最新高一数学必修一和必修四综合测试卷

合集下载

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。

)。

A。

4.B。

8.C。

16.D。

322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。

)。

A。

(-∞,-1)。

B。

(1,+∞)。

C。

(-1,1)U(1,+∞)。

D。

(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。

)。

A。

a<b<c。

B。

b<c<a。

C。

c<a<b。

D。

c<b<a4.函数y=-x^2+4x+5的单调增区间是(。

)。

A。

(-∞,2]。

B。

[-1,2]。

C。

[2,+∞)。

D。

[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。

)。

A。

a≤2.B。

-2≤a≤2.C。

a≤-2.D。

a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。

)。

A。

y=x-2.B。

y=x-1.C。

y=x^2.D。

y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。

)。

A。

1/2.B。

2/3.C。

3/4.D。

1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。

)。

A。

1/5.B。

-1/5.C。

5.D。

-59.若tanα=3,则sinαcosα=(。

)。

A。

3.B。

3/2.C。

3/4.D。

9/410.sin600°的值为(。

)。

A。

3/2.B。

-3/2.C。

-1/2.D。

1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。

)。

A。

1.B。

-1.C。

5/8.D。

-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。

高一数学必修一和必修四综合测试卷

高一数学必修一和必修四综合测试卷

高一数学必修一和必修四综合测试卷高一数学必修①④综合练(一)一.填空题1.已知集合A={13,x},B={1,x^2},AB={13,x},则这样的x的不同值有____个。

x-3,x≥92.已知f(x)={f[f(x+4)],x<9;f(x-3),x≥9},则f(5)的值为____。

f[f(5+4)]=f[f(9)]=f(6)=f[6-3]=f(3)3.已知函数f(x)的定义域为R,满足f(x+2)=-f(x),当-2≤x≤1时,f(x)=x,则f(8.5)等于____。

f(8.5)=f(6.5+2)=-f(6.5)=-f(4.5+2)=f(4.5)=4.54.a-a等于____。

5.若lg2=a,lg3=b,则log5 12等于____。

log2 12=log2 3+log3 4=log2 3+log2 2=log2 66.若loga 2>logb 2,则有a,b,1三者关系为____。

a<b<17.函数f(x)=4+a/(8-|x-1|)的图象恒过定点P,则P点坐标是____。

1,4+a/7)8.下列大小关系为____。

1/3,1/2)<(1/2,3/5)<(1,2/5)9.设角α是第四象限角,且|cosα|=1/3,则α是第____象限角。

二10.函数f(x)=lg(sin x)+1-2cos x的定义域是____。

0,π/2)11.已知sin x/(1-cos x/2)=-1/2,则cos x/(1+sin x/2)____。

1/212.在锐角ΔABC中,cosA与sinB的大小关系为____。

cosA<sinB13.函数f(x)=tanx(-2< x< π/4)的值域是____。

0)14.将函数y=f(x)的图象上的每一点的纵坐标变为原来的平方,得到图象C1,再将C1上每一点的横坐标变为原来的π/4倍,得到图象C2,若C2的表达式为y=sin x,则y=f(x)的解析式为____。

(完整版)高一数学必修1必修4试卷含答案,推荐文档

(完整版)高一数学必修1必修4试卷含答案,推荐文档
一、选择题(60 分)
3 x 0 x 2 0
1
2
3
4
5
6
7
8
9 10 11 12
A
BDBAACCDCAC
x x
3 2
A x 2 x 3
二、填空题(16 分)
13. 13
14. 1
15.
f
(a
1)
a 2 a 2
6a 2a
5 3
a 1 a 1
16.
(2) A B B x x a a a 3
(2)解不等式 f (x) log a ; 3
(3) g(x 2) 2 2b 有两个不等实根时,求 b 的取值范围.
⑴求 f (0) 的值; ⑵求证: f (x) 为奇函数; ⑶若函数 f (x) 是 R 上的增函数,已知 f (1) 1, 且 f (2a) f (a 1) 2 ,求 a 的取值范围.
(1)求 a, b 的值;
f (a b) f (a) f (b) ,当 x 0 时,有 f (x) 1,其中 f (1) 2 . (1)求 f (0) 、 f (1) 的值; (2)证明 不等式 m 2
(k
2)m
3
f (x)
所以函数的值域为1,
……12 分
(B 类)解:(1) 1 x 0, x 1 0,即x 1x 1 0.
1 x
x 1
1 x 1, f x的定义域为1,1
20 解:设经过 n 天,该同学所服的第一片药在他体内的残留量不超过10mg ……2

(2)证明:
则: 200(1 60%)n 10
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
建议收藏下载本文,以便随时学习! 22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分)

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx

1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )

高一数学必修①④综合测试卷(二)

高一数学必修①④综合测试卷(二)

