070897,同样因为未定义日期输出格式,显示的仍然是SAS日期存储值13703。
●输入一条观测后,确信无错且需要,再在Edit编辑的下拉菜单中选Add new record
项或在工具栏上单击Add Record按钮,开始输入下一条记录。
图7.1 FSEDIT行编辑输入记录窗口
六、发布ADD/CANCEL/DELETE命令
在输入一条观测的同时,用户还可以在命令框中发布如FORWARD、BACKWARD等命令,或按键盘上的如Page Up 、Page Down等键来控制前后记录的翻滚。
另外,标准工具条也自动变成行编辑工具条,也可用Mouse点击相关Add Record、Copy、Delete 、Previous、Next、FSEDIT Menu等按钮来操作。
3
七、用户可以通过发布WHERE命令获得一个子集
如果用户需要从study.survey数据集中选出所有性别为男性的观测进行编辑,可以先在命令框中键入如下命令:
WHERE sex='M'
按回车键命令执行后,得到用户所需要的study.survey数据集的一个子集,然后按Page Up /Page Down键所翻滚的前后记录都是这个子集中的某一条记录,用户就能很方便地对这个子集中的记录进行编辑。
如图7-2所示。
图7.2 对数据集中的观测进行条件选择
有时用户为更方便输入命令和操作编辑工具条,可将命令框和编辑工具条移动到用户习惯的位置,选择Options/Preferences菜单命令,出现一个参数选择对话框,如图7-3所示,将原来选中的Command bar 和Tool bar 改为Command box 和Tool box ,再按Save按钮。
4。