2018北京海淀区高三(上)期中数学(理)
2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)
![2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)](https://img.taocdn.com/s3/m/076c993d0b4e767f5acfce48.png)
2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。
中考数学常考的圆的六种题型
![中考数学常考的圆的六种题型](https://img.taocdn.com/s3/m/a057a9de7cd184254a353514.png)
中考题中常考的圆的六种解题策略第一种场景:遇到弦。
轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.当圆的题目中出现弦的知识点的时候,我们需要迅速联想到弦相关的定理和一些性质,比如垂径定理、弦心距、勾股定理等.例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.【分析】(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.【解答】(1)证明:∵PD∥CB,∴弧PC=弧BD,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r²=(r﹣8)²+12²,解方程得:r=13.所以⊙O的直径为26.【点评】本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.当出现直径的条件时,我们也要快速联想圆心角、圆周角等性质,进而构造等腰三角形、直角三角形等图形,从而求解后面的问题。
例2.如图,在⊙O中,将弧BC沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.(1)若点D恰好与点O重合,则∠ABC=______ °;(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.【分析】(1)根据折叠的性质和圆周角定理解答即可;(2)作点D关于BC的对称点D',利用对称的性质和圆周角定理解答.【解答】(1)∵由折叠可知:∠OBC=∠CBD,∵点D恰好与点O重合,∴∠COD=60°,∴∠ABC=∠OBC=12∠COD=30°;故答案为:30;(2)∠ABM=2∠ABC,理由如下:作点D关于BC的对称点D',连接CD',BD',∵对称,∴∠DBC=∠D'BC,DC=D'C,连接CO,D'O,AC,∴∠AOC=2∠ABC,∠D'OC=2∠D'BC,∴∠AOC=∠D'OC,∴AC=D'C,∵DC=D'C,∴AC=DC,∴∠CAD=∠CDA,∵AB是直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,设∠ABC=α,则∠CAD=∠CDA=90°-α,∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,即∠ACD=2∠ABC,∵∠ABM=∠ACD,∴∠ABM=2∠ABC.切线的定义是:一直线若与一圆有且只有一个交点,那么这条直线就是圆的切线。
北京市海淀区2018届高三上学期期中考试数学(理)试卷
![北京市海淀区2018届高三上学期期中考试数学(理)试卷](https://img.taocdn.com/s3/m/5ac81a3f4b35eefdc8d33336.png)
海淀区高三年级第一学期期中练习数学(理科)2017.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合{|20}A x x =-<,{|1}x B x =>e ,则AB =()(A )R(B )(,2)-∞(C )(0,2)(D )(2,)+∞(2)下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是()(A )()ln ||f x x =(B )()2x f x -=(C )3()f x x =(D )2()f x x =- (3)已知向量(1,0)=a ,(1,1)=-b ,则()(A )a //b(B )⊥a b(C )()//-a b b(D )()+⊥a b a(4)已知数列{}n a 满足1222(1,2,3,...)n a a a a n ++⋅⋅⋅+==,则()(A )10a < (B )10a >(C )12a a ≠(D )20a =(5)将sin(2)6y x π=+的图象向左平移6π个单位,则所得图象的函数解析式为() (A )sin 2y x =(B )cos 2y x = (C )sin(2)3y x π=+(D )sin(2)6y x π=-(6)设α∈R ,则“α是第一象限角”是“sin cos 1αα+>”的()(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)设()sin sin ee xx f x -=+(x ∈R ),则下列说法不正确的是 ()(A )()f x 为R 上偶函数(B )π为()f x 的一个周期 (C )π为()f x 的一个极小值点(D )()f x 在区间(0,)2π上单调递减(8)已知非空集合,A B 满足以下两个条件:(ⅰ){}1,2,3,4,5,6AB =,A B =∅;(ⅱ)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为() (A )10(B )12(C )14(D )16第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析
![2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析](https://img.taocdn.com/s3/m/ba4ad43811a6f524ccbff121dd36a32d7375c790.png)
2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。
2018年全国高考新课标2卷理科数学考试(解析版)
![2018年全国高考新课标2卷理科数学考试(解析版)](https://img.taocdn.com/s3/m/3cb1250228ea81c759f57808.png)
2018年全国高考新课标2卷理科数学考试(解析版)作者:日期:2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要 求的。
434 3 3 4 3 4 A ・ 一 T 一 弓 B * -5 + 5i c ∙ - 5 ' 5i D * - 5 + 5i解析:选D2. 已知集合A={(x,y) ∣χ2+y2≤3,x∈Z,y∈Z },则A 中元素的个数为( ) A. 9B. 8C. 5D ・ 4解析:选A 问题为确定圆面内整点个数 3. 函数f (x)=E 2的图像大致为()-、选择题:本题共12小题, 1.l+2i F r2解析:选B f(x)为奇函数,排除 A,x>0,f (x)>0,排除 D,取 x=2,f (2) = e 2-e^24 力,故选B4. 已知向量 a, b 满足 Ial=1, a ∙ b 二-1,则 a ∙ (2a~b)=( ) A. 4B. 3C. 2D.5.双曲线= I (a>0, b>0)的离心率为\龙,则其渐近线方程为( C. y=±迟X9A. y=±j∖βxB. y 二±ι∖βx=∖β C2 二 3¥ b=∖βa C √5 歹专,BC=I,AC 二 5, B. √30C 3 解析:选 A CoSo2cos 右-I= - ~ 2 5解析:选A e-6-在ΔABC 中,COS 则 AB 二() D. y=±A. 4√2 AB^AO+BC2-2AB ∙ BC ∙ COSC=322√5 AB=4√2 D.7. ................................................... 为计算S=I- 2 + 3 ^ 4 ++^ T∞,设计了右侧的程序框图,则在空白框中应填入()A. i=i+lB. i 二i+2C. i 二i+3D. i 二i+4解析:选B8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数 可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的 概率是()3为7+23, 11+19, 13+17,共3种情形,所求概率为P=FF109. 在长方体ABCD-ABc I D I 中,AB=BC=I, AAi=W 则异面直线AD】与DBl 所成角的余弦值为(D.解析:选C 建立空间坐标系,利用向量夹角公式可得。
北京海淀区2018届高三数学一模试卷理科带答案
![北京海淀区2018届高三数学一模试卷理科带答案](https://img.taocdn.com/s3/m/6357a03955270722192ef784.png)
北京海淀区2018届高三数学一模试卷(理科带答案)海淀区高三年级第二学期期中练习数学(文科)2018.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合,,且,则可以是(A)(B)0(C)l(D)2(2)已知向量a=(l,2),b=(,0),则a+2b=(A)(,2)(B)(,4)(C)(1,2)(D)(1,4)(3)执行如图所示的程序框图,输出的S值为(A)2(B)6(C)8(D)10(4)如图,网格纸上小正方形的边长为1,若四边形及其内部的点组成的集合记为,为中任意一点,则的最大值为(A)1(B)2(C)(D)(5)已知,为正实数,则“,”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作,则的值不可能是(A)(B)(C)(D)(7)下列函数中,其图像上任意一点的坐标都满足条件的函数是(A)(B)(C)(D)(8)已知点在圆上,点在圆上,则下列说法错误的是(A)的取值范围为(B)取值范围为(C)的取值范围为(D)若,则实数的取值范围为第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
(9)复数.(10)已知点(2,0)是双曲线:的一个顶点,则的离心率为.(11)直线(为参数)与曲线(为参数)的公共点个数为.(12)在中,若,,,则,.(13)一次数学会议中,有五位教师来自A,B,C三所学校,其中A学校有2位,B学校有2位,C学校有1位.现在五位教师排成一排照相,若要求来自同一所学校的教师不相邻,则共有种不同的站队方法.(14)设函数.①若有两个零点,则实数的取值范围是;②若,则满足的的取值范围是.三、解答题共6小题,共80分。
北京市海淀区2018-2019年初一数学上期中检测试卷及答案.docx
![北京市海淀区2018-2019年初一数学上期中检测试卷及答案.docx](https://img.taocdn.com/s3/m/e2c3612e852458fb770b567d.png)
2018-2019 年初一数学第一学期期中检测~考试时间: 100 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息]2.请将答案正确填写在答题卡上第 I 卷(选择题)&评卷人 得分`一、选择题(每题 3 分,共 30 分)1.多项式 3x 2- 2xy 3-1y - 1 是(.).<&)2.】\A .三次四项式~B.三次三项式C .四次四项式…D.四次三项式|2.- 3 的绝对值是;|,`A. 3B).- 3C~.-D.!@3.若 |x+2|+|y-3|=0,则 x-y 的值为…【()A . 5。
B. -5C ' .1 或 -1D】 .以上都不对*4.1:)}》…>的相反数是((-)3-%$,(A .1B….1 C…. 3D.﹣3,(3@3:`¥5.2018 年 5 月 21 日,石油天然气集团公司与俄罗斯天然气工业股份公司在签署了 《中俄东线供气购销合同》 ,这份有效期为30 年的合同规定,从2018 年开始供气,每年的天然气供应量为<380 亿立方米, 380 亿立方米用科学记数法表示为()A . ×10 )103B .38×10 9 `3C .380×10 8 (3 D. ×10 113|m mm <m6.计算 (a 2) 3÷ (a 2) 2的结果是 ( ^)·| A . a B . a 2 C . a 3 ,D . a 4`(7.下列因式分解中,正确的有(-)!'$《%:① `①4a ﹣ a b =a ( 4﹣ a b );②x 2y﹣ 2xy+xy=xy ( x ﹣ 2);③﹣ a+ab ﹣ ac=﹣ a ( a ﹣ b ﹣c );④9abc﹣ 6a 2b=3abc ( 3﹣ 2a );⑤ x 2y+ xy= xy( x+y )%A . 0 个 B. 1 个 C 《. 2 个 D. 5 个8.下列因式分解正确的是( )、A. x2﹣ xy+x=x ( x﹣ y)B. a3﹣ 2a2b+ab2=a( a﹣ b)2"C. x2﹣ 2x+4=( x﹣ 1)2+3D. ax2﹣ 9=a(x+3)( x﹣ 3)9.实数 a、 b 在数轴上的位置如图所示,下列式子错误的是() :A. a< b C.- a<-b B. |a| > |b| D. b- a> 010.﹣ 的倒数是()A 、B 、C 、﹣D 、﹣第 II卷(非选择题)评卷人 得分二、填空题(每题 3 分,共 24 分)12 .用代数式表示“a 的 4 倍与 5 的差”为.13.已知 2xm 1y 3和 1xny m+n是同类项,则n m2012=▲。
2018年北京市海淀区高考数学一模试卷(理科)
![2018年北京市海淀区高考数学一模试卷(理科)](https://img.taocdn.com/s3/m/76726858a5e9856a561260c9.png)
2018年北京市海淀区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合A={0, a},B={x|−1<x<2},且A⊆B,则a可以是()A.−1B.0C.1D.22. 已知向量a→=(l, 2),b→=(−1, 0),则a→+2b→=()A.(−1, 2)B.(−1, 4)C.(1, 2)D.(1, 4)3. 执行如图所示的程序框图,输出的S值为()A.2B.6C.8D.104. 如图,网格纸上小正方形的边长为1,若四边形ABCD及其内部的点组成的集合记为M,P(x, y)为M中任意一点,则y−x的最大值为()A.1B.2C.−1D.−25. 已知a,b为正实数,则“a>1,b>1”是“lga+lgb>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6. 如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S,则S的值不可能是()A.1B.65C.43D.327. 下列函数f(x)中,其图象上任意一点P(x, y)的坐标都满足条件y ≤|x|的函数是( )A.f(x)=x 3B.f(x)=√xC.f(x)=e x −1D.f(x)=ln(x +1)8. 已知点M 在圆C 1:(x −1)2+(y −1)2=1上,点N 在圆C 2:(x +1)2+(y +1)2=1上,则下列说法错误的是( )A.OM →∗ON →的取值范围为[−3−2√2,0brackB.|OM →+ON →|取值范围为[0,2√2brackC.|OM →−ON →|的取值范围为[2√2−2,2√2+2brackD.若OM →=λON →,则实数λ的取值范围为[−3−2√2,−3+2√2brack二、填空题共6小题,每小题5分,共30分.复数2i 1+i =________.已知点(2, 0)是双曲线C:x 2a 2−y 2=1的一个顶点,则C 的离心率为________.直线 {x =2t y =t (t 为参数)与曲线{x =2+cosθy =sinθ(θ为参数)的公共点个数为________.在△ABC 中,若c =2,a =√3,∠A =π6,则sinC =________,co s2C =________.一次数学会议中,有五位教师来自A ,B ,C 三所学校,其中A 学校有2位,B 学校有2位,C 学校有1位.现在五位教师排成一排照相,若要求来自同一所学校的教师不相邻,则共有________种不同的站队方法.设函数f(x)={x,x ≥a x 3−3x,x <a. ①若f(x)有两个零点,则实数a 的取值范围是________;②若a ≤−2,则满足f(x)+f(x −1)>−3的x 的取值范围是________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.已知f(x)=2√3sinxcosx +2cos 2x −1.