高一数学必修①④综合测试卷(二)命题人:刘海军 审核:高一数学备课组 姓名: 班级: 成绩:一.填空题1.设集合2{|2530}A x x x =--=,{|1}B x mx ==,且B A Ü,则实数m 的取值集合为(用列举法表示) . 2.若幂函数a y x =的图象当01x <<时,位于直线y x =的下方,则实数a 的取值范围是 . 3.已知5()l g f x x =,则()f x = .4.函数21y x =-的定义域是(1)[25]-∞ ,,,则其值域是 . 5.已知6()4f x k x x=+-(k ∈R ),(2)0f -=,则(2)f = .6.函数2()l o g (4)x f x a =+(0a >且1a ≠)的值域是 .6.(2)+∞,7.ω是正实数,函数)si n (2)(x x f ω=在⎥⎦⎤⎢⎣⎡-4,3ππ上是增函数,则ω的范围是 . 8.函数)0,0)(sin(πϕϕω<<>+=A x A y 的图象如右图所示,则该函数的解析式为 . 9.函数y=As in(ωx+φ)(A >0,ω>0) 的部分图象如图所示,则f(1)+f(2)+ f(3)+…+f(11)的值等于 . 10. 已知→a =(1,2),→b =(-2,3), 且k →a +→b 与→a -k →b 垂直,则k = . 11.已知向量a =(3,2),b =(x,4),且a ∥b , 则x 的值为 . 12.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3, 则b 等于 . 13.已知|a |=1,|b |=2,a 与b 的夹角为60°,c =2a +3b ,d =k a -b (k ∈R ),且c ⊥d ,那么k 的值为 .14.若|a +b |=|a -b |,则a 与b 的夹角为_________________.15.给出下列五个命题: ①函数y=tanx 的图象关于点(kπ+2π,0)(k ∈Z )对称; ②函数f(x)=sin|x|是最小正周期为π的周期函数; ③设θ为第二象限的角,则tan2θ>cos 2θ,且sin 2θ>cos 2θ; ④函数y=cos 2x+sinx 的最小值为-1. 其中正确的命题是________________________________________.16.定义运算b a *为:()(),⎩⎨⎧>≤=*b a b b a a b a 例如,121=*,则函数()s i n c o s f x x x =*的值域为.二.解答题17.设全集为R ,2{|120}A x x px =++=,2{|50}B x x x q =-+=,若(){2}R A B = ð,(第8题)(第9题)R (){4}A B = ð,求A B .18.已知奇函数2220()000x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩,,, ,, ,(1)求实数m 的值;(2)若函数()f x 在区间[12]a --,上单调递增,求实数a 的取值范围.19.已知向量)21,s i n (--=→θa m ,)cos ,21(θ=→n .(Ⅰ)当22=a ,且→→⊥n m 时,求θ2s i n 的值;(Ⅱ)当0=a ,且→m ∥→n 时,求θt a n 的值.20.已知向量=(3,-4),=(6,-3),=(5-m,-(3+m)). (1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.21.已知f(x)=sin(2x+6π)+sin(2x-6π)+2cos 2x+a ,当x ∈[-4π,4π]时,f(x)的最小值为-3,求a 的值.22.已知点A 、B 、C 的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(2π,23π). (1)若||=||,求角α的值; (2)若·=-1,求αααta n 12s i n s i n22++的值.23.定义在(0)+∞,上的函数()f x ,对于任意的(0)m n ∈+∞,,,都有()()()f m n f m f n =+成立,且当1x >时,()0f x <.(1)求证:1是函数()f x 的零点;(2)求证:()f x 在(0)+∞,上是减函数.高一数学必修①④综合测试卷(二)答案一.填空题1.1023⎧⎫-⎨⎬⎩⎭,,2.(1)+∞,3.1lg 254.1(0)22⎡⎤-∞⎢⎥⎣⎦,, 5.8-6.(2)+∞,7.230≤<ω 8.)423sin(2π+=x y9.由图象可知,f(x)=2sin4πx 的周期为8, ∴f(1)+f(2)+f(3)+…+f(11)=f(1)+f(2)+f(3)=2sin4π+2sin 2π+2sin 43π=2+22.10.21±-11.因为a ∥b ,所以3×4-2×x=0,从而x=6. 12.b 为单位向量,∴设b =(cosθ,sinθ).∵a ·b =3,∴(3,1)·(cosθ,sinθ)=3cosθ+sinθ=3. ∴sin(θ+3π)=sin 3π.∴θ+3π=3π或θ+3π=π-3π.∴θ=0或θ=3π. 当θ=0时,b =(1,0),b ∥x 轴,不合题意舍去. 当θ=3π时,b =(21,23).13.a ·b =1×2×cos60°=1,∵c ⊥d , ∴c ·d =(2a +3b )·(k a -b )=2k a 2-2a ·b +3k a ·b -3b 2=2k-2+3k-12=0. ∴k=514. 14.解法一:可考虑夹角公式.∵|a +b |=|a -b |,∴(a +b )2=(a -b )2. 整理得a ·b =0,∴a ⊥b . ∴a 与b 的夹角为90°. 解法二:考虑平行四边形模型. 在平行四边形OABC 中,=a ,OC =b . 则OB =a +b ,CA =a -b . ∵|a +b |=|a -b|,即|OB |=|AC |, ∴平行四边形OABC 为矩形. ∴a 与b 的夹角为90°. 15.①由正切曲线,知点(kπ,0),(kπ+2π,0)是正切函数的对称中心,∴①对. ②f(x)=sin|x|不是周期函数,②错.③∵θ∈(2kπ+2π,2kπ+π),k ∈Z , ∴2θ∈(kπ+4π,kπ+2π). 当k=2n+1,k ∈Z 时,sin 2θ<cos 2θ.∴③错.④y=1-sin 2x+sinx=-(sinx 21-)2+45, ∴当sinx=-1时,y min =1-(-1)2+(-1)=-1.∴④对.所以选①④16.]22,1[- 二.解答题 17.解(){2}A B =R ð, 2B ∴∈但2A ∉. (){4}A B =R ð, 4A ∴∈,但4B ∉. 22441202100.p q ⎧++=⎪⎨-+=⎪⎩,4 6.{34}{23}.{234}.p q A B A B ∴=-=∴==∴= ,,,,,, 18.解:(1)0x <,则0x ->,22()()2()2f x x x x x ∴-=--+-=--, 又()f x 是奇函数, ()()f x f x ∴-=-,于是0x <时,22()2f x x x x mx =+=+. 2m ∴=.(2)要使()f x 在[12]a --,上单调递增,须212 1.a a ->-⎧⎨-⎩,≤解得13a <≤.故实数a 的取值范围为(13],.19.解:(Ⅰ)当22=a 时,)21,s i n 22(--=→θm ,→→⊥n m , ∴由0=⋅→→n m , 得22cos sin =+θθ, ……………………3分 上式两边平方得212si n 1=+θ, 因此,212s i n -=θ. ……………6分(Ⅱ)当0=a 时,)2/1,si n (--=→θm ,由→m ∥→n 得41cos sin =θθ .即212s i n =θ. ……9分θθθ2tan 1tan 22sin +=, 32tan +=θ或 32-. ………………12分20.解:(1)已知向量=(3,-4),=(6,-3),=(5-m,-(3+m)),若点A 、B 、C 能构成三角形,则这三点不共线.∵=(3,1),=(5-m,-(3+m)), ∴3(1-m)≠2-m. ∴实数m≠21时满足条件. (若根据点A 、B 、C 能构成三角形,则必须|AB|+|BC|>|CA|) (2)若△ABC 为直角三角形,且∠A 为直角,则⊥, ∴3(2-m)+(1-m)=0,解得m=47. 21.解:∵f(x)=sin(2x+6π)+sin(2x-6π)+2cos 2x+a =3sin2x+cos2x+1+a=2sin(2x+6π)+1+a ,x ∈[-4π,4π],∴-3π≤2x+6π≤32π.∴f(x)在[-4π,4π]上的最小值为2(-23)+1+a=1-3+a.由题意知1-3+a=-3,∴a=3-4.22.解:(1)∵=(cosα-3,sinα),=(cosα,sinα-3),∴||=αααcos 610sin )3(cos 22-=+-, ||=αααsin 610)3(sin cos 22-=-+.由||=||得sinα=cosα. 又∵α∈(2π,23π),∴α=45π.(2)由·=-1得(cosα-3)cosα+sinα(sinα-3)=-1.∴sinα+cosα=32. 又ααααααααcos sin 1)cos (sin sin 2tan 12sin sin 22++=++=2sinαcosα.由①式两边平方得1+2sinαcosα=94,∴2sinαcosα=95-.∴95tan 12sin sin 22-=++ααα. 23.证明:(1)由于对任意(0)m n ∈+∞,,,有()()()f m n f m f n =+.∴令1m n ==,则(1)2(1)f f =. (1)0f ∴=,即1是()f x 的零点. (2)令120x x <<,则222211111111()()()()()x x x f x f x f x f x f f x f x f x x x ⎛⎫⎛⎫⎛⎫-=-=+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,而211xx >,210x f x ⎛⎫∴< ⎪⎝⎭,即12()()f x f x >.()f x ∴在(0)+∞,上是减函数. (2)22211()log (42)log 224x xx f x ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,211()224x u x ⎛⎫=-- ⎪⎝⎭ 在[12],上是增函数, 22max 11()21224u x ⎛⎫∴=--= ⎪⎝⎭.()f x ∴的最大值为2l o g 12.。

