狼毒乙素分子印迹膜荧光传感器的制备及在中药材检测中的应用

狼毒乙素分子印迹膜荧光传感器的制备及在中药材检测中的应用
狼毒乙素分子印迹膜荧光传感器的制备及在中药材检测中的应用

免疫荧光操作步骤及注意事项

免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。它是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光基团,再用这种荧光抗体(或抗原)作为探针检查细胞或组织内的相应抗原(或抗体)。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。 紫外光激发荧光物质放射荧光示意图 免疫荧光实验的主要步骤包括细胞片制备、固定及通透(或称为透化)、封闭、抗体孵育及荧光检测等。细胞片制备(通俗的说法是细胞爬片)是免疫荧光实验的第一步,细胞片的质量对实验的成败至关重要,原因很简单,如果发生细胞掉片,一切都无从谈起。这一步关键的是玻片(Slides or Coverslips)的处理以及细胞的活力,有人根据成功经验总结出许多有益的细节或小窍门,非常值得借鉴。固定和通透步骤最重要的是根据所研究抗原的性质选择适当的固定方法,合适的固定剂和固定程序对于获得好的实验结果是非常重要的。免疫荧光中的封闭和抗体孵育与其它方法(如ELISA或Western Blot)中的相同步骤是类似的,最重要的区别在于免疫荧光实验中要用到荧光抗体,因此必须谨记避光操作,此外抗体浓度的选择可能更加关键。最后需要注意的是,标记好荧光的细胞片应尽早观察,或者用封片剂封片后在4℃或-20℃避光保存,以免因标记蛋白解离或荧光减弱而影响实验结果。 由于操作步骤比较多,同时在分析结果时无法像WB那样可以根据分子量的大小区分非特异性识别,所以要得到一个完美的免疫荧光实验结果,除了需要高质量的抗体,以及对实验条件进行反复优化外,还必须设立严谨的实验对照。总之,免疫荧光实验从细胞样品处理、固定、封闭、抗体孵育到最后的封片及观察拍照,每步都非常关键,需要严格控制实验流程中每个步骤的质量,才能最终达到你的实验目的。 基本实验步骤:

单分子荧光检测技术

单分子荧光检测技术 涂熹娟B200425010 【摘要】单分子检测技术有别与一般的常规检测技术,观测到的是单个分子的个体行为,而不是大量分子的综合平均效应。近年来随着相关学科的技术进步,单分子研究已经在从分子生物学到细胞生物学等生命科学领域有了迅速的发展和应用。本文简要介绍了单分子荧光检测技术的研究背景、意义、原理,以及该项技术进展和应用。 【关键词】单分子荧光寿命荧光偏振单分子FRET 1. 单分子检测技术的意义和发展背景 1.1单分子检测技术的意义 在统计力学的各态遍历假设中,系综个体物理量轨迹的时间平均等于该物理量在给定时间的系综平均[1]。在一个包含完全相同个体的系综,当测量时间足够长的时候,系综测量和单分子测量结果相同(例如对于稀溶液中小分子的核磁共振谱线的测定,由于测量时间远大于小分子的翻滚时间,这时体系就可以看成是一个均匀的体系,并看作静态);但是即使在均相体系中,分子本身并不是处于静态,而是在不断地运动,测量的参数具有涨落现象,而测量时间可能会小于分子的涨落时间;另一种情况是在非均相体系中,个体轨迹平均本来就不等于系综平均(实际上几乎所有生物体系都不是均相体系)。这以上考虑到的两点都导致系综测量结果和单分子测量结果不等。一般系综测量结果表示的是大量由一种或多种对象组成的一个整体所表现出来的平均 效应和平均值。这一平均效应掩盖了许多特殊的信息。而这些特殊的信息有时是非常

重要的,尤其在研究具有非均匀特性的凝聚相物质和生物大分子结构时。而相比之下,单分子检测就可做到对体系中单个分子的行为进行研究,可以得到在特定时刻,特定分子的特殊位置和行为,因为在某一时刻,集团中的任何成员只能处于一种状态。将此再与时间相关,还可得到单个分子的行为的分布状况。这样我们就可以同时得到所研究的对象的整体行为和个体行为了,然后将数据综合处理,得到更为全面的信息。 1.2单分子检测技术的意义和发展背景 既然单分子检测技术有这么多的好处,为什么直到近年来才逐渐发展起来呢?这与光学系统的进展有很大的关系。其实人类很早以前就有探索微观世界奥秘的要求,但是苦于没有理想的工具和手段。直到世界上第一台可以被称为显微镜的仪器在1675年由荷兰生物学家列文虎克制作出来。在以后的几百年,人们一直用光学显微镜观察微观和探索眼睛看不到的世界,但是光具有波动性使光学显微镜的分辨率只能达到光波的半波长左右,人类的探索因此受到了限制。即使消除掉透镜形状的缺陷,任何光学仪器仍然无法完美的成像。人们花了很长时间才发现,光在通过显微镜的时候要发生衍射,即物体上的一个点在成像的时候不会是一个点,而是一个衍射光斑。如果两个衍射光斑靠得太近,你就没法把它们分辨开来。显微镜的放大倍数再高也无济于事。对于使用可见光作为光源的显微镜,它的分辨率极限是0.2微米。任何小于0.2微米的结构都没法识别出来。提高显微镜分辨率的途径之一就是设法减小光的波长,或者,用电子束来代替光。根据德布罗意的物质波理论,运动的电子具有波动性,而且速度越快,它的“波长”就越短。如果能把电子的速度加到足够高,并且汇聚它,就有可能用来放大物体。进人20世纪,光电子技术得到了长足的发展,1938年,德国工程师Max Knoll和Ernst Ruska制造出了世界上第一台透射电子显微镜(TEM)。几十年来,又有许多新型的显微镜问世,1952年,英国工程师Charles Oatley制造出了第一台扫描电子显微镜(SEM)。电子显微镜是20世纪最重要的发明之一。由于电子的速度可以加到很高,电子显微镜的分辨率可以达到纳米级(10-9m)。很多在可见光下看