(I)求f(π6)的值;(Ⅱ)求f(x)的单调递增区间.流行性感冒多由病毒引起,据调查,空气月平均相对湿度过大或过小时,都有利J=−些病毒繁殖和传播,科学测定,当空气月平均相对湿度大于65010或小于40%时,有利于病毒繁殖和传播.下表记录了某年甲、乙两个城市12个月的空气月平均相对湿度殖和传播的概率;(Ⅱ)从上表第一季度和第二季度的6个月中随机取出2个月,记这2个月中甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份的个数为X,求X的分布列;(Ⅲ)若a+b=108,设乙地上表12个月的空气月平均相对湿度的中位数为M,求M的最大值和最小值.(只需写出结论)已知三棱锥P−ABC(如图1)的平面展开图(如图2)中,四边形ABCD为边长为√2的正方形,△ABE和△BCF均为正三角形,在三棱锥P−ABC中:(I)证明:平面PAC⊥平面ABC;(Ⅱ)求二面角A−PC−B的余弦值;(Ⅲ)若点M在棱PC上,满足CMCP=λ,λ∈[13,23],点N在棱BP上,且BM⊥AN,求BNBP的取值范围.已知函数f(x)=lnxx+a.(I)当a=0时,求函数f(x)的单调递增区间;(Ⅱ)当a>0时,若函数f(x)的最大值为1e2,求a的值.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,且点T(2, 1)在椭圆C上,设与OT平行的直线l与椭圆C相交于P,Q两点,直线TP,TQ分别与x轴正半轴交于M,N两点.(I)求椭圆C的标准方程;(Ⅱ)判断|OM|+|ON|的值是否为定值,并证明你的结论.设A=(a i,j)n×n={a1,1a1,2⋯a1,na2,1a2,2⋯a2,n⋮⋮⋱⋮a n,1a n,2⋯a n,n}是由1,2,3,…,n2组成的n行n列的数表(每个数恰好出现一次),n≥2且n∈N∗.若存在1≤i≤n,1≤j≤n,使得a i,j既是第i行中的最大值,也是第j列中的最小值,则称数表A为一个“N−数表”a i,j为数表A的一个“N−值”,对任意给定的n,所有“N−数表”构成的集合记作Ωn.判断下列数表是否是“N−(2)数表”.若是,写出它的一个“N−(3)值”;A={123456789},B={147825693};(Ⅱ)求证:若数表A是“N−数表”,则A的“N−值”是唯一的;(Ⅲ)在Ω19中随机选取一个数表A,记A的“N−值”为X,求X的数学期望E(X).参考答案与试题解析2018年北京市海淀区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】C【考点】集合的包含关系判断及应用【解析】由集合A={0, a},B={x|−1<x<2},且A⊆B,得到−1<a<2,由此能求出结果.【解答】∵集合A={0, a},B={x|−1<x<2},且A⊆B,∴−1<a<2,∴a可以是1.2.【答案】A【考点】平面向量数量积的性质及其运算律【解析】根据题意,由向量的坐标计算公式直接计算即可得答案.【解答】根据题意,向量a→=(l, 2),b→=(−1, 0),则2b→=(−2, 0)则a→+2b→=(−1, 2);3.【答案】D【考点】程序框图【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】当k=0时,满足继续循环的条件,则S=0,k=1;当k=1时,满足继续循环的条件,则S=2,k=2;当k=2时,满足继续循环的条件,则S=10,k=3;当k=3时,不满足继续循环的条件,故输出的S=10,4.【答案】B【考点】简单线性规划【解析】根据题意写出A、B、C、D点的坐标,设z=y−x,平移目标函数z,找最优解,求出z的最大值.【解答】根据题意知,A(−2, −1),B(2, −1),C(4, 2),D(0, 2);设z=y−x;平移目标函数z=y−x,当目标函数过点D时,y−x取得最大值为2−0=(2)5.【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】根据对数的运算法则以及充分条件和必要条件的定义进行判断即可.【解答】由lga+lgb>0得lgab>0,即ab>1,当a>1,b>1时,ab>1成立,当a=4,b=1,满足ab>1,但b>1不成立,2则“a>1,b>1”是“lga+lgb>0”的充分不必要条件,6.【答案】D【考点】平行投影及平行投影作图法【解析】由题意求得正方体在竖直墙面上投影面积的最小值和最大值即可.【解答】由题意知,棱长为1的正方体在竖直墙面上的投影面积S的最小值为正方形,且边长为1,其面积为1;最大值为矩形,且相邻的两边长为1和√2,其面积为1×√2=√2;∴S的取值范围是[1, √2];又√2<3,2∴不可能的是选项D.7.【答案】D【考点】函数的求值【解析】函数f(x)图象上任意一点P(x, y)的坐标都满足条件y≤|x|的函数的图象位于下图中的①或②的区域,由此能求出结果.函数f(x)图象上任意一点P(x, y)的坐标都满足条件y ≤|x|的函数的图象位于下图中的①或②的区域,在A 中,f(x)=x 3的图象位于③,④的部分区域,故A 错误;在B 中,f(x)=√x 的图象位于②③的部分区域,故B 错误;在C 中,f(x)=e x −1的图象位于①②③④的部分区域,故C 错误;在D 中,f(x)=ln(x +1)的图象位于②的区域,故D 正确.8.【答案】B【考点】圆与圆的位置关系及其判定【解析】根据两圆的对称关系和OM ,ON 的范围进行判断.【解答】∵ M 在圆C 1上,点N 在圆C 2上,∴ ∠MON ≥90∘,∴ OM →∗ON →≤0,又OM ≤√2+1,ON ≤√2+1,∴ 当OM =√2+1,ON =√2+1时,OM →∗ON →取得最小值(√2+1)2cosπ=−3−2√2,故A 正确; 设M(1+cosα, 1+sinα),N(−1+cosβ, −1+sinβ),则OM →+ON →=(cosα+cosβ, sinα+sinβ),∴ |OM →+ON →|2=2cosαcosβ+2sinαsinβ+2=2cos(α−β)+2,∴ 0≤|OM →+ON →|≤2,故B 错误;∵ 两圆外离,半径均为1,|C 1C 2|=2√2,∴ 2√2−2≤|MN|≤2√2+2,即2√2−2≤|OM →−ON →|≤2√2+2,故C 正确; ∵ √2−1≤|OM|≤√2+1,√2−1≤|ON|≤√2+1,∴ 当OM →=λON →时,√2−1√2+1≤−λ≤√2+1√2−1,解得−3−2√2≤λ≤−3+2√2,故D 正确. 二、填空题共6小题,每小题5分,共30分.【答案】1+i【考点】复数的运算【解析】利用复数的除法运算法则即可得出.【解答】2i 1+i =2i(1−i)(1+i)(1−i)=i +1.√52【考点】双曲线的特性【解析】根据题意,由双曲线的顶点坐标可得a 的值,结合b 的值计算可得c 的值,由双曲线的离心率公式计算可得答案.【解答】根据题意,点(2, 0)是双曲线C:x 2a −y 2=1的一个顶点, 则a =2,双曲线的方程为x 2a 2−y 2=1,则b =1,则c =√a 2+b 2=√5,则双曲线的离心率e =c a =√52; 【答案】2【考点】参数方程与普通方程的互化【解析】直线消去参数t ,得x −2y =0,曲线消去参数,得(x −2)2+y 2=1,联立{x −2y =0(x −2)2+y 2=1,能求出交点个数. 【解答】直线 {x =2t y =t(t 为参数)消去参数t ,得x −2y =0, 曲线{x =2+cosθy =sinθ(θ为参数)消去参数,得(x −2)2+y 2=1, 联立{x −2y =0(x −2)2+y 2=1 ,得{x =2y =1 或{x =65y =35 . ∴ 直线 {x =2t y =t (t 为参数)与曲线{x =2+cosθy =sinθ(θ为参数)的公共点个数为2. 【答案】 √3, 【考点】三角形求面积【解析】直接利用正弦定理的三角函数关系式的恒等变换求出结果.【解答】△ABC 中,若c =2,a =√3,∠A =π6,利用正弦定理:a sinA =c sinC ,则:sinC =√33, 所以:cos2C =1−2sin 2C =1−23=13.【答案】48【考点】排列、组合及简单计数问题【解析】先安排A 学校和C 学校的三位老师,有A 22中排法,再把B 学校的两位老师插空排到A 学校和C 学校的三位老师的空位中,并对B 学校的两位老师进行排序,有A 42A22=24种排法,最后根据乘法运算,由此能求出结果.【解答】有五位教师来自A ,B ,C 三所学校,其中A 学校有2位,B 学校有2位,C 学校有1位. 现在五位教师排成一排照相,要求来自同一所学校的教师不相邻,先安排A 学校和C 学校的三位老师,有A 22中排法,再把B 学校的两位老师插空排到A 学校和C 学校的三位老师的空位中,并对B 学校的两位老师进行排序,有A 42A22=24种排法,由乘法原理得不同的排列方法有:A 22∗A 42A22=48种,【答案】(−√3, √3],(−1, +∞)【考点】分段函数的应用【解析】①讨论a =0,a >0,a <0,结合零点定义,解方程即可得到所求范围; ②若a ≤−2,讨论x <a ,x ≥a ,若x −1≥a ;a −1≤x −1<a ,结合分段函数解析式,以及函数的单调性和不等式的解法,即可得到所求范围.【解答】①若a =0,则f(x)={x,x ≥0x 3−3x,x <0, 由f(x)=0,可得x =0,x =−√3,符合题意;若a <0,x =0符合题意;若x =−√3符合题意,则a >−√3,即为−√3<a <0;若a >0,则x =0和x =−√3符合题意,可得a ≤√3,综上可得,a 的范围是(−√3, √3];②若x <a ≤−2,则x −1<a −1≤−3,f(x)的导数为3x 2−3>0,可得f(x)<f(−2)=−2,f(x −1)<−27+9=−18,即有f(x)+f(x −1)<−30,不符题意;则x ≥a ,若x −1≥a ,f(x)+f(x −1)>−3,即为x +x −1>−3,解得x >−1;若a −1≤x −1<a ,f(x)+f(x −1)>−3,即为x +(x −1)3−3(x −1)>−3,化为x 3−3x 2+x +5>0,由于a ≤−2,且a ≤x <a +1,可得g(x)=x 3−3x 2+x +5的导数g′(x)=3x 2−6x +1>0,即g(x)在[a, a +1)递增,g(a)取得最小值,且为a 3−3a 2+a +5,且a3−3a2+a+5,而在a≤−2时,a3−3a2+a+5递增,且为负值,不符题意.综上可得a的范围是(−1, +∞).三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】(Ⅰ)直接将x=π6带入,可得:f(π6)=2√3sinπ6cosπ6+2cos2π6−1=2√3×12×√32+2×(√32)2−1=2.(Ⅱ)由f(x)=√3sin2x+cos2x=2sin(2x+π6)因为函数y=sinx的单调递增区间为[2kπ−π2,2kπ+π2brack(k∈Z),令2kπ−π2≤2x+π6≤2kπ+π2(k∈Z),解得kπ−π3≤x≤kπ+π6(k∈Z),故f(x)的单调递增区间为[kπ−π3,kπ+π6brack(k∈Z).【考点】三角函数中的恒等变换应用【解析】(I)直接将x=π6带入计算即可.(Ⅱ)利用二倍角和辅助角公司化简,即可求f(x)的单调递增区间.【解答】(Ⅰ)直接将x=π6带入,可得:f(π6)=2√3sinπ6cosπ6+2cos2π6−1=2√3×12×√32+2×(√32)2−1=2.(Ⅱ)由f(x)=√3sin2x+cos2x=2sin(2x+π6)因为函数y=sinx的单调递增区间为[2kπ−π2,2kπ+π2brack(k∈Z),令2kπ−π2≤2x+π6≤2kπ+π2(k∈Z),解得kπ−π3≤x≤kπ+π6(k∈Z),故f(x)的单调递增区间为[kπ−π3,kπ+π6brack(k∈Z).【答案】(本题满分1(Ⅰ)设事件A:从上表12个月中,随机取出1个月,该月甲地空气月平均相对湿度有利于病毒繁殖和传播.用A i表示事件抽取的月份为第i月,则Ω={A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12}共12个基本事件,A={A2, A6, A8, A9, A10, A11}共6个基本事件,所以,该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率P(A)=612=12.(Ⅱ)在第一季度和第二季度的6个月中,甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份只有2月和6月,故X所有可能的取值为0,1,2.P(X=0)=C42C62=615=25,P(X=1)=C21C41C62=815,P(X=2)=C22C62=115随机变量X的分布列为:(Ⅲ)a+b=108,设乙地上表12个月的空气月平均相对湿度的中位数为M,则M的最大值为58%,最小值为54%.【考点】离散型随机变量及其分布列【解析】(Ⅰ)设事件A:从上表12个月中,随机取出1个月,该月甲地空气月平均相对湿度有利于病毒繁殖和传播.用A i表示事件抽取的月份为第i月,利用列举法能求出该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率.(Ⅱ)在第一季度和第二季度的6个月中,甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份只有2月和6月,X所有可能的取值为0,1,2.分别求出相应的概率,由此能求出随机变量X的分布列.(Ⅲ)a+b=108,设乙地上表12个月的空气月平均相对湿度的中位数为M,由此能求出M的最大值,最小值.【解答】(本题满分1(Ⅰ)设事件A:从上表12个月中,随机取出1个月,该月甲地空气月平均相对湿度有利于病毒繁殖和传播.用A i表示事件抽取的月份为第i月,则Ω={A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12}共12个基本事件,A={A2, A6, A8, A9, A10, A11}共6个基本事件,所以,该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率P(A)=612=12.(Ⅱ)在第一季度和第二季度的6个月中,甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份只有2月和6月,故X所有可能的取值为0,1,2.P(X=0)=C42C62=615=25,P(X=1)=C21C41C62=815,P(X=2)=C22C62=115随机变量X的分布列为:(Ⅲ)a+b=108,设乙地上表12个月的空气月平均相对湿度的中位数为M,则M的最大值为58%,最小值为54%.【答案】(本题满分1证明:(Ⅰ)证法一:设AC的中点为O,连接BO,PO.由题意PA=PB=PC=√2,PO=1,AO=BO=CO=1因为在△PAC中,PA=PC,O为AC的中点所以PO⊥AC,因为在△POB中,PO=1,OB=1,PB=√2所以PO⊥OB因为AC∩OB=O,AC,OB⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC证法二:设AC的中点为O,连接BO,PO.因为在△PAC中,PA=PC,O为AC的中点,所以PO⊥AC,因为PA=PB=PC,PO=PO=PO,AO=BO=CO所以△POA≅△POB≅△POC所以∠POA=∠POB=∠POC=90∘所以PO⊥OB因为AC∩OB=O,AC,OB⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC证法三:设AC的中点为O,连接PO,因为在△PAC中,PA=PC,所以PO⊥AC设AB的中点Q,连接PQ,OQ及OB.因为在△OAB中,OA=OB,Q为AB的中点所以OQ⊥AB.因为在△PAB中,PA=PB,Q为AB的中点所以PQ⊥AB.因为PQ∩OQ=Q,PQ,OQ⊂平面OPQ所以AB⊥平面OPQ因为OP⊂平面OPQ所以OP⊥AB因为AB∩AC=A,AB,AC⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC(2)由PO⊥平面ABC,OB⊥AC,如图建立空间直角坐标系,则O(0, 0, 0),C(1, 0, 0),B(0, 1, 0),A(−1, 0, 0),P(0, 0, 1) 由OB ⊥平面APC ,故平面APC 的法向量为OB →=(0,1,0) 由BC →=(1,−1,0),PC →=(1,0,−1) 设平面PBC 的法向量为n →=(x,y,z),则 由{n ⋅BC →=0n ⋅PC →=0得:{x −y =0x −z =0 令x =1,得y =1,z =1,即n →=(1,1,1)cos <n →,OB →>=n →⋅OB →|n →|⋅|OB →|=√3⋅1=√33由二面角A −PC −B 是锐二面角, 所以二面角A −PC −B 的余弦值为√33(Ⅲ)设BN →=μBP →,0≤μ≤1,BM →=BC →+CM →=BC →+λCP →=(1,−1,0)+λ(−1,0,1)=(1−λ,−1,λ),AN →=AB →+BN →=AB →+μBP →=(1,1,0)+μ(0,−1,1)=(1,1−μ,μ), 令BM →⋅AN →=0得(1−λ)⋅1+(−1)⋅(1−μ)+λ⋅μ=0即μ=λ1+λ=1−11+λ,μ是关于λ的单调递增函数, 当λ∈[13,23]时,μ∈[14,25], 所以BNBP ∈[14,25].