完整word版,高一数学必修1、4测试题(分单元测试,含详细答案,强烈推荐,共90页)【适合14523顺序】

完整word版,高一数学必修1、4测试题(分单元测试,含详细答案,强烈推荐,共90页)【适合14523顺序】

迄今为止最全,最适用的高一数学试题(必修1、4)(特别适合按14523顺序的省份)必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A Y ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 5MNAMNBNMCMND9.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A.B. B A IC. B C A C U U ID. B C A C U U Y11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A I ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A I ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( ) A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。

高一上学期数学试卷(必修1和必修4)+(Word版含解析)

高一上学期数学试卷(必修1和必修4)+(Word版含解析)

高一数学试卷(必修1和必修4)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合P={x|0≤x<3},M={x|x2≤9},则P∩M=()A.{x|0<x<3} B.{x|0≤x<3} C.{x|0<x≤3} D.{x|0≤x≤3} 2.(5分)函数f(x)=﹣x的图象关于()对称.A.y轴B.x轴C.坐标原点D.直线y=x3.(5分)在区间(0,1)上单调递减的函数是()A.y=B.y=log2(x+1)C.y=2x+1D.y=|x﹣1|4.(5分)若函数y=f(x)的定义域是,则函数的定义域是()A.B.D.(0,1)5.(5分)要得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位6.(5分)函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)7.(5分)设a=log2,b=log,c=()0.3,则()A.a<c<b B.a<b<c C.b<c<a D.b<a<c8.(5分)同时具有性质“①最小正周期是π,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C. D.9.(5分)已知函数若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)10.(5分)定义*=|a|×|b|sinθ,θ为与的夹角,已知点A(﹣3,2),点B(2,3),O是坐标原点,则*等于()A.5B.13 C.0D.﹣2二、填空题:(本大题共4小题,每小题5分,满分20分)11.(5分)2log510+log50.25=__________.12.(5分)已知函数若f(f(0))=4a,则实数a=_______.13.(5分)在Rt△ABC中,C=90°,AC=4,则•等于___________.14.(5分)已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=_________.三、解答题.(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤)15.(12分)(1)已知tanα=2,计算的值;(2)化简:(3)已知一扇形的圆心角是72°,半径等于20cm,求扇形的面积.16.(12分)已知集合A={x||x﹣a|<4},B={x|x2﹣4x﹣5>0}且A∪B=R,求实数a的取值范围.17.(14分)已知函数f(x)=sin(ωx+φ),(ω>0),f(x)图象相邻最高点和最低点的横坐标相差,初相为.(Ⅰ)求f(x)的表达式;(Ⅱ)求函数f(x)在上的值域.18.(14分)已知函数f(x2﹣1)=log m(1)求f(x)的解析式并判断f(x)的奇偶性;(2)解关于x的不等式f(x)≥0.19.(14分)设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f (y),.(1)求f(1)的值;(2)若存在实数m,使得f(m)=2,求m的值;(3)如果f(x)+f(2﹣x)<2,求x的取值范围.20.(14分)已知向量,,,,k,t为实数.(Ⅰ)当k=﹣2时,求使成立的实数t值;(Ⅱ)若,求k的取值范围.。