免疫荧光操作步骤及注意事项

免疫荧光操作步骤及注意事项 免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。它是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光基团,再用这种荧光抗体(或抗原)作为探针检查细胞或组织内的相应抗原(或抗体)。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。 紫外光激发荧光物质放射荧光示意图 免疫荧光实验的主要步骤包括细胞片制备、固定及通透(或称为透化)、封闭、抗体孵育及荧光检测等。细胞片制备(通俗的说法是细胞爬片)是免疫荧光实验的第一步,细胞片的质量对实验的成败至关重要,原因很简单,如果发生细胞掉片,一切都无从谈起。这一步关键的是玻片(Slides or Coverslips)的处理以及细胞的活力,有人根据成功经验总结出许多有益的细节或小窍门,非常值得借鉴。固定和通透步骤最重要的是根据所研究抗原的性质选择适当的固定方法,合适的固定剂和固定程序对于获得好的实验结果是非常重要的。免疫荧光中的封闭和抗体孵育与其它方法(如ELISA或Western Blot)中的相同步骤是类似的,最重要的区别在于免疫荧光实验中要用到荧光抗体,因此必须谨记避光操作,此外抗体浓度的选择可能更加关键。最后需要注意的是,标记好荧光的细胞片应尽早观察,或者用封片剂封片后在4?或-20?避光保存,以免因标记蛋白解离或荧光减弱而影响实验结果。

由于操作步骤比较多,同时在分析结果时无法像WB那样可以根据分子量的大小区分非特异性识别,所以要得到一个完美的免疫荧光实验结果,除了需要高质量的抗体,以及对实验条件进行反复优化外,还必须设立严谨的实验对照。总之,免疫荧光实验从细胞样品处理、固定、封闭、抗体孵育到最后的封片及观察拍照,每步都非常关键,需要严格控制实验流程中每个步骤的质量,才能最终达到你的实验目的。 基本实验步骤: (1) 细胞准备。对单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片,PBS洗两次;对悬浮生长细胞,取对数生长细胞,用PBS离心洗涤(1000rpm,5min)2次,用细胞离心甩片机制备细胞片或直接制备细胞涂片。 (2) 固定。根据需要选择适当的固定剂固定细胞。固定完毕后的细胞可置于含叠氮纳的PBS中4?保存3个月。PBS洗涤3×5 min. (3) 通透。使用交联剂(如多聚甲醛)固定后的细胞,一般需要在加入抗体孵育前,对细胞进行通透处理,以保证抗体能够到达抗原部位。选择通透剂应充分考虑抗原蛋白的性质。通透的时间一般在5-15min.通透后用PBS洗涤3×5 min. (4) 封闭。使用封闭液对细胞进行封闭,时间一般为30min. (5) 一抗结合。室温孵育1h或者4?过夜。PBST漂洗3次,每次冲洗5min. (6) 二抗结合。间接免疫荧光需要使用二抗。室温避光孵育1h.PBST漂洗3次,每次冲洗5min后,再用蒸馏水漂洗一次。 (7) 封片及检测。滴加封片剂一滴,封片,荧光显微镜检查。 (一)细胞准备 用于免疫荧光实验的细胞可以是直接生长在盖玻片上的贴壁细胞,也可以是经过离心后涂片的悬浮细胞或者是将取自体内的组织细胞悬液离心后涂片。贴壁良好

分子印迹聚合物 翻译文献.doc

分子印迹技术的研究进展及发展前景 摘要:如今分子印迹技术发展十分迅猛。本文总结了该技术目前的研究现状,并展望了分子印迹技术未来的发展趋势。 关键词:聚合物,分子印迹,模板,分子识别 1.引言 分子印迹技术60多年以来发展很快,特别是过去五年里,人们对这一领域的兴趣激增,并且据估计全球有超过100个与此相关的学术和工业研究小组。目前,有500多篇关于分子印迹技术研究的文章和综述公开发表,并且有相当多的专利已被申请。直到现在,每年相关文章的发表已不是以前的用少数可计算的了。但是,随着有机聚合物作为二氧化硅基质的另一选择的引入以及非共价方法的广泛应用,其发表率更是狂飙(如表一)。1997年就有近80篇文章发表,并且当年召开了第一次关于分子印迹技术的专门研讨会并成立了分子印迹技术协会(SMI)。1998年这种趋势继续延续着。 分子印迹技术在许多优秀的文章中已有深入讨论,ACS也有专题文献。本文目的不是重述此技术,而是为读者提供最新的研究情况。文章后部分主要介绍该技术研究现状以及今后将遇到的挑战和潜在的应用领域。 图1 以年为变量的分子印迹出版物量(来源:分子印迹科学)。(1998年的数据为估计 值)。 2.分子印迹:艺术王国 分子印迹技术是创造具有选择性分子识别功能的大分子模型的通用方法。这些印