【考点】二面角的平面角及求法【解析】(Ⅰ)法一:设AC的中点为O,连接BO,PO.推导出PO⊥AC,PO⊥OB,从而PO⊥平面ABC,由此能证明平面PAC⊥平面ABC.法二:设AC的中点为O,连接BO,PO.推导出PO⊥AC,△POA≅△POB≅△POC,∠POA=∠POB=∠POC=90∘,进而PO⊥OB,由此能证明PO⊥平面ABC,从而平面PAC⊥平面ABC.法三:设AC的中点为O,连接PO,推导出PO⊥AC,设AB的中点Q,连接PQ,OQ及OB.推导出OQ⊥AB.PQ⊥AB.从而AB⊥平面OPQ,进而OP⊥AB,由此能证明PO⊥平面ABC,从而平面PAC⊥平面ABC.(Ⅱ)由PO⊥平面ABC,OB⊥AC,建立空间直角坐标系,利用向量法能求出二面角A−PC−B的余弦值.(Ⅲ)设BN→=μBP→,0≤μ≤1,利用向量法能求出BN的取值范围.BP【解答】(本题满分1证明:(Ⅰ)证法一:设AC的中点为O,连接BO,PO.由题意PA=PB=PC=√2,PO=1,AO=BO=CO=1因为在△PAC中,PA=PC,O为AC的中点所以PO⊥AC,因为在△POB中,PO=1,OB=1,PB=√2所以PO⊥OB因为AC∩OB=O,AC,OB⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC证法二:设AC的中点为O,连接BO,PO.因为在△PAC中,PA=PC,O为AC的中点,所以PO⊥AC,因为PA=PB=PC,PO=PO=PO,AO=BO=CO所以△POA≅△POB≅△POC所以∠POA=∠POB=∠POC=90∘所以PO⊥OB因为AC∩OB=O,AC,OB⊂平面ABC所以PO⊥平面ABC因为PO⊂平面PAC所以平面PAC⊥平面ABC证法三:设AC的中点为O,连接PO,因为在△PAC中,PA=PC,所以PO⊥AC设AB的中点Q,连接PQ,OQ及OB.因为 在△OAB 中,OA =OB ,Q 为AB 的中点 所以 OQ ⊥AB .因为 在△PAB 中,PA =PB ,Q 为AB 的中点 所以 PQ ⊥AB .因为 PQ ∩OQ =Q ,PQ ,OQ ⊂平面OPQ 所以 AB ⊥平面OPQ 因为 OP ⊂平面OPQ 所以 OP ⊥AB因为 AB ∩AC =A ,AB ,AC ⊂平面ABC 所以 PO ⊥平面ABC 因为 PO ⊂平面PAC所以 平面PAC ⊥平面ABC(2)由PO ⊥平面ABC ,OB ⊥AC ,如图建立空间直角坐标系,则 O(0, 0, 0),C(1, 0, 0),B(0, 1, 0),A(−1, 0, 0),P(0, 0, 1) 由OB ⊥平面APC ,故平面APC 的法向量为OB →=(0,1,0) 由BC →=(1,−1,0),PC →=(1,0,−1) 设平面PBC 的法向量为n →=(x,y,z),则 由{n ⋅BC →=0n ⋅PC →=0得:{x −y =0x −z =0 令x =1,得y =1,z =1,即n →=(1,1,1)cos <n →,OB →>=n →⋅OB →|n →|⋅|OB →|=3⋅1=√33由二面角A −PC −B 是锐二面角,所以二面角A −PC −B 的余弦值为√33(Ⅲ)设BN →=μBP →,0≤μ≤1,BM →=BC →+CM →=BC →+λCP →=(1,−1,0)+λ(−1,0,1)=(1−λ,−1,λ),AN →=AB →+BN →=AB →+μBP →=(1,1,0)+μ(0,−1,1)=(1,1−μ,μ), 令BM →⋅AN →=0得(1−λ)⋅1+(−1)⋅(1−μ)+λ⋅μ=0 即μ=λ1+λ=1−11+λ,μ是关于λ的单调递增函数,当λ∈[13,23]时,μ∈[14,25], 所以BNBP ∈[14,25].【答案】(1)当a =0时,f(x)=lnx x,故f ′(x)=1x⋅x−lnx x 2=1−lnx x 2,令f ′(x)>0,得0<x <e ; 故f(x)的单调递增区间为(0, e) (2)方法1:f ′(x)=x+ax−lnx (x+a)2=1+a x−lnx (x+a)2令g(x)=1+ax −lnx 则g ′(x)=−ax −1x =−x+a x <0由g(e)=ae >0,g(e a+1)=1+ae a+1−(1+a)=a ⋅(1e a+1−1)<0 故存在x 0∈(e,e a+1),g(x 0)=0故当x ∈(0, x 0)时,g(x)>0;当x ∈(x 0, +∞)时,g(x)<0故f(x 0)=1e 2故{1+ax 0−lnx 0=0lnx 0x 0+a =1e 2,解得{x 0=e 2a =e 2故a的值为e2.(2)方法2:f(x)的最大值为1e2的充要条件为:对任意的x∈(0, +∞),lnxx+a ≤1e2且存在x0∈(0, +∞),使得lnx0x0+a=1e2,等价于对任意的x∈(0, +∞),a≥e2lnx−x且存在x0∈(0, +∞),使得a≥e2lnx0−x0,等价于g(x)=e2lnx−x的最大值为a.∵g′(x)=e2x−1,令g′(x)=0,得x=e2.x,g′(x),g(x)的变化如下:故g(x)的最大值为g(e2)=e2lne2−e2=e2,即a=e2.【考点】利用导数研究函数的单调性利用导数研究函数的最值【解析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(Ⅱ)法一:求出函数的导数,令g(x)=1+ax−lnx,求出存在x0∈(e,e a+1),使得g(x0)=0,得到关于a,x0的方程组,解出即可;法二:分离参数a,问题等价于对任意的x∈(0, +∞),a≥e2lnx−x且存在x0∈(0, +∞),使得a≥e2lnx0−x0,等价于g(x)=e2lnx−x的最大值为a,求出g(x)的最大值,从而求出a的范围即可.【解答】(1)当a=0时,f(x)=lnxx,故f′(x)=1x⋅x−lnxx2=1−lnxx2,令f′(x)>0,得0<x<e;故f(x)的单调递增区间为(0, e)(2)方法1:f′(x)=x+ax−lnx(x+a)2=1+ax−lnx(x+a)2令g(x)=1+ax−lnx则g′(x)=−ax2−1x=−x+ax2<0由g(e)=ae >0,g(e a+1)=1+ae−(1+a)=a⋅(1e−1)<0故存在x0∈(e,e a+1),g(x0)=0故当x∈(0, x0)时,g(x)>0;当x∈(x0, +∞)时,g(x)<0故f(x 0)=1e 2故{1+ax 0−lnx 0=0lnx 0x 0+a=1e2,解得{x 0=e 2a =e 2 故a 的值为e 2.(2)方法2:f(x)的最大值为1e 2的充要条件为: 对任意的x ∈(0, +∞),lnx x+a≤1e且存在x 0∈(0, +∞),使得lnx 0x 0+a=1e 2, 等价于对任意的x ∈(0, +∞),a ≥e 2lnx −x 且存在 x 0∈(0, +∞),使得a ≥e 2lnx 0−x 0,等价于g(x)=e 2lnx −x 的最大值为a . ∵ g ′(x)=e 2x−1,令g ′(x)=0,得x =e 2. x ,g′(x),g(x)的变化如下:故g(x)的最大值为g(e 2)=e 2lne 2−e 2=e 2,即a =e 2.【答案】(Ⅰ)由题意{ 4a 2+1b 2=1a 2−b 2=c 2e =c a =√32 ,解得:a =2√2,b =√2,c =√6 故椭圆C 的标准方程为x 28+y 22=1;(Ⅱ)根据题意,假设直线TP 或TQ 的斜率不存在,则P 点或Q 点的坐标为(2, −1), 直线l 的方程为y +1=12(x −2),即y =12x −2.联立方程{x 28+y 22=1y =12x −2 ,得x 2−4x +4=0, 此时,直线l 与椭圆C 相切,不合题意. 故直线TP 和TQ 的斜率存在. 设P(x 1, y 1),Q(x 2, y 2),则直线TP:y −1=y 1−1x 1−2(x −2),直线TQ:y −1=y 2−1x 2−2(x −2)故|OM|=2−x 1−2y1−1,|ON|=2−x 2−2y 2−1 由直线OT:y =12x ,设直线PQ:y =12x +t(t ≠0) 联立方程,{x 28+y 22=1y =12x +t ⇒x 2+2tx +2t 2−4=0 当△>0时,x 1+x 2=−2t ,x 1∗x 2=2t 2−4, |OM|+|ON|=4−(x 1−2y 1−1+x 2−2y 2−1)=4−(x 1−212x 1+t−1+x 2−212x 2+t−1)=4−x 1x 2+(t−2)(x 1+x 2)−4(t−1)14x 1x 2+12(t−1)(x 1+x 2)+(t−1)2=4−2t 2−4+(t−2)(−2t)−4(t−1)14(2t 2−4)+12(t−1)∗(−2t)+(t−1)2=4.【考点】 椭圆的定义 【解析】(Ⅰ)根据题意,由椭圆的几何性质分析可得{ 4a 2+1b 2=1a 2−b 2=c 2e =c a =√32 ,解可得a 、b 的值,将a 、b的值代入椭圆方程,即可得答案;(Ⅱ)根据题意,假设直线TP 或TQ 的斜率不存在,联立直线与椭圆的方程分析可得直线l 与椭圆C 相切,不合题意,则直线TP 和TQ 的斜率存在,进而设P(x 1, y 1),Q(x 2, y 2),由此表示直线TP 或TQ 的方程,联立直线与椭圆的方程,由根与系数的关系表示|OM|+|ON|的值,即可得答案. 【解答】(Ⅰ)由题意{4a 2+1b 2=1a 2−b 2=c 2e =c a =√32,解得:a =2√2,b =√2,c =√6 故椭圆C 的标准方程为x 28+y 22=1;(Ⅱ)根据题意,假设直线TP 或TQ 的斜率不存在,则P 点或Q 点的坐标为(2, −1), 直线l 的方程为y +1=12(x −2),即y =12x −2. 联立方程{x 28+y 22=1y =12x −2 ,得x 2−4x +4=0, 此时,直线l 与椭圆C 相切,不合题意.故直线TP 和TQ 的斜率存在. 设P(x 1, y 1),Q(x 2, y 2),则直线TP:y −1=y 1−1x 1−2(x −2),直线TQ:y −1=y 2−1x 2−2(x −2)故|OM|=2−x 1−2y1−1,|ON|=2−x 2−2y 2−1 由直线OT:y =12x ,设直线PQ:y =12x +t(t ≠0) 联立方程,{x 28+y 22=1y =12x +t⇒x 2+2tx +2t 2−4=0 当△>0时,x 1+x 2=−2t ,x 1∗x 2=2t 2−4, |OM|+|ON|=4−(x 1−2y 1−1+x 2−2y 2−1)=4−(x 1−212x 1+t−1+x 2−212x 2+t−1)=4−x 1x 2+(t−2)(x 1+x 2)−4(t−1)14x 1x 2+12(t−1)(x 1+x 2)+(t−1)2=4−2t 2−4+(t−2)(−2t)−4(t−1)14(2t 2−4)+12(t−1)∗(−2t)+(t−1)2=4.【答案】 (本题满分1(Ⅰ)A 是“N −数表”,其“N −值”为3,B 不是“N −数表”.证明:(Ⅱ)假设a i,j 和a i ′,j ′均是数表A 的“N −值”,①若i =i ′,则a i,j =max{a i,1, a i,2, ..., a i,n }=max{a i ′,1, a i ′,2, ..., a i ′,n }=a i ′,j ′;②若j =j ′,则a i,j =min{a 1,j , a 2,j , ..., a n,j }=min{a 1,j′, a 2,j ′, ..., a n,j ′}=a i ′,j ′; ③若i ≠i ′,j ≠j ′,则一方面a i,j =max{a i,1, a i,2, ..., a i,n }>a i,j′>min{a 1,j ′, a 2,j ′, ..., a n,j ′}=a i ′,j ′,另一方面a i ′,j ′=max{a i ′,1, a i ′,2, ..., a i ′,n }>a i ′,j >min{a 1,j , a 2,j , ..., a n,j }=a i,j ; 矛盾.即若数表A 是“N −数表”,则其“N −值”是唯一的.(Ⅲ)解法1:对任意的由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19. 定义数表B =(b j,i )19×19如下,将数表A 的第i 行,第j 列的元素写在数表B 的第j 行,第i 列,即b j,i =a i,j (其中1≤i ≤19,1≤j ≤19) 由题意,得:①数表B 是由1,2,3,…,361组成的19行19列的数表 ②数表B 的第j 行的元素,即为数表A 的第j 列的元素 ③数表B 的第i 列的元素,即为数表A 的第i 行的元素④若数表A 中,a i,j 是第i 行中的最大值,也是第j 列中的最小值 则数表B 中,b j,i 是第i 列中的最大值,也是第j 行中的最小值.定义数表C =(c j,i )19×19如下,其与数表B 对应位置的元素的和为362,即c j,i =362−b j,i (其中1≤i ≤19,1≤j ≤19)由题意得:①数表C 是由1,2,3,…,361组成的19行19列的数表②若数表B 中,b j,i 是第i 列中的最大值,也是第j 列中的最小值则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值特别地,对由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19 ①数表C 是由1,2,3,…,361组成的19行19列的数表②若数表A 中,a i,j 是第i 行中的最大值,也是第j 列中的最小值则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值即对任意的A ∈Ω19,其“N −值”为a i,j (其中1≤i ≤19,1≤j ≤19), 则C ∈Ω19,且其“N −值”为c j,i =362−b j,i =362−a i,j .记C =T(A),则T(C)=A ,即数表A 与数表C =T(A)的“N −值”之和为362, 故可按照上述方式对Ω19中的数表两两配对,使得每对数表的“N −值”之和为362, 故X 的数学期望E(X)=181.解法2:X 所有可能的取值为19,20,21,…,341,342,343.记Ω19中使得X =k 的数表A 的个数记作n k ,k =19,20,21,…,341,342,343,则n k =192×C k−118×C 361−k 18×[(182)!brack .则n 362−k =192×C 361−k 18×C k−118×[(182)!brack =n k ,则E(X)=∑∗k=19343nk k ∑k=19343nk =∑∗k=19343n362−k k∑k=19343nk =∑∗k=19343nk (362−k)∑k=19343nk ,故2E(X)=∑∗k=19343nk k∑k=19343nk +∑∗k=19343nk (362−k)∑k=19343nk =362,E(X)=181. 【考点】离散型随机变量的期望与方差【解析】(Ⅰ)A 是“N −数表”,其“N −值”为3,B 不是“N −数表”.(Ⅱ)假设a i,j 和a i ′,j ′均是数表A 的“N −值”,若i =i ′,则a i,j =a i ′,j ′;若j =j ′,则a i,j =a i ′,j ′;若i ≠i ′,j ≠j ′,一方面a i,j =max{a i,1, a i,2, ..., a i,n }>a i,j ′>min{a 1,j ′, a 2,j ′, ..., a n,j ′}=a i ′,j ′,另一方面a i ′,j ′=max{a i ′,1, a i ′,2, ..., a i ′,n }>a i ′,j >min{a 1,j , a 2,j , ..., a n,j }=a i,j ;矛盾.由此能证明数表A 是“N −数表”,则其“N −值”是唯一的.(Ⅲ)法1:对任意的由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19.定义数表B =(b j,i )19×19如下,将数表A 的第i 行,第j 列的元素写在数表B 的第j 行,第i 列,即b j,i =a i,j (其中1≤i ≤19,1≤j ≤19),则数表B 中,b j,i 是第i 列中的最大值,也是第j 行中的最小值.定义数表C =(c j,i )19×19如下,其与数表B 对应位置的元素的和为362,即c j,i =362−b j,i (其中1≤i ≤19,1≤j ≤19),则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值,由此能求出X 的数学期望E(X). 