(完整word)高一数学必修一和必修四综合测试卷

(完整word)高一数学必修一和必修四综合测试卷

高一数学必修①④综合练习(一)一.填空题1.已知集合{13}A x =,,,2{1}B x =,,{13}A B x =,,,则这样的x 的不同值有 个.2.已知39()[(4)]9x x f x f f x x -⎧=⎨+<⎩, ≥,,则(5)f 的值为 .3.已知函数()f x 的定义域为R ,满足(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(8.5)f 等于 .6aa -等于 .5.若lg2a =,lg3b =,则5log 12等于 .6.若log 2log 20a b >>,那么有,,1a b 三者关系为 .7.函数1()4x f x a -=+的图象恒过定点P ,则P 点坐标是 .8. 122333111,,225⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下列大小关系为 . 9.设角α是第四象限角,且|cos|cos2αα=-,则2α是第 象限角. 10.函数()lg sin f x x =+的定义域是 .11.已知1sin 1,cos 2x x +=-那么cos sin 1x x -的值是 . 12.在锐角ABC ∆中,cos A 与sin B 的大小关系为 .13.函数()tan ()43f x x x ππ=-≤<的值域是 .14.将函数()y f x =的图象上的每一点的纵坐标变为原来的13得到图象1C ,再将1C 上每一点的横坐标变为原来的12得到图象2C ,再将2C 上的每一点向右平移3π个长度单位得到图象3C ,若3C 的表达式为sin y x =,则()y f x =的解析式为 .15.已知tanx=6,那么21sin 2x+31cos 2x=_______________.16.已知(,),(,),tan 2222ππππαβα∈-∈-与tan β是方程240x ++=的两个实根,则__________.αβ+=二.解答题17.设集合{|2135}A x a x a =+-≤≤,{|322}B x x =≤≤,求能使A A B ⊆成立的a 值的集合.18.设函数2()log ()x xf x a b =-,且(1)1f =,2(2)log 12f =.(1)求 a b ,的值; (2)当[12]x ∈,时,求()f x 的最大值.19.已知1211log 21x f x x ⎛⎫-=⎪+⎝⎭. (1)求()f x 的解析式; (2)判断()f x 的奇偶性;(3)判断()f x 的单调性并证明.20.已知函数y=21cos 2x+23sinxcosx+1,x ∈R .(1)求它的振幅、周期和初相;(2)用五点法作出它的简图;(3)该函数的图象是由y=sinx(x ∈R )的图象经过怎样的平移和伸缩变换得到的? 21.某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好. 若用x 表示床价,用y 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入) (1)把y 表示成x 的函数,并求出其定义域;(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?22.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤在R 上是偶函数,其图象关于点3(,0)4M π对称,且在区间[0,]2π上是单调函数,求ϕ和ω的值.高一数学必修①④综合测试卷(一)答案一.填空题1.3个2.63.4.5.21a ba+ -6.1a b<<7. (15), 8. 221333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9.二 10.[2,2)()3k k k Z ππππ++∈11.1212.cos A <sin B 13.[-14.1()3sin()23f x x π=+15.111551363136211tan 31tan 21cos sin cos 31sin 21222222=++⨯=++=++x x x x x . 16.23π-二.解答题17.解:由A AB ⊆,得A B ⊆,则21352133522a a a a +-⎧⎪+⎨⎪-⎩≤,≥,≤,或2135a a +>-. 解得69a ≤≤或6a <. 即9a ≤.∴使A A B ⊆成立的a 值的集合为{9}a a ≤.18.解:由已知,得22222log ()1log log 12a b a b -=⎧⎨-=⎩,, 22212a b a b -=⎧∴⎨-=⎩,,解得42a b ==,. 19.解:(1)令121log 2t x =,则21124ttt x ⎛⎫⎛⎫∈== ⎪ ⎪⎝⎭⎝⎭R ,,11144().1411414()().14tt t txxf t f x x ⎛⎫- ⎪-⎝⎭==+⎛⎫+ ⎪⎝⎭-∴=∈+R (2)x ∈R ,且1441()()4141x x xx f x f x -----===-++, ()f x ∴为奇函数.(3)2()114xf x =-++, ()f x ∴在()-∞+∞,上是减函数. 证明:任取12x x ∈R ,,且12x x <,则21121212222(44)()()111414(14)(14)x x x x x x f x f x -⎛⎫⎛⎫-=-+---= ⎪ ⎪++++⎝⎭⎝⎭. 4x y =在()-∞+∞,上是增函数,且12x x <,1244x x ∴<.12()()0f x f x ∴->,即12()()f x f x >.14()14xxf x -∴=+在()-∞+∞,上是减函数.20.解:y=21cos 2x+23sinxcosx+1=41cos2x+23sin2x+45=21sin(2x+6π)+45. (1)y=21cos 2x+23sinxcosx+1的振幅为A=21,周期为T=22π=π,初相为φ=6π.(2)令x 1=2x+6π,则y=21sin(2x+6π)+45=21sinx 1+45,列出下表,并描出如下图象:x12π- 6π 125π 32π1211π x 1 0 2π π 32π 2π y=sinx 11-1y=21sin(2x+6π)+454547 45 43 45(3)解法一:将函数图象依次作如下变换:函数y=sinx 的图象−−−−−→−个单位向左平移6π函数y=sin(x+6π)的图象 −−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin(2x+6π)的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)的图象−−−−−→−个单位向上平移45函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.解法二:函数y=sinx 的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin2x 的图象−−−−−→−个单位向左平移12π函数y=sin(2x+6π)的图象 −−−−−→−个单位向上平移25函数y=sin(2x+6π)+25的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.21.解:(1)由已知有10057510(1303)57510x x y x x x x *-⎧=∈⎨-->⎩N , ≤,, ,令0y >.由100575010x x ->⎧⎨⎩,≤,得610x ≤≤,x *∈N 又由(1303)57500x x x -->⎧⎨>⎩,,得1038x x *<∈N ≤,所以函数为210057561031305751038x x x y x x x x **⎧-∈⎪=⎨-+-<∈⎪⎩NN, ≤≤,且, ≤,且 函数的定义域为{638}x x x *∈N ≤≤,.(2)当10x ≤时,显然,当10x =时,y 取得最大值为425(元); 当0x >时,23130575y x x =-+-, 仅当130652(3)3x =-=⨯-时,y 取最大值,又x *∈N ,∴当22x =时,y 取得最大值,此时max 833y =(元) 比较两种情况的最大值,833(元)>425(元) ∴当床位定价为22元时净收入最多.22.解:2,23πϕω==或2。

(word完整版)高中数学必修一必修四综合测试题二(2021年整理)

(word完整版)高中数学必修一必修四综合测试题二(2021年整理)

(word完整版)高中数学必修一必修四综合测试题二(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学必修一必修四综合测试题二(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学必修一必修四综合测试题二(word版可编辑修改)的全部内容。

高中数学必修一必修四综合测试题二一.填空题1。

已知集合{13}A x =,,,2{1}B x =,,{13}A B x =,,,则这样的x 的不同值有 个。

2.已知39()[(4)]9x x f x f f x x -⎧=⎨+<⎩, ≥,,则(5)f 的值为 .3.已知函数()f x 的定义域为R ,满足(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(8.5)f 等于.4。

6a -等于 。

5.若lg2a =,lg3b =,则5log 12等于 .6.若log 2log 20a b >>,那么有,,1a b 三者关系为 . 7。

函数1()4x f x a -=+的图象恒过定点P ,则P 点坐标是 .8。

122333111,,225⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎝⎭⎝⎭⎝⎭下列大小关系为 . 9。

设角α是第四象限角,且|cos|cos22αα=-,则2α是第 象限角.10。

函数()lg sin f x x =+的定义域是 .11.已知1sin 1,cos 2x x +=-那么cos sin 1xx -的值是 。

12.在锐角ABC ∆中,cos A 与sin B 的大小关系为 。

人教版高中数学必修1与必修4综合试题及答案(K12教育文档)

人教版高中数学必修1与必修4综合试题及答案(K12教育文档)

(完整)人教版高中数学必修1与必修4综合试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)人教版高中数学必修1与必修4综合试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)人教版高中数学必修1与必修4综合试题及答案(word版可编辑修改)的全部内容。