迹分子简单,制备成本低,并且性质稳定。如果通过合理的设计或从生物资源中获得,它们能够成为分子识别实体最理想的替代物或对应物,比如抗体。如今,分子印迹聚合物主要应用于四个领域:(1)特异选择分离,(2)抗体结合模板,(3)酶模型和(4)生物模拟传感器。这四个方向将继续成为人们研究的重点。 2.1 特异选择性分离 目前,特异选择性分离是分子印迹聚合物最大的应用领域。在这篇文章中,它是高效液相色谱法(HPLC)中的固定相,但它也有明显的缺陷:容纳力小以及结合位点不均匀。高效液相色谱中固定相的应用是评价一种新的印迹协议有效性最方便的方法之一。除了高效液相色谱法的应用,显然分子印迹聚合物作为具有选择性的固相分离媒介(SPE)也正在流行。这很可能是我们将来看到其在商业领域的首个应用。在特异选择性分离领域中的其他关键分支应用包括细胞膜和毛细管电泳(CE)。 2.2抗体结合模拟 实验证明分子印迹聚合物与被分析物相比,在结合的选择性和强度上的优势是显而易见的。甚至比抗体和抗原的效果更好。在应用方面,这些模拟结合抗体提供了一个快速而又低廉的途径进入稳定而又强有力的分子识别模型。它们预示着在不溶的情况下应用抗体这一技术成为可能,比如免疫亲和色谱法,免疫传感器和免疫分析。现在一些相关的免疫分析研究已专注于发展新的试验模式,而不再依赖于放射性配体,如荧光和电化学试验。 2.3模拟酶 许多致力于研究分子印迹技术的研究者们设想研制出一种模仿自然酶的活跃的印迹聚合物“塑料酶”。这个重任当然需要投入大量的研究,并且就目前报道的结果来看,它也确实反映了这个事实。一些不同的有机反应运用分子印迹聚合物作催化剂已成功反应,包括醛缩合,酯氧化,Diels-Alder反应和β-消去反应。虽然分子印迹聚合物现在就增强催化速率而言还比不过催化酶,但是它们也有一些不同于酶的特性,比如能较好的溶于有机溶剂,并且耐高温。因此,把它们作为酶的补充,比起作其替代物显得更有用,至少就目前来看是这样的。 2.4生物模拟传感器 一段时间以来,人们多次尝试把印迹聚合物应用到生物传感器中去。这种想法当然是为了取代“精细的”基于生物分子印迹聚合物的分子识别实体。虽然生物传感器领域非常具有竞争力,但有一点我们可以相信分子印迹聚合物以其许多独特的优势也将极其具有竞争力。分子印迹技术在实验规模显示出许多潜在的应用,但还没发现其有任何市场应用,也许这并不让人感到奇怪,毕竟这个技术还相当稚嫩。 3分子印迹技术现状 在过去的一年左右,大部分发表的论文代表着在科技上的进步。许多新的功能单体

免疫荧光检测

免疫荧光技术(检测抗核抗体(ANA)的实验方案) 荧光免疫技术是以荧光物质标记的特异性抗体或抗原作为标准试剂,用于相应抗原或抗体的分析鉴定和定量测定。荧光免疫技术包括荧光抗体染色技术和荧光免疫测定两大类。荧光抗体染色技术是用荧光抗体对细胞、组织切片或其他标本中的抗原或抗体进行鉴定和定位检测,可在荧光显微镜下直接观察结果,称为荧光免疫显微技术,或是应用流式细胞仪进行自动分析检测,称为流式荧光免疫技术。荧光免疫测定主要有时间分辨荧光免疫测定和荧光偏振免疫测定等。本次实验以荧光免疫显微技术检测抗核抗体(ANA)为例进行实习。 抗核抗体(antinuclear antibody,ANA)又称抗核酸抗原抗体,是一组将自身真核细胞的各种成分脱氧核糖核蛋白(DNP)、DNA、可提取的核抗原(ENA)和RNA等作为靶抗原的自身抗体的总称,能与所有动物的细胞核发生反应,主要存在于血清中,也可存在于胸水、关节滑膜液和尿液中。 抗核抗体实验原理 以小鼠肝细胞或某些培养细胞(如Hep-2)作抗原片,将病人血清加到抗原片上。如果血清中含有ANA,就会与细胞核成分特异性结合。加入荧光素标记的抗人IgG抗体又可与ANA结合,在荧光显微镜下可见细胞核部位呈现荧光。 试剂与器材 1.抗原片现多用商品试剂。如需自行制备,方法如下: (1)肝印片制备:取4-8周龄小鼠,断颈杀死后,剖腹取肝。将肝脏剪成平面块,用生理盐水洗去血细胞,用滤纸吸干渗出的浆液。将切面轻压于载玻片上,使其在载玻片上留下薄层肝细胞。冷风吹干,乙醇固定,冰箱可保存1周。

(2)Hep-2细胞抗原片制备:Hep-2细胞是建株的人喉癌上皮细胞。经适宜培养在载玻片上形成单层细胞抗原片,用洗涤洗去培养基。干燥后,用无水乙醇固定。 (3)肝切片制备:取小鼠肝组织作冰冻切片,厚4μl。-30℃保存备用。 2.异硫氰酸荧光素(FITC)标记的抗人IgG抗体(FITC-抗人IgG抗体)有商品供应,临用时按效价稀释。 3.L PBS 4.缓冲甘油取甘油9份加PBS 1份。 5.待测血清、阳性和阴性对照血清临床标本筛选获得。 6.器材荧光显微镜、孵箱、有盖湿盒、染色缸、吸管、试管等 操作方法 1.准备:检查加样板,生物载片恢复室温,标记。 2.稀释:PBS-Tween缓冲液稀释血清,设阴阳性对照。 3.加样:加样板放于泡沫塑料板上,加25μl稀释后血清,至加样板的每一反应区,避免气泡。加完所有标本后开始温育。 4.温育:将生物薄片盖于加样板的凹槽里,反应开始,室温温育30分钟。 5.冲洗:用烧杯盛PBS-Tween缓冲液流水冲洗生物薄片,然后立即将其浸入盛有PBS-Tween缓冲液的小杯中至少1分钟。不必混摇。 6.加样:滴加20μl荧光素标记的抗人球蛋白(结合物)至一洁净加样板的反应区,完全加完方可继续温育。荧光素标记的抗人球蛋白用前需混匀并以PBS-Tween缓冲液稀释。