法2:X 所有可能的取值为19,20,21,…,341,342,343.记Ω19中使得X =k 的数表A 的个数记作n k ,k =19,20,21,…,341,342,343,则n k =192×C k−118×C 361−k 18×[(182)!brack .由此能求出E(X).【解答】(本题满分1(Ⅰ)A 是“N −数表”,其“N −值”为3,B 不是“N −数表”.证明:(Ⅱ)假设a i,j 和a i ′,j ′均是数表A 的“N −值”,①若i =i ′,则a i,j =max{a i,1, a i,2, ..., a i,n }=max{a i ′,1, a i ′,2, ..., a i ′,n }=a i ′,j ′;②若j =j ′,则a i,j =min{a 1,j , a 2,j , ..., a n,j }=min{a 1,j′, a 2,j ′, ..., a n,j ′}=a i ′,j ′;③若i ≠i ′,j ≠j ′,则一方面a i,j =max{a i,1, a i,2, ..., a i,n }>a i,j ′>min{a 1,j ′, a 2,j ′, ..., a n,j ′}=a i ′,j ′,另一方面a i ′,j ′=max{a i ′,1, a i ′,2, ..., a i ′,n }>a i ′,j >min{a 1,j , a 2,j , ..., a n,j }=a i,j ; 矛盾.即若数表A 是“N −数表”,则其“N −值”是唯一的.(Ⅲ)解法1:对任意的由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19. 定义数表B =(b j,i )19×19如下,将数表A 的第i 行,第j 列的元素写在数表B 的第j 行,第i 列,即b j,i =a i,j (其中1≤i ≤19,1≤j ≤19)由题意,得:①数表B 是由1,2,3,…,361组成的19行19列的数表②数表B 的第j 行的元素,即为数表A 的第j 列的元素③数表B 的第i 列的元素,即为数表A 的第i 行的元素④若数表A 中,a i,j 是第i 行中的最大值,也是第j 列中的最小值则数表B 中,b j,i 是第i 列中的最大值,也是第j 行中的最小值.定义数表C =(c j,i )19×19如下,其与数表B 对应位置的元素的和为362, 即c j,i =362−b j,i (其中1≤i ≤19,1≤j ≤19)由题意得:①数表C 是由1,2,3,…,361组成的19行19列的数表②若数表B 中,b j,i 是第i 列中的最大值,也是第j 列中的最小值则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值特别地,对由1,2,3,…,361组成的19行19列的数表A =(a i,j )19×19 ①数表C 是由1,2,3,…,361组成的19行19列的数表②若数表A 中,a i,j 是第i 行中的最大值,也是第j 列中的最小值则数表C 中,c j,i 是第i 列中的最小值,也是第j 列中的最大值即对任意的A ∈Ω19,其“N −值”为a i,j (其中1≤i ≤19,1≤j ≤19), 则C ∈Ω19,且其“N −值”为c j,i =362−b j,i =362−a i,j .记C =T(A),则T(C)=A ,即数表A 与数表C =T(A)的“N −值”之和为362, 故可按照上述方式对Ω19中的数表两两配对,使得每对数表的“N −值”之和为362, 故X 的数学期望E(X)=181.解法2:X 所有可能的取值为19,20,21,…,341,342,343.记Ω19中使得X =k 的数表A 的个数记作n k ,k =19,20,21,…,341,342,343,则n k =192×C k−118×C 361−k 18×[(182)!brack .则n 362−k =192×C 361−k 18×C k−118×[(182)!brack =n k ,则E(X)=∑∗k=19343nk k ∑k=19343nk =∑∗k=19343n362−k k∑k=19343nk =∑∗k=19343nk (362−k)∑k=19343nk ,故2E(X)=∑∗k=19343nk k∑k=19343nk +∑∗k=19343nk (362−k)∑k=19343nk =362,E(X)=181.。
第54题+不等式的概念与性质-2018精品之高中数学(理)黄金100题系列+Word版含解析
![第54题+不等式的概念与性质-2018精品之高中数学(理)黄金100题系列+Word版含解析](https://img.taocdn.com/s3/m/6af1ccb084868762caaed5c4.png)
第54题 不等式的概念与性质I .题源探究·黄金母题【例1】已知0,0,a b c >><求证:c c a d>. 【证明】10,0,0a b ab ab>>∴>>.于是11,a b ab ab ⋅>⋅即11,b a >由0c <,得c c a d>. 精彩解读【试题来源】人教版A 版必修5P 74例1.【母题评析】本题考查了不等式的重要性质.作为基础题,不等式性质的应用,是历年来高考的一个常考点. 【思路方法】熟记不等式性质,应用不等式的性质解题.II .考场精彩·真题回放【例2】【2017高考山东理7】若0a b >>,且1ab =,则下列不等式成立的是 ( ) A .()21log 2a b a a b b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a ba ab b +<+< D .()21log 2a b a b a b +<+<【答案】B【解析】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+,所以选B . 【例3】【2016高考新课标I 】若101a b c >><<,,则 ( ) A .cca b < B .ccab ba < C .log log b a a c b c < D .log log a b c c < 【答案】C【命题意图】这类题主要考查不等式的性质、指数函数、对数函数、幂函数的性质.本题能较好的考查考生分析问题、解决问题的能力等. 【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等偏易,考查基础知识的识记与理解.【难点中心】比较指数式或对数式的大小,若幂的底数相同或对数的底数相同或幂的指数相同,通常利用指数函数或对数函数或幂函数的单调性进行比较;若底数不同,可考虑利用中间量进行【解析】用特殊值法.令3a =,2b =,12c =,得112232>,选项A错误;11223223⨯>⨯,选项B 错误;2313log 2log 22<,选项C 正确;3211log log 22>,选项D 错误,故选C . 【例4】【2017高考北京理13】能够说明“设,,a b c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为______________________________. 【答案】1,2,3---.【解析】()123,1233->->--+-=->-相矛盾,∴验证是假命题. 【例5】【2017高考北京文14】某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________. 【答案】6,12【解析】设男生数,女生数,教师数为,,a b c ,则2,,,c a b c a b c >>>∈N第一小问:max 846a b b >>>⇒=;第二小问:min 3,635,412.c a b a b a b c =>>>⇒==⇒++=比较.也可以利用特殊值法.III .理论基础·解题原理1.比较法原理:0,0,0.a b a b a b a b a b a b ->⇔>-<⇔<-=⇔= 2.a b b a >⇔<(反对称性); 3.若,,a b b c >>则a c >(传递性)4.若a b >,则a c b c +>+;5.若,0a b c >>,则ac bc >;若,0a b c ><,则ac bc <; 6.若,a b c d >>,则a c b d +>+; 7.若0,0a b c d >>>>,则ac bd >;9.若0a b >>,则(),2n n a b n N n >∈≥;IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,一般难度较小,往往考查对基础知识的识记与理解. 【技能方法】解决此类问题的关键是在不等式的求解证明中,必须在不等式的常见性质体系下进行分析.(1)用作差比较法比较数式的大小关键是变形,常将两个代数式作差后变形为常数或平方和的形式或几个因式积的形式等,常有的变形技巧有因式分解、配方、通分、分母(分子)有理化等.作差比较法的一般步骤:作差——变形——与0比较大小——下结论.(2)当用作差法难以比较数式的大小时,可以试用作商比较法(前提是两个代数式同号).作商比较法的一般步骤:作商——变形——与1比较大小——下结论.(3)在运用不等式的性质时,一定要掌握它们成立的条件.如两边同乘以(或除以)一个正数,不等号的方向不变,若同乘以(或除以)一个负数,则不等号的方向改变.因此在分式不等式中,若不能肯定分母是正数还是负数,则不要轻易去分母.又如,同向不等式相乘、不等式两边同时乘方或(或开方)时,要求不等式两边都是正数.(4)应用不等式的性质解题的常见类型及方法:①注意观察从已知不等式到目标不等式的变化,它是如何变形的,这些变形是否符合不等式的性质及性质的条件;②若比较大小的两式是指数或对数模型,注意联想单调性;③恰当运用赋值法和淘汰法探究解答选择题、填空题. 【易错指导】(1)比较大小时,要把各种可能的情况都考虑进去,对不确定的因素进行分类讨论,每一步运算都要准确,每一步推理都要有充分的依据.(2)不等式性质的等价性:在不等式的基本性质中,对表达不等式性质的各不等式,要注意“箭头”是单向还是双向,也就是说每条性质是否具有可逆性.(3)由于同向不等式相加或相乘会使范围变大,所以在求有关不等式取值范围的问题时,尽量少用不等式相加或相乘,次数越少越好,最好“一次性”不等关系的运算求得待求整体的范围,这是避免出错的一条捷径.V .举一反三·触类旁通考向1 利用不等式的性质判定大小【例1】【2018河南焦作高三第四次模拟】已知0a b >>,则下列不等式中成立的是( )A .11a b >B .22log log a b <C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .1122a b -->【答案】C【例2】【2018河北衡水中学高三十五模】已知330c c a b<<,则下列选项中错误的是( ) A .b a > B .ac bc > C .0a b c -> D .ln 0ab> 【答案】D【解析】330c c a b <<,当0c <时,110a b >>,即b 0a >>,∴b a >,ac bc >,0a bc->成立,此时01a b <<,∴ln 0ab<,故选D . 【例3】【2018江西吉安一中、九江一中等八所重点中学高三4月联考】若1a >,01c b <<<,则下列不等式不正确的是( )A .log 2018log 2018a b >B .log log b c a a<C .()()aac b c c b b ->- D .()()cba c a a c a ->- 【答案】D【解析】根据对数函数的单调性可得log 20180log 2018a b >>,log log b c a a <,故A 、B 正确.∵1a >,01c b <<<,∴0a a c b <<,0c b -<,0c b a a <<,0a c ->, ∴()()aac b c c b b ->-,()()cba c a a c a -<-,则C 正确,D 错误.故选D .【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性. 【跟踪练习】1.【2018北京丰台区高三一模】已知0a b <<,则下列不等式中恒成立的是A .11a b> B < C .22a b > D .33a b > 【答案】A2.【2018北京十一学校高三3月模拟】设 4.20.60.60.6,7,log 7a b c ===,则,,a b c 的大小关系是A .c b a <<B .c a b <<C .b c a <<D .a b c << 【答案】B【解析】0< 4.20.6<1,0.67>1,0.6log 7<0,所以b>a>c ,选B .3.【2018四川成都第七中学高三上学期模拟】设12523log 2,log 2,a b c e ===,则,,a b c 的大小关系是( )A .a b c <<B .b a c <<C .b c a <<D .c b a << 【答案】B【解析】因为()12523log 20,1,log 20,1a b c e=∈==,所以b a c <<,选B .考向2 求范围的问题【例4】【2018黑龙江双鸭山市一中高二4月月考】已知15,13a b a b ≤+≤-≤-≤,则32a b -的取值范围是 ( )A .[]6,14-B .[]2,14-C .[]2,10-D .[]6,10- 【答案】C【解析】设()()32x y a b a b a b -=++-,易得:1x 2=,5y 2=, ∴()()[]15322,1022a b a b a b -=++-∈-,故选C . 【名师点睛】根据不等式组确定二元目标式范围的方程有二,其一:利用待定系数法表示目标,直接加减一次即可;其二:利用线性规划的方法处理.【例5】三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,则ba的取值范围是________. 【答案】23,32⎡⎤⎢⎥⎣⎦【例6】【2018辽宁大连渤海高级中学高二上学期期中考试】设()2f x ax bx =+,且()112f -≤-≤,()214f ≤≤,求()2f -的取值范围.【答案】()1210f -≤-≤【解析】试题分析:由()2f x ax bx =+ 得()242f a b -=-.已知()()1,1f f - 的范围,用()()1,1f f -表示,a b ,再把()242f a b -=-化简,然后根据不等式的性质可得所求范围.试题解析:由已知得()()1{ 1f a b f a b-=-=+,∴()()()()112{112f f a f f b +-=--=,∴()()()()()11112424222f f f f f a b +----=-=⨯-⨯()()131f f =+-,∵()()112,3316f f -≤-≤∴-≤-≤,∵()214f ≤≤,∴()()113110,f f -≤+-≤∴()1210f -≤-≤.【名师点睛】利用不等式的性质可以求参数或某些代数式的取值范围,但在变换过程中要注意掌握、准确使用不等式的性质.求含有字母的代数式的取值范围时,要注意题设中的条件.如本例若忽视αβ<,则会导致取值范围变大. 【跟踪练习】1.【2018广西防城港市高中毕业班1月模拟】已知0,0,22a b a b >>+=,若24a b m +>恒成立,则实数m 的取值范围是__________. 【答案】4m <2.【2018江苏邗江中学高二下学期期中考试】若不等式(﹣1)n •a <3对任意的正整数n 恒成立,则实数a 的取值范围是_____. 【答案】【解析】分析:将不等式进行参数分离,求函数的最值即可得到结论. 详解:当为奇数时,不等式可化为,即,要使得不等式对任意自然数恒成立,则,当为偶数时,不等式可化为,要使得不等式对任意自然数恒成立,则,即,综上,.【名师点睛】本题主要考查了不等式恒成立问题,将不等式的恒成立转化为求式子的最值问题解决恒成立问题是解答恒成立问题的基本方法,着重考查分析问题和解答问题的能力.3.【2018北京市海淀区育英学校高一下期期中考试】若实数a ,b 满足02a <<,01b <<,则a b -的取值范围是__________. 【答案】()1,2-【解析】01,10b b <<∴-<-<,02,12a a b <<∴-<-<,故答案为()1,2-.4.设等差数列{a n }的前n 项和为S n ,若1≤a 5≤4,2≤a 6≤3,则S 6的取值范围是________. 【答案】[-12,42]【名师点睛】本题是一道易错题,如果根据1≤a 5≤4,2≤a 6≤3分别求出1,a d 的范围,再求S 6=6a 1+15d 的范围,实际上是错误的.这里涉及到不等式取等的问题,可以利用线性规划的知识,也可以利用解答中的整体代入的方法.