2016—2017学年上学期期末考试数学模拟试卷(A)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关系正确的是( ).A.0∈N B.1⊆R C.{}π⊆Q D.3-∉Z2.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是().3.若sin α<0且tan α>0,则α是( ).A.第一象限角C.第三象限角D.第四象限角4.在四边形ABCD中,若错误!=错误!+错误!,则四边形ABCD一定是().A.矩形B.菱形C.正方形D.平行四边形5.设a∈错误!,则使函数y=x a的定义域为R且为奇函数的所有a值为().A.1,3 B.-1,1C.-1,3 D.-1,1,36.若2()24()f x x mx m-+∈R=在[2,)+∞单调递增,则m的取值范围为().A.m=2 B.m<2 C.m≤2 D.m≥27.同时满足两个条件:(1)定义域内是减函数;(2)定义域内是奇函数的函数是().A.()f x x x-= B.1 ()f x xx+=C.()tanf x x= D.ln ()x f xx=8.函数xy=的定义域是().A .[0,2)B .[0,1)∪(1,2)C .(1,2)D .[0,1)9.设函数f (x )=133,1log ,1x x x x -⎧⎨->⎩≤1则满足f (x )≤3的x 的取值范围是( ).A .[0,+∞)B .[19,3] C .[0,3]D .[19,+∞)10.若向量(2cos )a αα=,(2cos ,2sin )b ββ=且5626αβπππ≤<<≤,若a b a -⊥()则βα-的值为( ).A .344ππ或B .4πC .34πD .744ππ或11.已知函数()sin()f x x ωϕ=+ (其中0ω>,2ϕπ<)图象相邻对称轴的距离为2π,一个对称中心为(,0)6π-,为了得到()cos g x x ω=的图象,则只要将()f x 的图象( ).A .向右平移错误!个单位B .向右平移错误!个单位C .向左平移错误!个单位D .向左平移错误!个单位12.偶函数()f x 满足(1)(1)f x f x -=+,且在[0,1]x ∈时, 2()f x x = , ()ln g x x = ,则函数()f x 与()g x 图象交点的个数是( ). A .1B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知θ的终边过点(12,5)P -,则cos θ= . 14.2lg ,2(),2x x x f x e x -<⎧⎨⎩=≥,则[(2)]f f = .15.在ABC △中,M 是BC 的中点,3AM =,点P 在AM 上,且满足2AP PM =,则()PA PB PC ⋅+的值为 .16.已知21,2()3,21x x f x x x ⎧-<⎪=⎨⎪-⎩≥,若()0f x a =-有三个不同的实数根,则实数a 的取值范围为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.计算下列式子的值:(1)错误!;(2)252525sin cos tan() 634πππ++-.18.已知集合A={x|2≤x≤8},B={x|1〈x〈6},C={x|x>a},U=R.(1)求A∪B,(C U A)∩B;(2)若A∩C≠∅,求a的取值范围.19.已知平面上三点A,B,C,错误!=(2-k,3),错误!=(2,4).(1)若三点A,B,C不能构成三角形,求实数k应满足的条件;(2)若△ABC中角A为直角,求k的值.20.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤ 20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元.(1)求y(万元)与x(件)的函数关系式,并写出自变量x的取值范围;(2)该工厂的年产量为多少件时,所得年利润最大?(年利润=年销售总收入-年总投资).21.函数sin()(0,0,0)y A x A ωϕωϕπ=+>><<在一个周期内的图象如下,求此函数的解析式。

必修1、必修4数学试卷(含答案)

必修1、必修4数学试卷(含答案)

D高一数学清北班入学选拔考试(必修1、4)试卷时量40分钟满分100分姓名得分一、选择题(每小题6分,共48分)1.若集合{}A=|1x x x R≤∈,,{}2B=|y y x x R=∈,,则A B= ()A.{}|11x x-≤≤ B. {}|0x x≥ C.{}|01x x≤≤ D.∅2.给定函数①12y x=,②12log(1)y x=+,③|1|y x=-,④12xy+=,期中在区间(0,1)上单调递减的函数序号是()A. ①②B.②③C.③④D.①④3.若x是方程式lg2x x+=的解,则x属于区间()A.(0,1)B.(1,1.25)C.(1.25,1.75)D.(1.75,2)4.函数x xx xe eye e--+=-的图像大致为()5.设}21sin|{<=xxA,{|cosB x x=>,则()A. BA⊂ B. BA= C. BA⊃ D. BA⊆6.已知函数tany xω=在(2π-,2π)内是减函数,则()A.01ω<≤B.10ω-≤<C.1ω≥D.1ω≤-7.若函数()y f x=的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移2π个单位,沿y轴向下平移1个单位,得到函数1sin2y x=的图象则()y f x=是()A.1sin(2)122y xπ=++ B.1sin(2)122y xπ=-+ C.1sin(2)124y xπ=++ D.1sin(2)124y xπ=-+ 8.设点M是线段BC的中点,点A在直线BC外,216,BC AB AC AB AC=∣+∣=∣-∣,则AM∣∣=()A. 8B. 4C. 2D. 1二、填空题(每小题6分,共42分) 9.设25abm ==,且112a b+=,则m = . 10.已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .11.设函数)()()(R x ae e x x f xx ∈+=是偶函数,则实数=a _______________. 12.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是___ _.13.已知α为第二象限的角,则2α所在的象限是 . 14.函数xxxx y tan tan cos cos +=的值域为 . 15.点P 在平面上作匀速直线运动,速度向量(4,3)v =-(即点P 的运动方向与v 相同,且每秒移动的距离为v 个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为 . 三、解答题(10分)16.如图,已知点G 是△ABO 的重心.⑵若PQ 过△ABO 的重心G ,且,,b OB a OA ==OP ma =,OQ nb =.求证:113m n+=.高一数学清北班入学考试(必修1、4)试卷答案一、选择题(每小题6分,共48分) 1.C 2.B3.D4. A5.C6.B7.B8.C二、填空题(每小题6分,共42分)10.1411.1- 12.)12,1(-- 13.一、三14.}{2.2,0-15.(10,-5)三、解答题(10分) 16.解:显然OM ).(21b a += 因为G 是ABC ∆的重心, 所以=OG 321()3OM a b =⋅+由P 、G 、Q 三点共线,有GQ PG ,共线,所以,有且只有一个实数λ, .GQ PG λ=而OP OG PG -=,31)31()(31b a m a m b a +-=-+=GQ =OQ -OG =b n a b a b n )31(31)(31-+-=+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、b 不共线,所以113311()33m n λλ⎧-=-⎪⎪⎨⎪=-⎪⎩,消去λ,整理得3mn =n m +,故311=+nm .65分以上进清北班。