分子印迹纤维膜富集分离白藜芦醇的

2012年第16期广东化工 第39卷总第240期https://www.360docs.net/doc/951082641.html, · 7 · 分子印迹纤维膜富集分离白藜芦醇的研究 向海艳,范银洲,戴开金,罗奇志 (南方医科大学药学院,广东广州 510515) [摘要]以白藜芦醇为模板分子,聚偏氟乙烯中空纤维膜为支撑体,采用自由基热聚合法制备白藜芦醇分子印迹复合膜,对膜分离性能进行了测试。结果表明,当萃取剂为纯甲醇时,物质透过膜的量很少,印迹膜体现出对模板分子的吸附选择性;当萃取剂为0.3 %冰醋酸-甲醇时,印迹膜呈现对模板分子的透过选择性。 [关键词]分子印迹复合膜;PVDF中空纤维膜;白藜芦醇;分离纯化 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2012)16-0007-02 Study on the Separation and Purification of Resveratrol by Molecularly Imprinted Hollow Fiber Membrane Xiang Haiyan, Fan Yinzhou, Dai Kaijin, Luo Qizhi (School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China) Abstract: Resveratrol molecularly composite fiber membrane (MIM) was prepared by thermal initiated free radica1 polymerization on the surface of PVDF hollow fiber membrane with resveratrol as template. The separation performance of the prepared membrane for resveratrol was studied. The results showed that with methanol as extract, imprinted membrane showed absorption selectivity, while the permission amounts were low. While with 0.5 % acetic acid-methanol as extract, the imprinted membrane showed permission selectivity for template. Keywords: molecularly imprinted composite membrane;PVDF hollow fiber membrane;resveratrol;isolation and purification 分子印迹技术是近年来迅速发展起来的一种制备对目标分子具有特异选择性结合力的分子印迹聚合物(molecularly imprinted polymer,MIP)的技术,是一种高效的天然产物分离技术。用具有目标药效的活性分子作模板,将制备的分子印迹聚合物作为亲和材料,利用分子印迹的强特异性和高选择性从天然产物粗提物中直接筛选该类药效活性组分。涉及到的天然产物有甘草酸[1]、虎杖中的白藜芦醇[2]、茶叶中酯型儿茶素[3]、青藤碱[4]以及长春碱[5]等,均表现出了很好的分离纯化效果。 在分子印迹技术的研究中,基于分子印迹技术制备的分子印迹膜(molecularly imprinted membrane,MIM)由于兼具分子印迹技术与膜分离技术的优点,为分子印迹技术走向规模化和商业化提供了很好的示范,近年来已成为分子印迹技术领域研究的一个重要方向[6-10]。许振良等在PVDF中空纤维膜表面制备分子印迹膜,并将所得分子印迹膜组装成膜组件,应用于手性药物、茶碱等的分离研究,取得了良好的效果[11-13]。白藜芦醇(Resveratrol,RES)是一种天然的活性多酚物质),具有抗菌、抗炎、降血脂、抗氧化等多方面的药理活性,对肿瘤具有化学预防作用,而且对癌细胞具有选择性杀伤力;对治疗心脑血管疾病有很好的疗效[14]。本课题组曾制备白藜芦醇分子印迹聚合物,并在PVDF平板膜上制备白藜芦醇分子印迹膜,对其选择性能进行了研究[15],本文在此基础上,鉴于中空纤维膜比表面积大、分离效率高,在PVDF中空纤维膜表面制备白藜芦醇分子印迹膜,对其分离白藜芦醇的效果进行研究,以期为天然产物的分离纯化提供一种新思路。 1 实验部分 1.1 试剂和仪器 白藜芦醇(Resveratrol,RES) (美国Sigma公司);白藜芦醇苷(polydatin,POL) (中国药品生物制品鉴定所);EDMA、双酚A(BPA)、丙烯酰胺(AM)、乙腈、甲醇,以上试剂均为分析纯;偶氮二异丁腈(A IBN),化学纯试剂,水为二次蒸馏水。 Agilent 1100型高效液相色谱仪(包括四元泵、自动进样器、DAD二极管阵列检测器,美国安捷伦公司);756MC型紫外可见分光光度计(上海分析仪器总厂);ZK282A型真空干燥箱;CQ26型超声波清洗器;FB-2型恒流泵(上海金达生化仪器有限公司),聚偏氟乙烯中空纤维膜(PVDF),孔径0.2 μm,购于天津膜天公司。 1.2 印迹膜(MIM)和非印迹膜(NIM)的制备 称取0.38 g(1.7 mmol)白藜芦醇溶于20 mL乙腈中,依次加入0.71 g(10 mmol)功能单体AM、10 g(50 mmol)交联剂EDMA和0.1 g (0.6 mmol)引发剂A IBN充分混匀,通N2气5 min后再超声波脱气10 min。然后将PVDF纤维膜放入该混合液中浸泡20 min,取出晾干,于45 ℃下在真空干燥箱中聚合24 h,真空度为-0.09~-0.005 MPa,得到以PVDF为支撑膜的印迹膜前驱体。将该印迹膜前驱体用体积分数为10 %的乙酸甲醇溶液洗脱模板分子RES以及未聚合的单体和交联剂,直至用紫外分光光度计检测不到模板分子和杂质为止,再分别用甲醇和乙腈洗去过量的乙酸,即得以PVDF为基膜的RES 分子印迹膜(MIM),将其保存在乙腈中备用。 非印迹膜(N IM)的制备除不加模板分子外,其余同上。 1.3 膜性能测试 1.3.1 膜通量测试 按文献[13]图1所示测试膜通量。将膜组件接在如图所示的装置上,用恒流泵将甲醇从膜的内部注入。测定甲醇通量。 1.3.2 膜萃取分离实验 参照文献方法[13]进行膜分离实验。如文献[13]中图2所示,将待测膜组件(20根膜,8 cm×1.14 mm)安装于装置中。将30 mL混合液从膜管内泵入(管程),30 mL甲醇以相同的流速从膜外泵入(壳程)进行萃取。两侧溶剂逆向流动,膜界面发生传质,在分子印迹膜孔的推动下,混合液中的RES进入壳程的甲醇中。收集并分析通过组件的溶液。 1.4 分析方法 采用反相高效液相色谱法对白藜芦醇进行测定。以保留时间定性,峰面积定量。具体条件及操作参照文献[16]。 2 结果与讨论 2.1 膜通量 本实验测定了PVDF基膜、分子印迹膜和空白膜的甲醇通量,结果见表1。由表l可见,印迹膜和非印迹膜的甲醇通量均比基膜低,说明印迹膜和非印迹膜表面确实发生了聚合,存在一层致密的聚合层,使膜透过甲醇的能力下降。同时,非印迹膜的甲醇通量比印迹膜低,原因可能是印迹膜的表面由于模板分子洗脱后留下的印迹空穴仍然可以使甲醇透过,而非印迹膜无印迹孔穴的存在[13]。 表1 不同膜的甲醇通量 Tab.1 Methanol permeability of different membranes 膜类型甲醇通量/(mL·h-1) PVDF 200 MIM 50 NIM 10 2.2 膜萃取分离实验结果 配制约50 μg/mL RES、POL混合溶液,按1.3.2方法行萃取过滤实验,实验结果见表2。从表2可见,对于印迹膜,在甲醇 [收稿日期] 2012-11-23 [基金项目] 广东省教育部产学研资助项目(2009B090300216) [作者简介] 向海艳(1974-),女,湖南龙山人,讲师,博士,主要研究方向为天然药物富集分离及分析。