考向3 不等式的性质与充要条件【例7】【2018广东省中山市高二上学期期末复习】若,a b 为实数,则22a b >是0a b >>的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不也不必要条件 【答案】B【解析】当0a b >>时,22a b >成立,当3,1a b =-=-时,满足22a b >,但0a b >>不成立,即“22a b >”是“0a b >>”的必要不充分条件,故选B .【例8】【2018广东中山市高二上学期理科数学期末考试】条件甲:24{03x y xy <+<<<;条件乙:01{23x y <<<<,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不也不必要条件 【答案】B 【解析】由01{23x y <<<<,根据不等式的性质可得24{ 03x y xy <+<<<;由01{23y x <<<<,而15,22x y ==时,24{03x y xy <+<<<成立,01{ 23y x <<<<不成立,所以甲是乙的必要不充分条件,故选B .【例9】下列四个不等式:①a <0<b ;②b <a <0;③b <0<a ;④0<b <a ,其中能使11a b<成立的充分条件有________. 【答案】①②④【解析】①a <0<b ⇒1a <0,1b >0⇒1a <1b ;②b <a <0⇒1a <1b ;③b <0<a ⇒1a >1b;④0<b <a ⇒1a <1b.故答案为:①②④. 【跟踪练习】1.【2018天津蓟州区第一中学高二第一学期第二次月考】①一个命题的逆命题为真,它的否命题一定也为真: ②在中,“”是“三个角成等差数列”的充要条件;③是的充要条件; ④“”是“”的充分必要条件;以上说法中,判断错误的有_______________. 【答案】③④有,又由,则,故在中,“”是“三个角成等差数列”的充要条件,②正确;对于③,当,则满足,而不满足,则是的不必要条件,③错误;对于④,若,当时,有,则“”是“”的不必要条件,④错误,故答案为③④.2.【2018衡水金卷(四)】设p :3402x xx-≤,q :()22210x m x m m -+++≤,若p 是q 的必要不充分条件,则实数m 的取值范围为( )A .[]2,1-B .[]3,1-C .[)(]2,00,1-⋃D .[)(]2,10,1--⋃ 【答案】D【解析】设p :3402x xx-≤的解集为A ,所以A={x|-2≤x <0或0<x≤2},设q :()22210x m x m m -+++≤的解集为B ,所以B={x|m≤x≤m+1},由题知p 是q 的必要不充分条件,即得B 是A 的真子集,所以有010{01{ 2 1.122m m m m m m >+<⇒<≤⇒-≤<-+≤≥-或综合得m ∈[)(]2,10,1--⋃,故选D .3.设,x y R ∈,则4()0x y x -<是x y <的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A。
北京第一零一中学数学高三上期中测试卷(培优提高)
![北京第一零一中学数学高三上期中测试卷(培优提高)](https://img.taocdn.com/s3/m/83cc70a93c1ec5da51e270c0.png)
一、选择题1.设实数x ,y 满足22413x xy y x y ++=+-,则代数式2413xy y x y ++-( )A .有最小值631B .有最小值413C .有最大值1D .有最大值20212.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 3.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4B .5C .6D .4或54.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .15.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 kmBkmC.D.6.已知数列{}n a 的通项公式为()*21log N 2n n a n n +=∈+,设其前n 项和为n S ,则使5n S <-成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值317.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40378.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦9.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( )A .2B .2C .22D .410.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7 B .5C .5-D .7-11.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<12.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .12524313.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30方向,且与A 相距60km ;C 在B 的北偏东30方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km14.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .515.已知正项数列{}n a *12(1)()2n n n a a a n N ++=∈,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题16.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.17.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答)18.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.19.设0x >,则231x x x +++的最小值为______.20.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______21.设a >0,b >0. 若关于x,y 的方程组1,{1ax y x by +=+=无解,则+a b 的取值范围是 . 22.若原点和点(1,2019)-在直线0x y a -+=的同侧,则a 的取值范围是________(用集合表示).23.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________.24.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.25.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.三、解答题26.已知等比数列{}n a 的公比1q >,且满足:23428a a a ++=,且32a +是24,a a 的等差中项.(1)求数列{}n a 的通项公式; (2)若1122log ,n n n n n b a a S b b b ==+++,求使1·262n nS n ++>成立的正整数n 的最小值.27.已知{}n a 是递增的等差数列,2a ,4a 是方程的根.(1)求{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 28.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,14cos a C a+=,1b =. (1)若90A ∠=︒,求ABC 的面积; (2)若ABC 的面积为32,求a ,c . 29.已知各项均为正数的数列{}n a 的前n 项和为n S ,且11a =,1n n n a S S -(*n N ∈,且2n ≥) (1)求数列{}n a 的通项公式; (2)证明:当2n ≥时,12311113232n a a a na ++++< 30.围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元).(Ⅰ)将y 表示为x 的函数;(Ⅱ)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.C 3.B 4.A 5.D 6.A 7.C8.A9.A10.D11.B12.A13.D14.B15.B二、填空题16.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题17.【解析】【分析】由得为等差数列求得通项公式则可求【详解】则为以首项为1公差为3的等差数列则故答案为:【点睛】本题考查等差数列的定义及通项公式意在考查计算能力是基础题18.14【解析】【分析】等差数列的前n项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n项和有最大值可知再由知且又所以当时n的最小值为14故答案为14【点睛】本题考查使的n的最小值的求法是中档19.【解析】【分析】利用换元法令将所给的代数式进行变形然后利用均值不等式即可求得最小值【详解】由可得可令即则当且仅当时等号成立故答案为:【点睛】本题主要考查基本不等式求最值的方法换元法及其应用等知识意在20.-2+)【解析】【分析】根据题意分x=0与x≠0两种情况讨论①x=0时易得原不等式恒成立②x≠0时原式可变形为a≥-(|x|+)由基本不等式的性质易得a的范围综合两种情况可得答案【详解】根据题意分两21.【解析】试题分析:方程组无解等价于直线与直线平行所以且又为正数所以()即取值范围是考点:方程组的思想以及基本不等式的应用22.或【解析】【分析】根据同侧同号列不等式解得结果【详解】因为原点和点在直线的同侧所以或即的取值范围是或【点睛】本题考查二元一次不等式区域问题考查基本应用求解能力属基本题23.【解析】【分析】先根据条件列关于公差的方程求出公差后代入等差数列通项公式即可【详解】设等差数列的公差为【点睛】在解决等差等比数列的运算问题时有两个处理思路一是利用基本量将多元问题简化为首项与公差(公24.-10【解析】作出可行域如图所示:由得平移直线由图象可知当直线经过点时直线的截距最大此时最小由得此时故答案为25.【解析】【分析】由无穷等比数列的各项和为4得且从而可得的范围【详解】由题意可得且且故答案为【点睛】本题主要考查了等比数列的前n项和而无穷等比数列的各项和是指当且时前n项和的极限属于基础题三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】先利用条件把413x y+-进行等量代换,再利用换元法,结合二次函数区间最值求解.【详解】设y t x=,则222222221114113xy y xy y x x xy y x xy y t t x y ++==-=-+++++++-, ()222222441(1)01313x tx t x x tx t t x t x ++=+-⇒++-++=, 10(3)(31)033t t t ∆≥⇒--≤⇒≤≤. 221314121,13,1,911313t t t t ⎡⎤⎡⎤++∈-∈⎢⎥⎢⎥++⎣⎦⎣⎦,2min 441313xy y x y ⎛⎫⎪+= ⎪ ⎪+-⎝⎭,2max 1241313xy y x y ⎛⎫ ⎪+= ⎪ ⎪+-⎝⎭. 故选:B. 【点睛】本题主要考查最值问题,利用条件进行等量代换是求解的关键,注意齐次分式的处理方法,侧重考查数学运算的核心素养.2.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x 可能为负数,没有最小值;选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).3.B解析:B 【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-, 由19a =,所以211n a n =-+, 令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .4.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x ,0y >,20x y xy +-=, 2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,22(2)5592x x -++≥=-, 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.5.D解析:D 【解析】 【分析】直接利用余弦定理求出A ,C 两地的距离即可. 【详解】因为A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°, 则A ,C 两地的距离为:AC 2=AB 2+CB 2﹣2AB •BC cos ∠ABC =102+202﹣2110202⎛⎫⨯⨯⨯-= ⎪⎝⎭700.所以AC =km . 故选D . 【点睛】本题考查余弦定理的实际应用,考查计算能力.6.A解析:A 【解析】 【分析】利用对数运算,求得n S ,由此解不等式5n S <-,求得n 的最小值. 【详解】 ∵()*21log N 2n n a n n +=∈+, ∴12322223log log log 3142n n S a a a a n n =++++⋯+=++⋯++222312log log 3422n n n +⎛⎫=⨯⨯⋯⨯= ⎪++⎝⎭, 又因为21215log 6232232n S n n <-=⇒<⇒>+, 故使5n S <-成立的正整数n 有最小值:63. 故选:A. 【点睛】本小题主要考查对数运算和数列求和,属于基础题.7.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.8.A解析:A 【解析】 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解 即2a x x>-在[]15x ∈,上成立,设函数数()2f x x x=-,[]15x ∈, ()2210f x x∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.9.A解析:A 【解析】 【分析】由正弦定理,化简求得sin 0B B =,解得3B π=,再由余弦定理,求得()224b a c =+,即可求解,得到答案.【详解】在ABC ∆中,因为sin cos 0b A B -=,且2b ac =,由正弦定理得sin sin cos 0B A A B =, 因为(0,)A π∈,则sin 0A >,所以sin 0B B =,即tan B =3B π=,由余弦定理得222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()224b a c =+,解得2a cb+=,故选A . 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.10.D解析:D 【解析】 【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D. 【点睛】本题主要考查了等比数列的下标的性质,属于中档题.11.B解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.12.A解析:A 【解析】解法一 a n +1-a n =(n +1)n +1-nn=·n,当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.解法二 ==,令>1,解得n <2;令=1,解得n =2;令<1,解得n >2.又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.13.D解析:D 【解析】 【分析】先判断三角形DAB 为直角三角形,求出BD ,然后推出CBD ∠为直角,可得CD ,进一步可得cos BDF ∠,最后在三角形EDB 中用余弦定理可得BF . 【详解】取AB 的中点E ,连DE ,设飞机飞行了15分钟到达F 点,连BF ,如图所示:则BF 即为所求.因为E 为AB 的中点,且120AB km =,所以60AE km =, 又60DAE ∠=,60AD km =,所以三角形DAE 为等边三角形,所以60DE km =,60ADE ∠=,在等腰三角形EDB 中,120DEB ∠=,所以30EDB EBD ∠=∠=, 所以90ADB ∠=,由勾股定理得2BD 22221206010800AB AD =-=-=, 所以3BD km =,因为9030CBE ∠=+120=,30EBD ∠=,所以CBD ∠90=, 所以222108006013240CD BD BC =+=+⨯=km ,所以6033cos BD BDC CD ∠===, 因为1360904DF km =⨯=, 所以在三角形BDF 中,2222232cos (603)90260390BF BD DF BD DF BDF =+-⋅⋅∠=+-⨯ 10800=,所以603BF =km .