高中数学必修1、4、5、2、综合测试题附答案

高中数学必修1、4、5、2、综合测试题附答案

数学必修1一、选择题1.设集合{}012345U =,,,,,,{}035M =,,,{}145N =,,,则()UM C N ⋂=() A .{}5B .{}0,3C .{}0,2,3,5D .{}0,1,3,4,52、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( )A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}3、计算:9823log log ⋅=( )A 12B 10C8 D64、函数2(01)xy a a a =+>≠且图象一定过点()A (0,1)B (0,3) C(1,0) D (3,0) 5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是()6、函数12log y x =的定义域是( )A{x |x >0} B{x |x ≥1}C{x |x ≤1} D{x |0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( )A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++= D 1x 3x 2y ++-=8、设xxe 1e)x (g 1x 1x lg )x (f +=-+=,,则()Af(x)与g(x)都是奇函数Bf(x)是奇函数,g(x)是偶函数Cf(x)与g(x)都是偶函数Df(x)是偶函数,g(x)是奇函数 9、使得函数2x 21x ln )x (f -+=有零点的一个区间是() A(0,1) B(1,2) C(2,3) D(3,4) 10、若0.52a =,πlog 3b =,2log 0.5c =,则()A a b c >>B b a c >>C c a b >>D b c a >>二、填空题11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫⎝⎛+3264=______13、函数212log(45)y x x =--的递减区间为______14、函数122x)x (f x -+=的定义域是______15.若一次函数b ax x f +=)(有一个零点2,那么函数ax bx x g -=2)(的零点是. 三、解答题 16. 计算5log 3333322log 2log log 859-+-18、已知函数⎪⎩⎪⎨⎧≥<<--≤+=)2(2)21()1(2)(2x x x x x x x f 。

高中数学必修综合测试卷(三套+含答案)

高中数学必修综合测试卷(三套+含答案)

高一数学必修一综合测卷子一、选择题〔本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.假设集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为〔 〕 A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是〔 〕A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数 3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,假设1和8的原象分别是3和10,则5在f 下的象是〔 〕A .3B .4C .5D .64. 以下各组函数中表示同一函数的是〔 〕⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.假设)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是〔 〕A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =〔 〕 A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是〔 〕8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有〔 〕个A .1个B .2个C .3个D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是〔 〕A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则以下坐标表示的点肯定在函数f(x)图象上的是〔 〕A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 假设函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是〔 〕A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是〔 〕 A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题〔本大题共4小题,每题5分〕13.假设函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a xbax x f ∈+-=,25,假设()55=f ,则()=-5f ; 16.设函数()f x =x |x |+b x +c ,给出以下四个命题: ①假设()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④假设b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题〔解容许写文字说明,证明过程或演算步骤〕17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C〔1〕求B A ⋂〔2〕假设C C A =⋃,求实数m 的取值范围;18.〔本小题总分值12分〕已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.〔1〕求函数()h x 的定义域,推断()h x 的奇偶性,并说明理由; 〔2〕假设(3)2f =,求使()0h x <成立的x 的集合。

(完整版)高中数学人教A版高一年级第一学期期末(必修1+必修4)数学考试卷(WORD文档有答案)

(完整版)高中数学人教A版高一年级第一学期期末(必修1+必修4)数学考试卷(WORD文档有答案)

实数 k 的取值范围; 3
( 2)若函数 f (x) 的图象过点 P(1, ) ,是否存在正数 2
m( m
1) ,使函数
g ( x) log m[ a 2x a 2x mf ( x)] 在 [1,log 2 3] 上的最大值为 0?
若存在,求出 m 的值;若不存在,请说明理由.
高一数学试题答案
第 6 页 (共 12 页)
高一数学试题答案
第 2 页 (共 12 页)
3.14) 。 (12) 定 义 域 为 R 的 偶 函 数 f x , 满 足 对 任 意 的 x R 有 f x 2
f x , 且 当 x 2,3 时 ,
fx
2x 2 12x 18 ,若函数 y f (x) log a x 1 在 R 上至少有六个零点, 则 a 的取值范围是
3
,故选 A .
3
(13) 2
1
( 14)
2
( 15) 5 , 4
5 (或 a )
4
9
( 16)
4
(13)【解析】函数 f x 的图象过点 2,4 ,可得 4 a 2 ,又 a 0 ,解得 a 2 . (14)【解析】 cos18o cos42o cos72o sin 42o cos18o cos42o sin18o sin 42o cos60o 1 .
D. 3
0,
) 的图象的一部分,
则该解析式为(

A . y 2 sin(2x )
3
3
C. y
2 sin(y 2 sin( x ) 3 24
D. y
2 sin(2 x
2 )
3
3
y
2
7
35

高一数学必修1-4综合测试题含答案

高一数学必修1-4综合测试题含答案

高一数学必修1-4综合测试题含答案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高一数学必修1-4综合测试题含答案共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.)225sin( -的值是 ( )A .22 B .22-C .21 D .23 2.若直线经过A (23, 9)、B(43, 15)两点, 则直线A B 的倾斜角是( ) A .45°B .60°C .120°D .135°3.幂函数)(x f 的图象过点⎪⎭⎫⎝⎛21,4,那么)8(f 的值为( )A.42B. 64C. 22D. 6414.为了得到函数)42sin(π-=x y 的图象,只需把函数x y 2sin =的图象上所有的点( )A .向左平移4π个单位长度 B .向右平移4π个单位长度C .向左平移8π个单位长度D .向右平移8π个单位长度5. 已知a 、b 是非零向量且满足(2)-⊥a b a ,(2)-⊥b a b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π6.已知两直线m 、n ,两平面α、β,且βα⊂⊥n m ,.下面有四个命题1)若n m ⊥则有,//βα; 2)βα//,则有若n m ⊥; 3)βα⊥则有若,//n m ; 4)n m //,则有若βα⊥. 其中正确命题的个数是( ) A .0B .1C .2D .37.若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A.3-B. 1C. 0或23-D.1或3-8.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:( ) A.224cm π,312cm π B.215cm π,312cm πC.224cm π,336cm π D.以上都不正确9.设函数2()3x f x x =-,则函数()f x 有零点的区间是( )A.[]0,1B.[]1,2C.[]2,1--D.[]1,0-10. 3名学生排成一排,其中甲、乙两人站在一起的概率是( ) A.23 B.12 C. 13 D. 1611. 已知函数()225f x x mx =-+,m R ∈,它在(,2]-∞-上单调递减,则()1f 的取值范围是( )A. 15)1(=fB. 15)1(>fC. 15)1(≤fD. 15)1(≥f 12. 对于向量,,a b e 及实数12,,,,x y x x λ,给出下列四个条件: ①3+=a b e 且5-=a b e ; ②12x x +=0a b③()λ≠0a =b b 且λ唯一; ④(0)x y x y +=+=0a b 其中能使a 与b 共线的是( )A .①②B .②④C .①③D .③④第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷包括填空题和解答题共两个大题.2.第Ⅱ卷所有题目的答案考生需用黑色签字笔答在“数学”答题卡指定的位置上. 二、填空题:本大题共4小题,每小题4分,共16分. 13.函数21()log (1)f x x =-的定义域是_________ ;14.过点(1,0)且与直线220x y --=平行的直线方程是 ;GM D 1C 1B 1A 1NDCBA15. 在区间[2,3]-上任取一个实数,则该数是不等式21x >解的概率为 .16.已知函数8log (3)9a y x =+-(0,1a a >≠)的图像恒过定点A ,若点A 也在函数()3x f xb =+的图像上,则b = 。