分子印迹技术的原理与研究进展

分子印迹技术的原理与研究进展 (08生微(1)班雷丽文 080548011) 摘要分子印迹是制备具有分子特异识别功能聚合物的一种技术,近年来,这项技术取得了重大的突破和进展,影响到社会多方面的领域。本文介绍了分子印迹技术的基本原理,综述了该技术在环境领域、农药残留检测应用、食品安全检测、药学应用的研究进展。 关键词分子印迹技术,分子印迹聚合物,基本原理,研究进展 1 前言 分子印迹技术是二十世纪八十年代迅速发展起来的一种化学分析技术,属于泛分子化学研究范畴,通常被人们描述为创造与识别“分子锁匙”的人工“锁”技术[1]。分子印迹技术也叫分子模板技术,最初出现源于20世纪40年代的免疫学[1]。分子印迹聚合物以其通用性和惊人的立体专一识别性,越来越受到人们的青睐。近年来,该技术已广泛应用于色谱分离、抗体或受体模拟、生物传感器以及生物酶模拟和催化合成等诸多领域,并由此使其成为化学和生物学交叉的新兴领域之一,得到世界注目并迅速发展。 2 分子印迹技术的基本原理 分子印迹技术是将要分离的目标分子作为模板分子,将它与交联剂在聚合物单体溶液中进行聚合制备得到单体、模板分子复合物,然后通过物理或化学手段除去模板分子,便得到“印迹”下目标分子的空间结构的分子印迹聚合物(MIP) ,在这种聚合物中形成了与模板分子在空间和结合位点上相匹配的具有多重作用位点的空穴,这样的空穴对模板分子具有选择性[11]。 目前,根据印迹分子与分子印迹聚合物在聚合过程中相互作用的机理不同,分子印迹技术分为两种基本类型: (1) 共价法(预组织法,preorganization),主要由Wulff 及其同事创立。在此方法中,印迹分子先通过共价键与单体结合,然后交联聚合,聚合后再通过化学途径将共价键断裂而去除印迹分子[1]。使用的共价结合作用的物质包括硼酸酯、席夫碱、缩醛酮、酯和螯合物等[14]。其中最具代表性的是硼酸酯,其优点是能够生成相当稳定的三角形的硼酸酯,而在碱性水溶液中或在有氮(NH3、哌啶) 存在下则生成四角形的硼酸酯[1]。采用席夫碱的共价键作用也进行了广泛的研究。由于共价键作用力较强,在印迹分子自组装或识别过程中结合和解离速度较慢,难以达到热力学平衡,不适于快速识别,而且识别水平与生物识别相差甚远[13]。因此,共价法发展较为缓慢。

免疫荧光技术

免疫荧光技术(Immunofluorescence technique)又称荧光抗体技术,是标记免疫技术中发展最早的一种。它是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。很早以来就有一些学者试图将抗体分子与一些示踪物质结合,利用抗原抗体反应进行组织或细胞内抗原物质的定位。它是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光基团,再用这种荧光抗体(或抗原)作为探针检查细胞或组织内的相应抗原(或抗体)。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位。 一、基本原理: 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素,制成荧光抗体,再用这种荧光抗体(或抗原)作为探针检测组织或细胞内的相应抗原(或抗体)。在组织或细胞内形成的抗原抗体复合物上含有标记的荧光素,利用荧光显微镜观察标本,荧光素受外来激发光的照射而发生明亮的荧光(黄绿色或橘红色),可以看见荧光所在的组织细胞,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 二、应用范围: 其应用范围极其广泛,可以测定内分泌激素、蛋白质、多肽、核酸、神经递质、受体、细胞因子、细胞表面抗原、肿瘤标志物、血药浓度等各种生物活性物质。根据诊断类别,又可分为传染性疾病、内分泌、肿瘤、药物检测、免疫学、血型鉴定等。 三、基本实验步骤:

1、细胞准备。对单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片,PBS洗两次;对悬浮生长细胞,取对数生长细胞,用PBS离心洗涤(1000rpm,5min)2次,用细胞离心甩片机制备细胞片或直接制备细胞涂片。 2、固定。根据需要选择适当的固定剂固定细胞。固定完毕后的细胞可置于含叠氮纳的PBS中4℃保存3个月。PBS洗涤3×5min. 3、通透。使用交联剂(如多聚甲醛)固定后的细胞,一般需要在加入抗体孵育前,对细胞进行通透处理,以保证抗体能够到达抗原部位。选择通透剂应充分考虑抗原蛋白的性质。通透的时间一般在5-15min.通透后用PBS洗涤3×5min. 4、封闭。使用封闭液对细胞进行封闭,时间一般为30min. 5、一抗结合。室温孵育1h或者4℃过夜。PBST漂洗3次,每次冲洗5min. 6、二抗结合。间接免疫荧光需要使用二抗。室温避光孵育1h.PBST漂洗3次,每次冲洗5min后,再用蒸馏水漂洗一次。 7、封片及检测。滴加封片剂一滴,封片,荧光显微镜检查。 四、注意事项: 1、染完之后没有封片前直接照一些,因为有的时候可能封片会出现问题,再想照反而没有了,另外不要拖太长时间,荧光会崔灭的。 2、荧光的片子一定要避光保存,保存的好的话,过一段时间仍然能照出很好的片子。

分子印迹膜技术分离辛弗研究3

一、选题的依据及意义: 辛弗林(synephrine)分子式为 C9H13NO,结构式 如右图所示。辛弗林属于生物碱中的麻黄碱类,广泛 存在于枳实、个青皮等中药材中。是其中的一种重要 的有效成分。分子结构中同在酚羟基和氨基,因此辛弗林具有两性性质,与酸碱均能结合成盐。常用的辛弗林的分离纯化方法主要有有机溶剂萃取法、大孔吸附树脂法、离子树脂法和硅胶层析法。游离的辛弗林易溶于有机溶剂,难溶于水;其酸式盐和碱式盐则易溶于水,难溶于有机溶剂;在强酸、强碱离子交换树脂层析分离时辛弗林易发生消旋化作用。 制备型高效液相色谱法、硅胶柱色谱法等常规的分离方法溶剂消耗量大,效率低,且容易造成微量的有效成分丢失。分子印迹膜与上述色谱分离技术相比, 在分离领域中具有分子识别性强、固定相制备简便快速、操作简单、性质比较稳定(耐酸碱;耐高温、高压等特点)、溶剂消耗量小、连续操作、易于放大、能耗低、能量利用率高、模板和MIPs都可以回收再利用等优点。故可以考虑利用分子印迹膜技术分离辛弗林。利用此技术可以降低原料消耗,对分离工艺进行优化,提高辛弗林分离能力及产率等方面是有效的措施。 分子印迹膜技术是一门新的很有发展潜力的技术,它不仅具有分子特异识别能力的分子印迹技术的特点,而且具有连续操作、易于放大、能耗低、能量利用率高等的膜技术优点。近年来,分子印迹膜技术,特别是分子印迹复合膜技术已在物质识别与拆分中显示出独特的技术优势,被认为是进行大规模手性物质拆分的非常有潜力的方法。但目前这一技术还处于实验室阶段,距离工业应用还有很大一段距离。主要是由于对分子印迹膜的形态结构与分子识别关系的研究相对不足,对影响膜形态结构的因素仍需进一步研究,对分子印迹膜的传质和识别机理的研究相对滞后,因此分子印迹膜新的潜在的用途还有待进一步开发。随着分子印迹膜技术的快速发展,研制具有大通量和高选择性的分子印迹复合膜,探索药物分离及中草药有效成分分离纯化新方法,推动药物拆分和中草药分离的现代化进程,提高医药质量以及扩大市场需求等方面均具有深远的意义 二、国内外研究现状及发展趋势(含文献综述): 2.1、国外发展 分子印迹膜(MIM)的研究最早开始于20世纪90年代,将MIT应用于膜分离的物质有氨基酸及其衍生物、肽、9-乙基腺嘌呤、莠灭净、阿特拉津、茶碱等。 1990年,Piletsky等采用原位聚合法首次制备了MIP膜,实现了对模板分子腺苷酸(AMP)的特异识别和分离,而后又用同样方法对其它苷酸进行印迹,目标分子选择性最高达到3.4,流率仅有0·5nmol/cm2·h。Sergeyeva等以甲基丙烯酸为单体,三乙二醇二甲基丙烯酸酯为交联剂,加入成孔溶剂二甲基甲酰(DMF)及线型聚合物聚乙二醇(PEG),采用原位聚合法制备了莠去津印迹的多孔MIP膜。使MIM 的水通量达到了3·045L/(m2·h)(在40·7MPa下)。 Yoshikawa小组利用干相转化法制备了MIP薄膜,通过N-乙酰-D、L-色氨酸的电渗析实验,发现该薄膜对L-异构体有很好的选择性,而以Boc-D-Trp为模板分子制备的MIP膜对D-异构体的吸附选择性达到5·9,通量达5nmol/cm2·h,非印迹聚合物膜则无手性识别能力。Kobayashi等首次采用湿相转化技术制备了茶碱的MiM薄膜。这个薄膜是丙烯腈-丙烯酸的共聚物。通过吸附实验发现,茶碱的吸

荧光示踪传感器工作原理

荧光示踪传感器工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

普罗名特荧光示踪传感器与PTSA荧光示踪剂 荧光示踪剂传感器应用原理:通过传感器二极管放射光照到含有荧光示踪剂的循环水中,激活水中荧光团,然后荧光团发出一种不同波长的荧光,这个传感器的光电二极管通过探测这些荧光来反馈PTSA浓度,探测范围0-300ppb。 产生荧光原理: 光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。 荧光是物质吸收光照或者其他电磁辐射后发出的光。大多数情况下,发光波长比吸收波长较长,能量更低。但是,当吸收强度较大时,可能发生双光子吸收现象,导致辐射波长短于吸收波长的情况发生。当辐射波长与吸收波长相等时,既是共振荧光。常见的例子是物质吸收紫外光,发出可见波段荧光,我们生活中的荧光灯就是这个原理,涂覆在灯管的荧光粉吸收灯管中汞蒸气发射的紫外光,而后由荧光粉发出可见光,实现人眼可见。 荧光相关参数 (1)激发光谱:激发光谱是指不同波长的激发引起发射出某一波长荧光的相对效率。 (2)发射光谱:又为荧光光谱,是分子吸收辐射后再发射的结果。 (3)荧光强度:荧光强度与该种物质的荧光量子产率、消光系数以及含量等因素有关。 (4)荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光