故一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有603km . 故选D . 【点睛】本题考查了利用余弦定理解斜三角形,属于中档题.14.B解析:B 【解析】 【分析】由1x y +=得(1)2x y ++=,再将代数式(1)x y ++与141x y++相乘,利用基本不等式可求出141x y++的最小值. 【详解】1x y +=,所以,(1)2x y ++=,则141441412()[(1)]()52591111x y x yx y x y x y y x y x+++=+++=+++=++++, 所以,14912x y ++, 当且仅当4111x y y x x y +⎧=⎪+⎨⎪+=⎩,即当2313x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,因此,141x y ++的最小值为92, 故选B . 【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.15.B解析:B 【解析】【分析】 ()()1122nn n n +-=-的表达式,可得出数列{}n a 的通项公式. 【详解】(1)(1),(2)22n n n n n n +-=-=≥ 1= ,所以2,(1),n n n a n =≥= ,选B.【点睛】给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1{,2n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出结果后,看看这两种情况能否整合在一起.二、填空题16.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.17.【解析】【分析】由得为等差数列求得通项公式则可求【详解】则为以首项为1公差为3的等差数列则故答案为:【点睛】本题考查等差数列的定义及通项公式意在考查计算能力是基础题 解析:128【解析】 【分析】由1113()n nn N a a *+=+∈得1n a ⎧⎫⎪⎨⎬⎪⎭⎩为等差数列,求得1n a ⎧⎫⎪⎨⎬⎪⎭⎩通项公式,则10a 可求 【详解】1113()n nn N a a *+=+∈则1n a ⎧⎫⎪⎨⎬⎪⎭⎩为以首项为1,公差为3的等差数列,则 ()10111313228n n n a a =+-=-∴= 故答案为:128【点睛】本题考查等差数列的定义及通项公式,意在考查计算能力,是基础题18.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <,再由871a a <-,知70a >,80a <,且780a a +<, 又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.19.【解析】【分析】利用换元法令将所给的代数式进行变形然后利用均值不等式即可求得最小值【详解】由可得可令即则当且仅当时等号成立故答案为:【点睛】本题主要考查基本不等式求最值的方法换元法及其应用等知识意在解析:1【解析】 【分析】利用换元法,令1t x =+将所给的代数式进行变形,然后利用均值不等式即可求得最小值. 【详解】由0x >,可得11x +>.可令()11t x t =+>,即1x t =-,则()()22113331111t t x x t x t t -+-+++==+-=+≥,当且仅当t =1x =时,等号成立.故答案为:1. 【点睛】本题主要考查基本不等式求最值的方法,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.20.-2+)【解析】【分析】根据题意分x=0与x≠0两种情况讨论①x=0时易得原不等式恒成立②x≠0时原式可变形为a≥-(|x|+)由基本不等式的性质易得a 的范围综合两种情况可得答案【详解】根据题意分两解析:[-2,+∞) 【解析】 【分析】根据题意,分x=0与x≠0两种情况讨论,①x=0时,易得原不等式恒成立,②x≠0时,原式可变形为a≥-(|x|+ 1x),由基本不等式的性质,易得a 的范围,综合两种情况可得答案. 【详解】根据题意,分两种情况讨论;①x=0时,原式为1≥0,恒成立,则a∈R;②x≠0时,原式可化为a|x|≥-(x 2+1),即a≥-(|x|+ 1x),又由|x|+1x ≥2,则-(|x|+1x)≤-2;要使不等式x 2+a|x|+1≥0恒成立,需有a≥-2即可; 综上可得,a 的取值范围是[-2,+∞); 故答案为[-2,+∞). 【点睛】本题考查不等式恒成立问题的解法,运用分类讨论和参数分离、基本不等式求最值是解题的关键,属于中档题.21.【解析】试题分析:方程组无解等价于直线与直线平行所以且又为正数所以()即取值范围是考点:方程组的思想以及基本不等式的应用 解析:(2,)+∞【解析】试题分析:方程组无解等价于直线1ax y +=与直线1x by +=平行,所以1ab =且1a b ≠≠.又a ,b 为正数,所以2a b +>=(1a b ≠≠),即+a b 取值范围是(2,)+∞.考点:方程组的思想以及基本不等式的应用.22.或【解析】【分析】根据同侧同号列不等式解得结果【详解】因为原点和点在直线的同侧所以或即的取值范围是或【点睛】本题考查二元一次不等式区域问题考查基本应用求解能力属基本题解析:{|2020a a >或0}a < 【解析】 【分析】根据同侧同号列不等式,解得结果. 【详解】因为原点和点()1,2019-在直线0x y a -+=的同侧,所以(00)(12019)02020a a a -+--+>∴>或0a <,即a 的取值范围是{2020a a 或0}.a <【点睛】本题考查二元一次不等式区域问题,考查基本应用求解能力.属基本题.23.【解析】【分析】先根据条件列关于公差的方程求出公差后代入等差数列通项公式即可【详解】设等差数列的公差为【点睛】在解决等差等比数列的运算问题时有两个处理思路一是利用基本量将多元问题简化为首项与公差(公 解析:63n a n =-【解析】 【分析】先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可. 【详解】设等差数列{}n a 的公差为d ,13334366a d d d =∴+++=∴=,,,36(1)6 3.n a n n ∴=+-=-【点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确:二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.24.-10【解析】作出可行域如图所示:由得平移直线由图象可知当直线经过点时直线的截距最大此时最小由得此时故答案为解析:-10 【解析】作出可行域如图所示:由3z x y =-得33x z y =-,平移直线33x zy =-,由图象可知当直线经过点A 时,直线33x zy =-的截距最大,此时z 最小由1{2x x y =-+=得(1,3)A -,此时13310z =--⨯=-故答案为10-25.【解析】【分析】由无穷等比数列的各项和为4得且从而可得的范围【详解】由题意可得且且 故答案为【点睛】本题主要考查了等比数列的前n 项和而无穷等比数列的各项和是指当且时前n 项和的极限属于基础题 解析:(0,4)(4,8)⋃【解析】 【分析】由无穷等比数列{}n a 的各项和为4得,141a q=-,,||1q <且0q ≠,从而可得1a 的范围. 【详解】 由题意可得,14,||11a q q=<- , 且0q ≠14(1)a q =- 108a ∴<<且14a ≠故答案为(0,4)(4,8)⋃ 【点睛】本题主要考查了等比数列的前n 项和,而无穷等比数列的各项和是指当,||1q <且0q ≠时前 n 项和的极限,属于基础题.三、解答题 26.(1)2nn a =;(2)6.【解析】试题分析:(1)求等比数列的通项公式,关键是求出首项和公比,这可直接用首项1a 和公比q 表示出已知并解出即可(可先把已知化简后再代入);(2)求出n b 的表达式后,要求其前n 项和,需用错位相减法.然后求解不等式可得最小值. 试题解析:(1)∵32a +是24,a a 的等差中项,∴()32422a a a +=+, 代入23428a a a ++=,可得38a =,∴2420a a +=,∴212118{20a q a q a q =+=,解之得122a q =⎧⎨=⎩或132{12a q ==,∵1q >,∴122a q =⎧⎨=⎩,∴数列{}n a 的通项公式为2nn a =(2)∵1122log 2log 2?2n n nn n n b a a n ===-,∴()21222?2n n S n =-⨯+⨯++,...............① ()23121222?2?2n n S n n +=-⨯+⨯+++,.............②②—①得()2311112122222?2?222?212n n n n n n nS n n n ++++-=+++-=-=---∵1·262n n S n ++>,∴12262n +->,∴16,5n n +>>, ∴使1·262n n S n ++>成立的正整数n 的最小值为6 考点:等比数列的通项公式,错位相减法.27.(1)112n a n =+;(2)1422n n n S ++=-. 【解析】 【分析】 (1)方程的两根为2,3,由题意得233,2a a ==,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n 项和公式即可求出.【详解】方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而得a 1=32. 所以{a n }的通项公式为a n =12n +1. (2)设2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为S n , 由(1)知2n n a =122n n ++, 则S n =232+342+…+12n n ++122n n ++,12S n =332+442+…+112n n +++222n n ++, 两式相减得12S n =34+311122n +⎛⎫+⋅⋅⋅+ ⎪⎝⎭-222n n ++=34+111142n -⎛⎫- ⎪⎝⎭-222n n ++, 所以S n =2-142n n ++. 考点:等差数列的性质;数列的求和.【方法点晴】本题主要考查了等差数列的通项公式、“错位相减法”、等比数列的前n 项和公式、一元二次方程的解法等知识点的综合应用,解答中方程的两根为2,3,由题意得233,2a a ==,即可求解数列的通项公式,进而利用错位相减法求和是解答的关键,着重考查了学生的推理能力与运算能力,属于中档试题.28.(122)7a =2c =. 【解析】【分析】(1)已知14cos a C a+= ,根据余弦定理和勾股定理等已知条件,可求得a 与c 的值,应用三角形面积公式,可求得三角形面积; (2)根据三角形面积公式,得sinC,根据14cos a C a+=,得cosC ,代入sin 2C+cos 2C=1,得关于a 的方程,解方程即可.【详解】 (1)∵14cos a C a += ()222222142a c a b c ab a +-+-=⨯=,∴2221c a =+. 又∵90A ∠=︒,∴22221a b c c =+=+.∴222212c a c =+=+,∴2c =3a = ∴1112sin 12222ABC S bc A bc ===⨯=. (2)∵113sin sin 22ABC Sab C a C ===,∴3sin C =. ∵14cos a C a +=,3sin C =, ∴2211314a a ⎡⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦⎝⎭,化简得()2270a -=, ∴7a =2c =.【点睛】正弦定理和余弦定理可将已知条件中的边、角关系转化为角或边的关系;三角形面积公式S=111absin bcsin acsin 222C A B == 中既含有角,又含有边,可与正弦定理和余弦定理联系起来,为解三角形提供条件. 29. (1) 21n a n =- (2)见证明 【解析】【分析】(1)由题意将递推关系式整理为关于n S 与1n S -的关系式,求得前n 项和然后确定通项公式即可;(2)由题意结合通项公式的特征放缩之后裂项求和即可证得题中的不等式.【详解】(1)由1n n n a S S -=+,得11n n n n S S S S ---=+,即11(2)n n S S n --=≥, 所以数列{}n S 是以111S a ==为首项,以1为公差的等差数列, 所以1(1)1n S n n =+-⨯=,即2n S n =,当2n ≥时,121n n n a S S n -=-=-,当1n =时,111a S ==,也满足上式,所以21n a n =-;(2)当2n ≥时,111(21)(22)n na n n n n =<--111112(1)21n n n n ⎛⎫==- ⎪--⎝⎭, 所以123111123n a a a na +++⋅⋅⋅+1111111122231n n ⎛⎫<+-+-++- ⎪-⎝⎭313222n =-< 【点睛】给出n S 与n a 的递推关系,求a n ,常用思路是:一是利用1n n n a S S -=-转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 30.(Ⅰ)y =225x +2360360(0)x x-〉 (Ⅱ)当x =24m 时,修建围墙的总费用最小,最小总费用是10440元.【解析】试题分析:(1)设矩形的另一边长为am ,则根据围建的矩形场地的面积为360m 2,易得360a x=,此时再根据旧墙的维修费用为45元/m ,新墙的造价为180元/m ,我们即可得到修建围墙的总费用y 表示成x 的函数的解析式;(2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x 值 试题解析:(1)如图,设矩形的另一边长为a m则45x+180(x-2)+180·2a=225x+360a-360由已知xa=360,得a=,所以y=225x+(2).当且仅当225x=时,等号成立.即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.考点:函数模型的选择与应用。
(完整版)2018年北京高考数学及答案
![(完整版)2018年北京高考数学及答案](https://img.taocdn.com/s3/m/45231474050876323012124b.png)
2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.1. 已知集合,,则 ( ){}2|<=x x A {}2,1,0,2-=B =⋂B A .A {}1,0.B {}1,0,1-.C {}2,1,0,2-.D {}2,1,0,1-2. 在复平面内,复数的共轭复数对应的点位于( )i-11第一象限第二象限 第三象限第四象限.A .B .C .D 3. 执行如图所示的程序框图,输出的值为()s.A 21.B 65.C 67.D 127s4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为,则第八个单音的频率122f 为( ).A f 32.B f 322.C f 1252.D f12725. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()12 34.A .B .C .D 6. 设a ,b 均为单位向量,则“”是“a ⊥b ”的()33-=+a b a b充分而不必要条件 必要而不充分条件 充分必要条件既不充分也不必要条件.A .B .C .D 7. 在平面直角坐标系中,记为点到直线的距离,当变化时,的最d ()θθsin ,cos P 02=--my x m ,θd 大值为()1234.A .B .C .D 8. 设集合,则( )(){}2,4,1|,≤->+≥-=ay x y ax y x y x A 对任意实数,对任意实数,.A a ()A∈1,2.B a ()A∉1,2当且仅当时,当且仅当时,.C 0<a ()A∉1,2.D 23≤a ()A ∉1,2第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 设是等差数列,且,,则的通项公式为__________.{}n a 31=a 3652=+a a {}n a 10.在极坐标系中,直线与圆相切,则_________.()0sin cos >=+a a θρθρθρcos 2==a 11. 设函数,若对任意的实数都成立,则的最小值为()()06cos >⎪⎭⎫⎝⎛-=ωπωx x f ()⎪⎭⎫⎝⎛≤4πf x f x ω__________.12.若,满足,则的最小值是__________.x y x y x 21≤≤+x y -213.能说明“若对任意的都成立,则在上是增函数”为假命题的一个函数()()0f x f >]2,0(∈x ()x f []2,0是__________.14. 已知椭圆,双曲线,若双曲线的两条渐近线与椭圆()01:2222>>=+b a b y a x M 1:2222=-ny m x N N 的四个交点及椭圆的两个焦点恰为一个正六边形的顶点,则椭圆的离心率为__________;双曲M M M 线的离心率为__________.N 3、解答题共6小题,共80分。