高一数学学年高中数学必修一必修四测试题含答案

高一数学学年高中数学必修一必修四测试题含答案

高中数学必修一必修四综合检测题一、选择题1.已知集合{}{}2|6,30A x N x B x R x x =∈≤=∈-,则A B ⋂=( )A. {}3,4,5,6B. {}|36x x <≤C. {}4,5,6D. {| 0x x <或 }36x <≤2.下列函数中.既是偶函数,又在(),0∞-上为减函数的是A. 2x y =B. y =C. 2y x =-D. lg y x =3.已知幂函数的图象过点⎪⎪⎭⎫⎝⎛22,21,则))2((log 4f 的值为( )A. 41B. 41- C. 2 D. -24.函数sin cos y x x x =+的图像大致为A.B.C.D.5.如果31)cos(-=+απ,那么)sin(απ-25等于( )A .322 B .322- C .31-[ D .316.若一圆弧长等于其所在圆的内接正三角形的边长,那么其圆心角的弧度数为()A .3πB .32πC .3D .27.若3sin cos 0αα+=,则21cos sin 2αα+的值为( )A .103 B .53 C .23 D .2-8.函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为( )A .)322sin(2π+=x yB .)32sin(2π+=x yC .)32sin(2π-=x yD .)32sin(2π-=x y 9.已知函数⎪⎩⎪⎨⎧---=xx x f x 212)(2 00≤>x x ,若函数()()g x f x m=-有3个零点,则实数m 的取值范围( ). A .(0,12) B .1,12⎛⎤ ⎥⎝⎦ C .(]0,1 D . (0,1) 10.A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ) A .锐角三角形 B .钝角三角形 C .等腰直角三角形 D .等腰三角形 11.设()f x 是定义在R 上的奇函数,且(3)()1f x f x +⋅=-,(1)2f -=,则(2008)f =( )A .0B . 0.5C .2D .1-12.已知函数(31)4,(1)()log ,(1)a a x a x f x x x -+<⎧=⎨≥⎩满足:对任意实数21,x x ,当12x x <时,总有12()()0f x f x ->,那么实数a 的取值范围是 ( )A .[11,)73B .1(0,)3C .11(,)73D .[1,1)7二、填空题13.已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x ,则f(-1)=____14.方程01)3sin(2=-++a x π在[]0,π上有两个不等的实根,则实数a 的取值范围是15.设⎩⎨⎧>-≤+=)0(lg 2)0(1)(2x x x x x f ,则[](100)f f = 16.关于x 的方程22(1)40x m x m +++-=有实根,且一个大于2,一个小于2,则m 取值范围为_ __ __.三、解答题17. 已知集合=A {}42|<≤x x ,=B {}x x x 2873|-≥-,=C {}a x x <|。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4)(特殊适合按14523依次的省份)必修4第一章三角函数(1)一、选择题:l已知A={第一象限角}'B={锐角}'C={小千90°的角},那么A、B、C关系是()A. B=Anc2.✓sin2120° 等千忒i A土——- B. B U C=CC. A宝D. A=B=C()五2B五2c1_2n i sin a —2cosa3已知=-5, 那么tana的值为3 sin a + 5 c os aA.—2B. 2C .23164. 下列函数中,最小正周期为兀的偶函数是A.y =sin 2xXB y =c s—2A , 4✓3B -4✓3C .s in 2x+c s 2x 5, 若角600°的终边上有一点(-4,a),则a的值是()23 D.16( )1-tan 2 xD. y =1 + tan2 x()c .土4✓3D✓3X冗X6. 要得到函数y=co s (—-—)的图象,只需将y=sin —的图象( )2 4 2冗冗A. 向左平移—个单位B 同右平移—个单位22冗冗C. 向左平移—个单位D. 向右平移—个单位4 47. 若函数y=f (x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将冗l整个图象沿x轴向左平移—个单位,沿y轴向下平移l个单位,得到函数y =-sin x 的图象22测y=f (x)是()l 兀A. y=—sin(2x+—) +12 2 l 兀C.y =—sin(2x+—) +1 2 4l 兀B.y =—sin(2x -—) +12 2 l 冗D. —sin(2x -—) +12 45兀8. 函数y=sin (2x+—-)的图像的一条对方程是2冗A.x=-— 冗B. x =-— 冗_8__ xc 19. 若sin0·cos0=—,则下列结论中肯定成立的是A .si n 0 = ✓22B. 五sin 0 = -—C. si n 0+cos0 = 1(三4(_ x D))冗10 函数y = 2si n (2x+—)的图象3冗A. 关千原点对称B.关千(——,0)对称c.6 冗11 函数y =s n (x+—)X E R 是2 兀冗A . [-—,—]上是增函数2 2C. [-冗OJ 上是减函数12函数y =✓2c o sx l的定义域是A . [2k三三}k EZ)C. [2k冗十f,2k冗+气}k EZ)D. si n 0—cos0=0()冗关千y 对称D .关千直线x =—对称6( )B. [O五上是减函数D. [-冗冗上是减函数()B. [2k 二,2k 兀三}k E Z ) 6 6D. [2k 兀一气,2k兀+气}k E Z ) 二、填空题:冗冗213. 函数y = cos (x -—) (x E [—,—兀)的最小值是8 6 314。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修①④综合练习(一)一.填空题1.已知集合{13}A x =,,,2{1}B x =,,{13}A B x =U ,,,则这样的x 的不同值有 个.2.已知39()[(4)]9x x f x f f x x -⎧=⎨+<⎩, ≥,,则(5)f 的值为 .3.已知函数()f x 的定义域为R ,满足(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(8.5)f 等于 .等于 .5.若lg2a =,lg3b =,则5log 12等于 .6.若log 2log 20a b >>,那么有,,1a b 三者关系为 .7.函数1()4x f x a -=+的图象恒过定点P ,则P 点坐标是 .8. 122333111,,225⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下列大小关系为 . 9.