的本领,是荧光物质发出光子数与吸收光子数的比值。 (5)斯托克司(stokes)位移:斯托克司位移为最大荧光波长与最大激发波长之差。 (6)荧光寿命:当一束光激发荧光物质时,荧光物质的分子吸收能量后从基态跃迁到某一激发态,再以辐射的形式发出荧光回到基态,激发停止时,分子的荧光强度降低到激发时最大强度的1/e时所需的时间为荧光寿命。 PTSA荧光示踪剂:PTSA(对甲基笨磺酸),分子式:C7H8O3S ,分子量:,CAS号:104-15-4,外观:白色叶状或柱状结晶,熔点:106-107℃,沸点:140℃(),溶解性:易溶于水,溶于醇和醚,难溶于苯和甲苯,不溶于戊烷、己烷、庚烷等烷烃。该品有时以含1分子或4分子结晶水的形态存在。 PTSA荧光示踪剂的实际运用:通过传感器测得的荧光团浓度来反映水处理药剂中的荧光示踪剂浓度,由于在药剂复配过程中,荧光示踪剂在药剂中的比例是确定的,这样就可以确定水处理药剂在循环水中的浓度,实现了无磷药剂的精确监测。 1、测量稳定性、发光二极管的寿命

分子印迹技术

分子印迹技术研究进展 摘要分子印迹技术是结合高分子化学、生物化学等学科发展起来的一门边缘学科。它对于研究酶的结构、认识受体-抗体作用机理及在分析化学等方面有重要的意义。本文从分子印迹聚合物的识别机理、分子印迹聚合制备条件和制备技术三个方面综述了分子印迹的研究进展,最后展望了分子印迹发展前景。 关键词:分子印迹聚合物;印迹分子;综述 40年代,Pauling。试图用锁匙理论解释免疫体系。虽然他的理论经后人的实践证明是错误的,但是在他的这种错误的理论中仍有两点是正确的:(1)生物体所释放的物质与外来物质有相应的结合位点;(2)生物体所释放的物质与外来物质在空间上相互匹配。正是基于这两点假设,化学家们发展了一项有效的分析技术称为分子印迹技术(molecularimprinting, MIP),在国内也有人把它称为“分子烙印”。1949年,Dickey首先提出了“分子印迹”这一概念,但在很长一段时间内没有引起人们的重视。直到1972年由Wulff研究小组首次报道了人工合成的有机分子印迹聚合物之后,这项技术才逐渐人们所认识,并于近10年内得到了飞速的发展。 MIPs具有三个特性: (ⅰ)预定性,可根据不同目的制备相应的MIPs; (ⅱ)识别性,MIPs是依据模板定做的,它具有与模板分子的立体结构和官能团相符的孔穴,所以选择性地识别模板分子;(ⅲ)实用性,它可以与天然的生物识别系统如酶与底物、抗原与抗体等相媲美,具有抗恶劣环境、稳定性高和使用寿命长等优点。二十多年来,在固相萃取、膜分离技术、异构体的分离等方面获得广泛研究,展现了良好应用前景。本文综述了MIPs的识别机理、制备技术条件及应用方面新进展. 1.分子印迹技术的基本概念和原理 分子印迹技术是指为获得在空间结构和结合位点上与某一分子(模板分子)完全匹配的聚合物的实验制备技术。它是通过以下方法实现的:(1)首先以具有适当功能基的功

激光诱导荧光检测技术简介

荧光分析法 原理:根据物质分子吸收光谱和荧光光谱能级跃迁机理,具有吸收光子能力的 物质在特定波长光(如紫外光)照射下可在瞬间发射出比激发光波长长的光,即荧光。荧光强度与物质浓度的关系可表示为:I=kC,因此紫外荧光光强I与样气的浓度C成线性关系。这是紫外荧光法进行定量检测的重要依据。 两种测定方法: 直接测定法:利用物质自身发射的荧光进行测定分析。 间接测定法:由于有些物质本身不发射荧光(或荧光很弱),这就需要把不发射荧光的物质转化成能发射荧光的物质。例如用某些试剂(如荧光染料),使其与不发射荧光的物质生成络合物,这种络合物能发射荧光,再进行测定。因此荧光试剂的使用,对一些原来不发荧光的无机物质和有机物质进行荧光分析打开了大门,扩展了分析的范围。 不管是直接测定,还是间接测定,一般的采用标准工作曲线法,取各种已知量的荧光物质,配成一系列的标准溶液,测定出这些标准溶液的荧光强度,然后给出荧光强度对标准溶液的浓度的工作曲线。在同样的仪器条件下,测定未知样品的荧光强度,然后从标准工作曲线上查出未知样品的浓度(即含量)。 一般常用的荧光分析仪器有:目测荧光仪(荧光分析灯),荧光光度计和荧光分光光度计三种。 荧光分析是一种先进的分析方法,它比电子探针法、质谱法、光谱法、极谱法等都应用的较广泛和普及,这同荧光分析具有很多优点分不开的。荧光分析所用的设备较简单,如目测荧光仪和荧光光度计构造非常简单完全可以自己制造。比起质谱仪、极谱仪和电子探针仪来它在造价上要便宜很多倍,而且荧光分析的最大特点是:分析灵敏度高、选择性强和使用简便。同时具备这三大特点的仪器并不多. 激光诱导荧光分析(LIF) 激光的特点:亮度高,方向性好,单色性好,相干性好 仪器组成:与普通的荧光检测器一样,激光诱导荧光检测器主要由光源、光学系统、检测池和光检测元件组成,两者最重要的区别是激光诱导荧光检测器的光源是激光器。 激光器:激光器是激光诱导荧光检测器的重要组成部分,用脉冲激光为光源,采用时间分辨技术可消除瑞利散射光(半径比光或其他电磁辐射的波长小很多的微小颗粒对入射光束的散射)和拉曼散射光(光波在被散射后频率发生变化)对测定的干扰,同时增加被测成分之间测定的选择性。以上这些特性使激光诱导荧光检测器的信噪比大大增强,显示出最高的灵敏度和较好的选择性。