北京市101中学2018-2019学年高一(上)期中考试数学试题(解析版)
![北京市101中学2018-2019学年高一(上)期中考试数学试题(解析版)](https://img.taocdn.com/s3/m/519943230b4e767f5bcfce0f.png)
2018-2019学年北京市101中学高一(上)期中数学试卷一、选择题(本大题共8小题,共40.0分)1.设集合M={x|x<1},N={x|0<x≤1},则M∪N=( )A. B. C. D.【答案】C【解析】【分析】对集合M和N取并集即可得到答案.【详解】∵M={x|x<1},N={x|0<x≤1};∴M∪N={x|x≤1}.故选:C.【点睛】本题考查集合的并集运算.2.下列函数中,在(-1,+∞)上为减函数的是( )A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的单调性,即可得答案.【详解】根据题意,依次分析选项:对于A,y=3x,为指数函数,在R上为增函数,不符合题意;对于B,y=x2-2x+3=(x-1)2+2,在(1,+∞)上为增函数,不符合题意;对于C,y=x,为正比例函数,在R上为增函数,不符合题意;对于D,y=-x2-4x+3=-(x+2)2+7,在(-2,+∞)上为减函数,符合题意;故选:D.【点睛】本题考查指数函数和二次函数的单调性,关键是掌握常见函数的单调性,属于基础题.3.计算log416+等于( )A. B. 5 C. D. 7【答案】B【解析】【分析】利用指数与对数运算性质即可得出.【详解】log416+=2+3=5.【点睛】本题考查指数与对数运算性质,属于基础题.4.函数=+的定义域为().A.B.C.D.【答案】A【解析】试题分析:由题,故选考点:函数的定义域。
5.函数y=的单调增区间是( )A. B. C. D.【答案】D【解析】【分析】利用复合函数的单调性进行求解即可.【详解】令t=-x2+4x+5,其对称轴方程为x=2,内层二次函数在[2,+∞)上为减函数,而外层函数y=为减函数,∴函数y=的单调增区是[2,+∞).故选:D.【点睛】本题考查指数型复合函数的单调性,复合函数的单调性满足同增异减,是基础题.6.已知偶函数f(x)在区间[0,+∞)上是减函数,则满足f(2x-1)>f()的x的取值范围是( )A. B.C. D.【答案】C【解析】【分析】由函数为偶函数得f(|2x-1|)>f(),由函数的单调性可得|2x-1|<,解不等式即可得答案.【详解】根据题意,偶函数f(x)在区间[0,+∞)上是减函数,则f(2x-1)>f()⇒f(|2x-1|)>f()⇒|2x-1|<,解可得:<x<,即x的取值范围为;故选:C.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于基础题.7.若函数f(x)=a|x+1|(a>0.a≠1)的值域为[1,+∞),则f(-4)与f(0)的关系是( )A. B. C. D. 不能确定【答案】A【解析】【分析】由函数f(x)的值域可得a>1,然后利用单调性即可得到答案.【详解】∵|x+1|≥0,且f(x)的值域为[1,+∞);∴a>1;又f(-4)=a3,f(0)=a;∴f(-4)>f(0).故选:A.【点睛】本题考查指数函数的单调性,并且会根据单调性比较函数值的大小.8.对于实数a和b定义运算“*”:a•b=,设f(x)=(2x-1)•(x-2),如果关于x的方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则m的取值范是( )【答案】C【解析】【分析】画出函数f(x)的图象,由题知y=f(x)与y=m恰有3个交点,观察图像即可得到答案.【详解】由已知a•b=得f(x)=(2x-1)•(x-2)= ,其图象如下:因为f(x)=m恰有三个互不相等实根,则y=m与y=f(x)图像恰有三个不同的交点,所以0<m<,故选:C.【点睛】本题考查函数与方程的综合运用,属中档题.二、填空题(本大题共6小题,共30.0分)9.已知全集U=R,集合A={x|x2-4x+3>0},则∁U A=___.【答案】{x|1≤x≤3}【解析】【分析】求出集合A,然后取补集即可得到答案.【详解】A={x|x<1或x>3};∴∁U A={x|1≤x≤3}.故答案为:{x|1≤x≤3}.【点睛】本题考查集合的补集的运算,属基础题.10.若0<a<1,b<-1,则函数f(x)=a x+b的图象不经过第___象限.【答案】一【解析】利用指数函数的单调性和恒过定点,再结合图像的平移变换即可得到答案.【详解】函数y=a x(0<a<1)是减函数,图象过定点(0,1),在x轴上方,过一、二象限,函数f(x)=a x+b的图象由函数y=a x的图象向下平移|b|个单位得到,∵b<-1,∴|b|>1,∴函数f(x)=a x+b的图象与y轴交于负半轴,如图,函数f(x)=a x+b的图象过二、三、四象限.故答案为:一.【点睛】本题考查指数函数的图象和性质,考查图象的平移变换.11.已知log25=a,log56=b,则用a,b表示1g6=______.【答案】【解析】【分析】先由lg2+lg5=1结合log25=a,解出lg5,然后利用换底公式log56=进行计算整理即可得到答案.【详解】∵log25=a=,解得lg5=.log56=b=,∴lg6=blg5=.故答案为:.【点睛】本题考查了对数运算性质,重点考查对数换底公式的应用,考查推理能力与计算能力,属于基础题.12.函数y=(x≤0)的值域是______.【答案】(-∞,2]∪(3,+∞)【解析】【分析】先对函数进行分离常数,然后利用函数单调性即可求出值域.【详解】y=∴该函数在(-2,0],(-∞,-2)上单调递增;∴x∈(-2,0]时,y≤2;x∈(-∞,-2)时,y>3;∴原函数的值域为(-∞,2]∪(3,+∞).故答案为:(-∞,2]∪(3,+∞).【点睛】考查函数值域的概念及求法,分离常数法的运用,反比例函数值域的求法,属基础题.13.已知a>0且a≠1,函数f(x)=满足对任意不相等的实数x1,x2,都有(x1-x2)[f(x1)-f(x2)]>0,成立,则实数a的取值范围______.【答案】(2,3]【解析】【分析】根据已知条件(x1-x2)[f(x1)-f(x2)]>0得到函数f(x)的单调性,然后利用分段函数的单调性列不等式组即可得到答案.【详解】对任意实数x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,可得f(x)在R上为单调递增,则即解得a的取值范围为:2<a≤3.故答案为:(2,3].【点睛】已知函数的单调性确定参数的值或范围要注意以下几点:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围. 14.设函数f(x)=a x+b x-c x,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是______(写出所有正确结论的序号)①对任意的x∈(-∞,1),都有f(x)>0;②存在x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC是顶角为120°的等腰三角形,则存在x∈(1,2),使f(x)=0.【答案】①②③【解析】【分析】在①中,利用不等式的性质分析即可,在②中,举例a=2,b=3,c=4进行说明,在③中,利用零点存在性定理分析即可.【详解】在①中,∵a,b,c是△ABC的三条边长,∴a+b>c,∵c>a>0,c>b>0,∴0<<1,0<<1,当x∈(-∞,1)时,f(x)=a x+b x-c x=c x[()x+()x-1]>c x(+-1)=c x•>0,故①正确;在②中,令a=2,b=3,c=4,则a,b,c可以构成三角形,但a2=4,b2=9,c2=16不能构成三角形,故②正确;在③中,∵c>a>0,c>b>0,若△ABC顶角为120°的等腰三角形,∴a2+b2-c2<0,∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,根据函数零点存在性定理可知在区间(1,2)上存在零点,即∃x∈(1,2),使f(x)=0,故③正确.故答案为:①②③.【点睛】本题考查命题真假的判断,考查指数函数单调性、零点存在性定理和不等式性质的运用.三、解答题(本大题共5小题,共50.0分)15.已知函数f(x)=a x-1(x≥0).其中a>0,a≠1.(1)若f(x)的图象经过点(,2),求a的值;(2)求函数y=f(x)(x≥0)的值域.【答案】(1)4 ;(2)见解析.【解析】【分析】(1)将点(,2)代入函数解析式,即可得到a值;(2)按指数函数的单调性分a>1和0<a<1两种情况,分类讨论,求得f(x)的值域.【详解】(1)∵函数f(x)=a x-1(x≥0)的图象经过点(,2),∴=2,∴a=4.(2)对于函数y=f(x)=a x-1,当a>1时,单调递增,∵x≥0,x-1≥-1,∴f(x)≥a-1=,故函数的值域为[,+∞).对于函数y=f(x)=a x-1,当0<a<1时,单调递减,∵x≥0,x-1≥-1,∴f(x)≤a-1=,又f(x)>0,故函数的值域为.综上:当a>1时,值域为[,+∞).当0<a<1时,值域为.【点睛】本题考查指数函数图像和性质的应用,主要考查函数的单调性和函数值域问题.16.设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】(1)a=-3或a=1;(2){a|a≤-3或a>或a=-2或a=-}.【解析】【分析】(1)根据A∩B={2},可知B中有元素2,带入求解a即可;(2)根据A∪B=A得B⊆A,然后分B=∅和B≠∅两种情况进行分析可得实数a的取值范围.【详解】(1)集合A={x|x2-3x+2=0}={x|x=1或x=2}={1,2},若A∩B={2},则x=2是方程x2+(a-1)x+a2-5=0的实数根,可得:a2+2a-3=0,解得a=-3或a=1;(2)∵A∪B=A,∴B⊆A,当B=∅时,方程x2+(a-1)x+a2-5=0无实数根,即(a-1)2-4(a2-5)<0解得:a<-3或a>;当B≠∅时,方程x2+(a-1)x+a2-5=0有实数根,若只有一个实数根,x=1或x=2,则△=(a-1)2-4(a2-5)=0解得:a=-3或a=,∴a=-3.若只有两个实数根,x=1、x=2,△>0,则-3<a<;则(a-1)=-3,可得a=-2,a2-5=2,可得a=综上可得实数a的取值范围是{a|a≤-3或a>或a=-2或a=-}【点睛】本题考查并,交集及其运算,考查数学分类讨论思想.17.函数f(x)=是定义在R上的奇函数,且f(1)=1.(1)求a,b的值;(2)判断并用定义证明f(x)在(+∞)的单调性.【答案】(1)a=5,b=0;(2)见解析.【解析】【分析】(1)根据函数为奇函数,可利用f(1)=1和f(-1)=-1,解方程组可得a、b值,然后进行验证即可;(2)根据函数单调性定义利用作差法进行证明.【详解】(1)根据题意,f(x)=是定义在R上的奇函数,且f(1)=1,则f(-1)=-f(1)=-1,则有,解可得a=5,b=0;经检验,满足题意.(2)由(1)的结论,f(x)=,设<x1<x2,f(x1)-f(x2)=-=,又由<x1<x2,则(1-4x1x2)<0,(x1-x2)<0,则f(x1)-f(x2)>0,则函数f(x)在(,+∞)上单调递减.【点睛】本题考查函数的奇偶性与单调性的综合应用,属于基础题.18.已知二次函数满足,.求函数的解析式;若关于x的不等式在上恒成立,求实数t的取值范围;若函数在区间内至少有一个零点,求实数m的取值范围【答案】(1)f(x)=2x2-6x+2;(2)t>10;(3)m<-10或m≥-2.【解析】【分析】(1)用待定系数法设二次函数表达式,再代入已知函数方程化简即可得答案;(2)分离参数后求f(x)的最大值即可;(3)先求无零点时m的范围,再求补集.【详解】(1)设二次函数f(x)=ax2+bx+2,(a≠0)∴a(x+1)2+b(x+1)+2-ax2-bx-2=4x-4∴2ax+a+b=4x-4,∴a=2,b=-6∴f(x)=2x2-6x+2;(2)依题意t>f(x)=2x2-6x+2在x∈[-1,2]上恒成立,而2x2-6x+2的对称轴为x=∈[-1,2],所以x=-1时,取最大值10,t>10;(3)∵g(x)=f(x)-mx=2x2-6x+2-mx=2x2-(6+m)x+2在区间(-1,2)内至少有一个零点,当g(x)在(-1,2)内无零点时,△=(6+m)2-16<0或或,解得:-10≤m<-2,因此g(x)在(-1,2)内至少有一个零点时,m<-10或m≥-2.【点睛】本题考查利用待定系数法求函数解析式,考查恒成立问题的解法以及二次函数的零点问题,属于基础题.19.设a为实数,函数f(x)=+a+a.(1)设t=,求t的取值范图;(2)把f(x)表示为t的函数h(t);(3)设f (x)的最大值为M(a),最小值为m(a),记g(a)=M(a)-m(a)求g(a)的表达式.【答案】(1)[,2];(2)h(t)=at+,≤t≤2;(3)g(a)=..【解析】【分析】(1)将t=两边平方,结合二次函数的性质可得t的范围;(2)由(1)可得=,可得h(t)的解析式;(3)求得h(t)=(t+a)2-1-a2,对称轴为t=-a,讨论对称轴与区间[,2]的关系,结合单调性可得h(t)的最值,即可得到所求g(a)的解析式.【详解】(1)t=,可得t2=2+2,由0≤1-x2≤1,可得2≤t2≤4,又t≥0可得≤t≤2,即t的取值范围是[,2];(2)由(1)可得=,即有h(t)=at+,≤t≤2;(3)由h(t)=(t+a)2-1-a2,对称轴为t=-a,当-a≥2即a≤-2时,h(t)在[,2]递减,可得最大值M(a)=h()=a;最小值m(a)=h(2)=1+2a,则g(a)=(-2)a-1;当-a≤即a≥-时,h(t)在[,2]递增,可得最大值M(a)=h(2)=1+2a;最小值m(a)=h()=a,则g(a)=(2-)a+1;当<-a<2即-2<a<-时,h(t)的最小值为m(a)=h(-a)=-1-a2,若-1-≤a<-,则h(2)≥h(),可得h(t)的最大值为M(a)=h(2)=1+2a,可得g(a)=2+2a+a2;若-2<a<-1-,则h(2)<h(),可得h(t)的最大值为M(a)=h()=a,可得g(a)=a+1+a2;综上可得g(a)=.【点睛】本题考查函数的最值求法,注意运用换元法和二次函数在闭区间上的最值求法,考查分类讨论思想方法和化简整理运算能力,属于中档题.。
2018年高考数学一轮复习第二章函数导数及其应用第8讲指数与指数函数课件理2017041501166
![2018年高考数学一轮复习第二章函数导数及其应用第8讲指数与指数函数课件理2017041501166](https://img.taocdn.com/s3/m/bb34f43d0c22590103029d37.png)
第一页,共31页。
考纲要求
考情分析
命题趋势
1.了解指数函数模型的实际背 景.
2.理解有理数指数幂的含义, 了解实数指数幂的意义,掌握 幂的运算.
3.理解指数函数的概念,理解 指数函数的单调性,掌握指数 函数图象通过的特殊点.
4.知道指数函数是一类重要的 函数模型.
零的 n 次方根是零
当 n 是偶函数时,正数的 n 次方根有 ___两__个___,这两个数互为__相__反___数_
n ± a(a>0)
负数没有偶次方根
第四页,共31页。
(2)两个重要公式
a
①n
an=|a|=
n为奇数
a -a
a≥0, a<0
n为偶数
②(n a)n=____a____(注意:a 必须使n a有意义).
第五页,共31页。
2.有理数的指数幂
(1)幂的有关概念
m
①正分数指数幂:an
=___n__a_m__(a>0,m,n∈N*,且
n>1);
1
1
m
②负分数指数幂:a-n
=___a_mn____=___n_a_m___(a>0,m,n∈N*,且 n>1).
③0 的正分数指数幂等于____0____,0 的负分数指数无幂意___义___(y__ìy.ì)
∴m21
-m-2
1
=m2
-m-2
1
m+1 m-1+1=m+m-1+1=14+1=15.