设角α是第四象限角,且|cos|cos2αα=-,则2α是第 象限角. 10.函数()lg sin f x x =+的定义域是 .11.已知1sin 1,cos 2x x +=-那么cos sin 1x x -的值是 . 12.在锐角ABC ∆中,cos A 与sin B 的大小关系为 .13.函数()tan ()43f x x x ππ=-≤<的值域是 .14.将函数()y f x =的图象上的每一点的纵坐标变为原来的13得到图象1C ,再将1C 上每一点的横坐标变为原来的12得到图象2C ,再将2C 上的每一点向右平移3π个长度单位得到图象3C ,若3C 的表达式为sin y x =,则()y f x =的解析式为 .15.已知tanx=6,那么21sin 2x+31cos 2x=_______________.16.已知(,),(,),tan 2222ππππαβα∈-∈-与tan β是方程240x ++=的两个实根,则__________.αβ+=二.解答题17.设集合{|2135}A x a x a =+-≤≤,{|322}B x x =≤≤,求能使A A B ⊆I 成立的a 值的集合.18、设函数2()log ()x xf x a b =-,且(1)1f =,2(2)log 12f =. (1)求 a b ,的值;(2)当[12]x ∈,时,求()f x 的最大值.19.已知1211log 21x f x x ⎛⎫-=⎪+⎝⎭. (1)求()f x 的解析式; (2)判断()f x 的奇偶性;(3)判断()f x 的单调性并证明.2 21.某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用x 表示床价,用y 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入) (1)把y 表示成x 的函数,并求出其定义域;(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?22.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤在R 上是偶函数,其图象关于点3(,0)4M π对称,且在区间[0,]2π上是单调函数,求ϕ和ω的值.高一数学必修①④综合测试卷(一)答案一.填空题1. 3个 2. 6 3.4.5.21a ba +- 6. 1ab << 7. (15),8. 221333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9.二 10.[2,2)()3k k k Z ππππ++∈11.1212.cos A<sin B 13.[-14.1()3sin()23f x x π=+15.111551363136211tan 31tan 21cos sin cos 31sin 21222222=++⨯=++=++x x x x x . 16.23π-二.解答题17.解:由A A B ⊆I ,得A B ⊆,则21352133522a a a a +-⎧⎪+⎨⎪-⎩≤,≥,≤,或2135a a +>-. 解得69a ≤≤或6a <. 即9a ≤.∴使A A B ⊆I 成立的a 值的集合为{9}a a ≤.18.解:由已知,得22222log ()1log log 12a b a b -=⎧⎨-=⎩,,22212a b a b -=⎧∴⎨-=⎩,,解得42a b ==,. 19.解:(1)令121log 2t x =,则21124ttt x ⎛⎫⎛⎫∈== ⎪ ⎪⎝⎭⎝⎭R ,,11144().1411414()().14tt t txxf t f x x ⎛⎫- ⎪-⎝⎭==+⎛⎫+ ⎪⎝⎭-∴=∈+R Q (2)x ∈R Q ,且1441()()4141x x xx f x f x -----===-++, ()f x ∴为奇函数.(3)2()114xf x =-++Q , ()f x ∴在()-∞+∞,上是减函数. 证明:任取12x x ∈R ,,且12x x <,则21121212222(44)()()111414(14)(14)x x x x x x f x f x -⎛⎫⎛⎫-=-+---= ⎪ ⎪++++⎝⎭⎝⎭. 4x y =Q 在()-∞+∞,上是增函数,且12x x <,1244x x ∴<.12()()0f x f x ∴->,即12()()f x f x >.14()14xxf x -∴=+在()-∞+∞,上是减函数. 20.解:y=21cos 2x+23sinxcosx+1=41cos2x+23sin2x+45=21sin(2x+6π)+45. (1)y=21cos 2x+23sinxcosx+1的振幅为A=21,周期为T=22π=π,初相为φ=6π.(2)令x 1=2x+6π,则y=21sin(2x+6π)+45=21sinx 1+45,列出下表,并描出如下图象:x12π-6π 125π 32π 1211πx 10 2π π32π2π y=sinx 11-1y=21sin(2x+6π)+45 4547 454345(3)解法一:将函数图象依次作如下变换:函数y=sinx 的图象−−−−−→−个单位向左平移6π函数y=sin(x+6π)的图象 −−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin(2x+6π)的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)的图象−−−−−→−个单位向上平移45函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.解法二:函数y=sinx 的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin2x 的图象−−−−−→−个单位向左平移12π函数y=sin(2x+6π)的图象 −−−−−→−个单位向上平移25函数y=sin(2x+6π)+25的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.21.解:(1)由已知有10057510(1303)57510x x y x x x x *-⎧=∈⎨-->⎩N g , ≤,, ,令0y >.由100575010x x ->⎧⎨⎩,≤,得610x ≤≤,x *∈N 又由(1303)57500x x x -->⎧⎨>⎩g ,,得1038x x *<∈N ≤,所以函数为210057561031305751038x x x y x x x x **⎧-∈⎪=⎨-+-<∈⎪⎩N N, ≤≤,且, ≤,且 函数的定义域为{638}x x x *∈N ≤≤,.(2)当10x ≤时,显然,当10x =时,y 取得最大值为425(元); 当0x >时,23130575y x x =-+-, 仅当130652(3)3x =-=⨯-时,y 取最大值,又x *∈N Q ,∴当22x =时,y 取得最大值,此时max 833y =(元) 比较两种情况的最大值,833(元)>425(元) ∴当床位定价为22元时净收入最多. 22.解:2,23πϕω==或2。

相关文档
最新文档