分子印迹技术

分子印迹聚合物的研究现状及展望 闻军 材料与化学工程学院化学工程与工艺7班,自贡 643000 摘要:分子印迹技术是一种制备具有分子识别功能的聚合物的新技术, 是在近十几年来才发展起来的一门边缘科学技术。现已应用于色谱分离、抗体和受体模拟物、固相萃取、生物传感器等领域分子印迹技术于近十年内得到了飞速的发展,已经成为当前研究的热点之一。本文回顾了分子印迹技术近十多年来的发展过程,总结了目前的研究现状,并展望了分子印迹技术未来的发展趋势。 关键词:分子印迹聚合物; 分子印迹;研究进展 引言 每年公开发表的论文数几乎直线上升。人们研究分子印迹聚合物(也叫分子烙印聚合物,(molecularly imprinted polymers, MIP s)的历史由来已久,可以追溯到上个世纪。1940 年,Pauling 就提出以抗原为模板来合成抗体的设想,这是对分子印迹技术(即分子烙印技术,(molecule imprinting technology, MIT)的最初描述。目前主要从事, 研究工作的国家有瑞典、日本、德国、美国、英国、中国等十多个国家。国内主要研究单位有大连化物所、南开大学、兰州化物所、上海大学、军事科学院毒物所、湖南大学、东南大学、防化研究院等。之所以发展如此迅速,主要是因为它有三大特点:即预定性、识别性和实用性。由于mips具有抗恶劣环境的能力,表现出高度的稳定性和长的使用寿命等优点,因此,它在许多领域,如色谱中对映体和异构体的分离、固相萃取、化学仿生传感器、模拟酶催化、临床药物分析、膜分离技术等领域展现了良好的应用前景。近年来,已有一些文献介绍了这方面的理论和最新研究成果[1-2].本文通过对这十几年的论文 的回顾,并对该领域未来的发展方向作出展望,旨在引起国内分析化学工作者对该领域研究的关注,以便更快地赶上国际先进水平。 1.1分子印迹技术的基本概念和原理 在生物体内,分子复合物的形成通常需要借助非共价键(氢键,范德华力,离子键等)相互作用。虽然单个非共价键比单个共价键键能低,但多重非共价键的藕合和多个作用位点的协同则会形成很强的相互作用,从而使复合物具有很高的稳定性。由Pauling抗体形成理论出发,当模板分子与聚合物单体接触时会尽可能地同单体形成多重作用点,如果通过聚合,把这些多重作用点固定或“冻结”下来,当模板分子除去后,聚合物中就形成了与模板分子在空间和结合位点上相

(完整word版)分子印迹技术-1

分子印迹技术 分子印迹,又称分子烙印(molecular imprinting),属超分子化学范畴,是源于高分子化学,生物化学,材料科学等学科的一门交叉学科。分子印迹技术(molecular imprinting technique, MIT)是指制备对某一特定的目标分子(模板分子,印迹分子或烙印分子)具有特异选择性的聚合物的过程。它可以被形象地描绘为制造识别“分子钥匙”的“人工锁”的技术。 分子识别在生物进化中起着特别重要的作用,是从分子水平研究生物现象的重要化学概念,已成为当今研究的热点课题之一。选择性是分子识别的重要特征。人们利用一些天然花合屋如环糊精,或合成化合物如冠醚,杯芳烃和金刚烷等模拟生物体系进行分子识别研究,取得了一些可惜的进展,一定意义上构成了分子印迹技术的雏形。 分子印迹技术的出现直接来源于免疫学的发展,早在20世纪30年代,Breinl,Haurowitz和Mudd就相继提出了一种当抗体侵入时生物体产生抗体的理论。后来在20世纪40年代,由著名诺贝尔奖获得者Pauling对上述理论做了进一步的阐述,并提出了以抗原为模板来合成抗体的理论。该理论认为:抗原物质进入机体后,蛋白质或多肽链以抗原为模板进行分子自组装和折叠形成抗体。虽然Pauling的理论被后来的“克隆选择理论”所推翻,但是在他的理论中仍有两点具有一定的合理性,也为分子印迹的发展奠定了一定的理论基础,同时激发了人们以抗原或待测物为模板合成抗体模拟物的设想;(1)生物体所释放的物质与外来物质在空间上相互匹配。 1949年,Dickey首先提出了“专一性吸附”这一概念,实际上可以视为“分子印迹”的萌芽,但在很长一段时间内没有引起人们足够的重视。直到1972年由德国Heinrich Heine大学的Wulff研究小组首次报道了人工合成分子印迹聚合物之后,这项技术才逐步为人们所认识。特别是1993年瑞典Lund大学的Mosbach等在《Nature》上发表有关茶碱分子印迹聚合物(molecularly imprinted polymers,MIPs)的研究报道后,分子印迹技术得到了蓬勃的发展。迄今,在分子印迹技术的作用机理,分子印迹聚合物制备方法以及分子印迹技术和分子印迹聚合物在各个领域的应用研究都取得了很大的进展,尤其是分析化学方面的应用更是令人瞩目。分子印迹技术的应用研究所涉及的领域非常宽泛,包括分离纯花,

相关文档
最新文档