m2 -m-2
m2 -m-2
第十八页,共31页。
•二 指数函数的图象(tú xiànɡ)及应用
2018届高三理科数学函数与导数解题方法规律技巧详细总结版
![2018届高三理科数学函数与导数解题方法规律技巧详细总结版](https://img.taocdn.com/s3/m/f660ffedba0d4a7302763aac.png)
2018届高三理科数学函数与导数解题方法规律技巧详细总结版【3年高考试题比较】对于导数的解答题,考纲的要求是:1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.会用导数解决实际问题.通过比较近三年的高考卷总结如下:一般有两问,(16年3卷出现了三问),第一问往往是以讨论函数单调性和切线问题为主,也有根据不等式恒成立或零点问题求参数范围的问题,但一般难度不大,第二问主要涉及不等式的恒成立问题,零点问题,函数最值问题,一元的不等式证明和二元的不等式证明,方法灵活,难度较大.【必备基础知识融合】1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 4.函数的单调性与导数(1)在区间D 上,若f ′(x )≥0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递增;(2)在区间D 上,若f ′(x )≤0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递减; (3)在区间D 上,若f ′(x )=0恒成立⇔函数f (x )在区间D 上是常函数. 5.函数的极值与导数6.函数的最值与导数(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【解题方法规律技巧】典例1:已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.【规律方法】(1)求切线方程的方法:①求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P处的导数,然后利用点斜式写出切线方程;②求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.典例2:设函数f(x)=a ln x+x-1x+1,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.【规律方法】 (1)确定函数单调区间的步骤: ①确定函数f (x )的定义域; ②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; ④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)个别导数为0的点不影响所在区间的单调性,如函数f (x )=x 3,f ′(x )=3x 2≥0(x =0时,f ′(x )=0),但f (x )=x 3在R 上是增函数.(3)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到不重不漏.典例3: 已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,③即a ≥1x 2-2x 恒成立.设G (x )=1x 2-2x ,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716.【规律方法】利用单调性求参数的两类热点问题的处理方法: (1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题; 方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 易错警示 对于①:处理函数单调性问题时,应先求函数的定义域;对于②:h (x )在(0,+∞)上存在递减区间,应等价于h ′(x )<0在(0,+∞)上有解,易误认为“等价于h ′(x )≤0在(0,+∞)上有解”,多带一个“=”之所以不正确,是因为“h ′(x )≤0在(0,+∞)上有解即为h ′(x )<0在(0,+∞)上有解,或h ′(x )=0在(0,+∞)上有解”,后者显然不正确;对于③:h (x )在[1,4]上单调递减,应等价于h ′(x )≤0在[1,4]上恒成立,易误认为“等价于h ′(x )<0在[1,4]上恒成立”.典例4:已知函数()()2ln R 2a f x x x x a =-∈ .(1)若2a = ,求曲线()y f x = 在点()()1,1f 处的切线方程;(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <()1'01,g x x a ⎛⎫<∈ ⎪⎝⎭,时, ()'0g x > ,所以()g x 在1x =处取得极小值,满足题意.③当1a =时,当()0,1x ∈ 时, ()'0h x >, ()'g x 在()0,1内单调递增, ()1,x ∈+∞时, ()()'0,'h x g x < 在()1,+∞内单调递减,所以当()0,x ∈+∞时, ()()'0,g x g x ≤单调递减,不合题意. ④当1a >时,即101a <<,当1,1x a ⎛⎫∈ ⎪⎝⎭时, ()()'0,'h x g x < 单调递减, ()'0g x > ,当()1,x ∈+∞时, ()()'0,'h x g x <单调递减, ()'0g x < ,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的取值范围为1a < .【规律方法】函数极值的两类热点问题(1)求函数f (x )极值这类问题的一般解题步骤为:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)由函数极值求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.典例5:已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值.①当-a2≤1时,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意. ②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]上的最小值为f ⎝⎛⎭⎫-a2=0,不符合题意. ③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)≠8, 由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.【规律方法】(1)求函数f (x )在[a ,b ]上的最大值和最小值的步骤:①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论.典例6:已知函数f(x)=ax+ln x,x∈[1,e].(1)若a=1,求f(x)的最大值;(2)若f(x)≤0恒成立,求实数a的取值范围.【规律方法】 由不等式恒(能)成立求参数的范围常有两种方法:(1)讨论最值:先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;(2)分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 典例7:设函数f(x)=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2,由f ′(x )=0,得x =e.∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【规律方法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.典例8:已知函数f (x )=ax +b x 2+1在点(-1,f (-1))处的切线方程为x +y +3=0. (1)求函数f (x )的解析式;(2)设g (x )=ln x ,求证:g (x )≥f (x )在[1,+∞)上恒成立;(3)若0<a <b ,求证:ln b -ln a b -a >2a a 2+b 2.【规律方法】 证明不等式通常需要构造函数,利用函数的最值、单调性证明.(1)证明不等式f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),利用导数求F (x )的值域,得到F (x )<0即可;(2)对于证明含有两个变量a ,b 的不等式时,一种方法是通过变形构造成不等式f (a )>f (b ),然后利用函数f (x )的单调性证明,另一种方法是通过换元构造成单变量不等式,如本例令x =b a然后再利用已知关系证明即可.典例9:设k ∈R ,函数()ln f x x kx =-.(Ⅰ)若2k =,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若()f x 无零点,求实数k 的取值范围;(Ⅲ)若()f x 有两个相异零点12x x ,,求证: 12ln ln 2x x +>.【答案】(Ⅰ) 10x y ++=;(Ⅱ) 1,e ∞⎛⎫+ ⎪⎝⎭;(Ⅲ)证明见解析.(Ⅱ)①若k 0<时,则()()'0f x f x >,是区间()0,∞+上的增函数,∵()()()10e e 1e 0k k k f k f k k k =->=-=-<,,∴()()1e 0k f f ⋅<,函数()f x 在区间()0,∞+有唯一零点; ②若()0ln k f x x ==,有唯一零点1x =;③若0k >,令()'0f x =,得1x k =, 在区间10,k ⎛⎫ ⎪⎝⎭上, ()'0f x >,函数()f x 是增函数;【规律方法】涉及到二元问题的证明问题,通常是将二元问题一元化,进而利用函数导数求最值即可得解. 二元问题一元化的一般思路有:(1)等量代换,将题中的等量关系代入即可;(2,12t x x =+,12t x x =-等手段将二元关系换成关于t 的一元函数即可; (3)利用“极值点偏移”的思想,将二元换为一元.典例10:设函数()()2(x f x x ax a e a R -=+-⋅∈). (1)当0a =时,求曲线()y f x =在点()()1,1f --处的切线方程;(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立,求a 的取值范围. 【答案】(1) 320ex y e ++=;(2) 1a ≤-或24a e ≥-.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦ ()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时, ()'0f x ≥在[]0,2上恒成立, ()f x 在[]0,2上为单调递增函数, ()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时, ()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e +⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时, ()'0f x ≤在[]0,2上恒成立, ()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,综上所述,实数a 的取值范围是1a ≤-或24a e ≥-.【规律方法】利用导数研究函数单调性,利用导数研究函数极值,导数几何意义等内容是考查的重点.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“任意”和“存在”问题的等价转化,可以简化解题过程.本题“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”. 【归纳常用万能模板】设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .满分解答 (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.2分当a >0时,设u (x )=e 2x ,v (x )=-a x ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.4分又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验),故当a >0时,f ′(x )存在唯一零点.6分(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)9分由于2e2x 0-a x 0=0, 所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a . 故当a >0时,f (x )≥2a +a ln 2a .12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求f (x )的最小值和基本不等式的应用.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f (x )的定义域,f ′(x )在(0,+∞)上单调性的判断;第(2)问,f (x )在x =x 0处最值的判定.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f ′(x )准确,否则全盘皆输,求解使f ′(b )<0的b 满足的约束条件0<b <a 4,且b<14.如第(2)问中x 0满足条件的计算,若计算错误不得分,另外还应注意规范的文字、符号语言的表述.1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.。
2018届北京市海淀区高三上学期期中考试数学(理)试题(解析版)
![2018届北京市海淀区高三上学期期中考试数学(理)试题(解析版)](https://img.taocdn.com/s3/m/ad1fd80c5f0e7cd18425362c.png)
2018届北京市海淀区高三上学期期中考试数学(理)试题(解析版)第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 若集合,,则()A. B.C. D.【答案】C【解析】因为集合,,所以,故选C.2. 下列函数中,既是偶函数又在区间上单调递增的是()A. B.C. D.【答案】A【解析】对于A,,是偶函数,且在区间上单调递增,符合题意;对于B, 对于既不是奇函数,又不是偶函数,不合题意;对于C, 是奇函数,不合题意;对于D,在区间上单调递减,不合题意,只有合题意,故选A.3. 已知向量,,则()A. B.C. D.【答案】D【解析】向量错误;错误;错误;,正确,故选D.4. 已知数列满足,则()A. B.C. D.【答案】D【解析】根据条件得到:可设,,故两式做差得到:,故数列的每一项都为0,故D是正确的。
A,B,C,都是不正确的。
故答案为D。
5. 将的图象向左平移个单位,则所得图象的函数解析式为()A. B.C. D.【答案】B【解析】将函数的图象向左平移个单位,得到函数的图象,所求函数的解析式为,故选B.6. 设,则“是第一象限角”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】充分性:若是第一象限角,则,,可得,必要性:若,不是第三象限角,,,则是第一象限角,“是第一象限角”是“”的充分必要条件,故选C.【方法点睛】本题通过任意角的三角函数主要考查充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.7. 设(),则下列说法不正确的是()A. 为上偶函数B. 为的一个周期C. 为的一个极小值点D. 在区间上单调递减【解析】对于A,,为上偶函数,A正确;对于B,,为的一个周期,B正确;对于C,), ,,为的一个极小值点,C正确,综上,符合题意的选项为D,故选D.8. 已知非空集合满足以下两个条件:(ⅰ),;(ⅱ)的元素个数不是中的元素,的元素个数不是中的元素,则有序集合对的个数为()A. B. C. D.【答案】A【解析】若集合中只有个元素,则集合中只有个元素,则,即,此时有,同理,若集合中只有个元素,则集合中只有个元素,有,若集合中只有个元素,则,即,此时有,,同理,若集合中只有个元素,则集合中只有个元素,有,若集合中只有个元素,则集合中只有个元素,则,不满足条件,所以满足条件的有序集合对的个数为,故选A.【方法点睛】本题主要考查集合的交集、并集及集合与元素的关系、分类讨论思想的应用. 属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
2018年海淀区高三期中数学试卷及答案
![2018年海淀区高三期中数学试卷及答案](https://img.taocdn.com/s3/m/505d2b49dd36a32d7275814e.png)
2018年海淀区高三年级第一学期期中练习数 学(理科)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B =( A )A. {1,1,2}-B. {1,2}C. {1,2}-D. {2}2. 下列函数中,值域为(0,)+∞的函数是( C )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()tan f x x =3. 在ABC ∆中,若tan 2A =-,则cos A =( B )B. D. 4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( C )A. 2-B. 12-C. 12D. 25.若a ∈R ,则“2a a >”是“1a >”的( B )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)nn a n =-,则数列的前n 项和n S 的最小值是( B ) A. 3SB. 4SC. 5SD. 6S7. 已知函数sin cos ()sin cos x xf x x x+=,在下列给出结论中:① π是()f x 的一个周期; ② ()f x 的图象关于直线x 4π=对称; ③ ()f x 在(,0)2π-上单调递减. 其中,正确结论的个数为( C ) A. 0个B.1个C. 2个D. 3个二、填空题:本大题共6小题,每小题5分,共30分。
981(21)d x x +=⎰___________.29. 已知数列{}n a 为等比数列,若13245,10a a a a +=+=,则公比q =____________.2 10. 已知23log 5,23,log 2b a c ===,则,,a b c 的大小关系为____________.a b c >>11. 函数π()2sin()(0,||)2f x x =+><ωϕωϕ的图象如图所示,则ω=______________,ϕ=__________.2π3,π612. 已知ABC ∆是正三角形, 若AC AB λ=-a 与向量AC 的夹角大于90,则实数λ的取值范围是__________.2λ>13. 定义在(0,)+∞上的函数()f x 满足:① 当[1,3)x ∈时,()1|2|f x x =--;②(3)3()f x f x =.设关于x 的函数()()F x f x a =-的零点从小到大依次为12,,,,n x x x .若1a =,则123x x x ++= ;若(1,3)a ∈,则122n x x x +++=________________.答案:14;6(31)n -三、解答题: 本大题共6小题,共80分。
人教版数学高三期中测试精选(含答案)8
![人教版数学高三期中测试精选(含答案)8](https://img.taocdn.com/s3/m/30a52d0371fe910ef02df84a.png)
【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x
,
y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn
.
【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .
2018-2019学年北京市十一学校八年级(上)期中数学试卷-含详细解析
![2018-2019学年北京市十一学校八年级(上)期中数学试卷-含详细解析](https://img.taocdn.com/s3/m/ecd614bbad51f01dc381f116.png)
2018-2019学年北京市十一学校八年级(上)期中数学试卷副标题一、选择题(本大题共8小题,共16.0分)1.若分式有意义,则x的取值范围是()A. B. C. D.2.下列图案中,是轴对称的是()A. B. C. D.3.为庆祝首个“中国农民丰收节”,海淀区将在海淀公园举办京西稻收割节活动,京西稻是我市著名农业作物,颗粒圆润,晶莹明亮,稻谷每粒重约0.000028千克.将0.000028用科学记数法表示为()A. B. C. D.4.下列运算中正确的是()A. B. C. D.5.等腰三角形有一个角的度数为50°,那么它的底角的度数为()A. B. 65 C. D. 或6.分式可变形为()A. B. C. D.7.在平面直角坐标系中,点A(-2,a)与点B(b,3)关于x轴对称,则a+b的值是()A. B. C. 1 D. 58.如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接PA、PE,若PA+PE最小,则点P应该满足()A. B.C. D.二、填空题(本大题共8小题,共16.0分)9.计算:20180-3-2=______.10.分解因式:mx2-4my2=______.11.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.连接AE,若△ABC的周长为20,AD=4,则△AEC的周长为______.12.若-=5,则的值为______.13.当分式的值为整数时,整数x的值为______.14.京津城际铁路由北京南站至天津站,全长120公里,据报道,8月8日开始,京津城际铁路实施全新列车运行图,复兴号动车组在京津城际铁路实现提速运行,时速比原来快35公里/小时.运行图调整后,北京南站至天津站列车运行时间将减少5分钟(小时).求京津城际铁路复兴号动车组原来的运行时速.设京津城际铁路复兴号动车组原来的运行时速为x公里/小时.依题意,可列方程为______.15.用“#”定义一种新运算:对于任意有理数a和b,规定a#b=-,若(-2)#(-3)=,则m的值为______.16.如图,把△ABC纸片折叠,点B落在B′处,折痕为DE,则∠B、∠1、∠2满足的等量关系为______.三、计算题(本大题共2小题,共25.0分)17.计算(1)•(-)3÷;(2)-;(3)1-÷;(4)(x+2+)•.18.已知x=y+2,求代数式(-y)•的值.四、解答题(本大题共7小题,共43.0分)19.已知:线段a,b(如图1),等腰三角形底边长为a,底边上的高的长为b.求作这个等腰三角形.下面是小明设计的尺规作图过程.作法:如图2①在射线OA上截取线段OB=a;②分别以点O,点B为圈心,大于OB长为半径画弧,两弧交于C,D两点;③连接CD,交OB于点E;④在直线CE上截取线段EF=b;⑤接OF,BF.△OBF即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OC=______,OD=______,∴CD是线段OB的垂直平分线.(______)(填推理的依据)20.如图,△ABC中,AB=AC,AD是BC边上的中线,延长BA到E,过E作EF⊥BC于F交AC于点G.(1)依题意补全图形;(2)求证:AE=AG.21.如图,在△ABC中,∠ACB=90°,AC=BC.D为BC边上任一点,连接AD,过D作DE⊥AD,且DE=AD.连接BE,探究BE与AB的位置关系,并说明理由.22.解方程:(1)(2).23.如图,已知线段AB=CD,求作线段a,使线段a与线段AB成轴对称,与线段CD也成轴对称.(保留作图痕迹)24.如图1,在等边△ABC中,D为AC边上任一点,连接BD,延长BD到E,使BE=AB.设∠ABD=α.(1)则∠CAE的大小为______(用含α的代数式表示);(2)如图2,点F在∠CBE的平分线上,连接EF,CF,若∠ECF=60°,判断△EFC 的形状并加以证明.25.阅读理解在平面直角坐标系xOy中,对于图形M和点P,给出如下定义:若在图形M上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为图形M的关联点.根据阅读材料,解决下列问题.已知点A(2,0),以OA为边作等边△OAB,点B在第一象限.(1)在点C(0,-1),D(2,2),E(3.5,0)中,△OAB的关联点是______;(2)直线l⊥AB于A,点F在直线l上.若F为△OAB的关联点.①设点F的纵坐标为n,则n的取值范围是______;②设△FAB的面积为S,则S的最大值为______.答案和解析1.【答案】C【解析】解:由题意得,x≠0,故选:C.根据分式有意义的条件是分母不等于0列式计算即可.本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.2.【答案】B【解析】解:A、不是轴对称图形,不符合题意,本选项错误;B、是轴对称图形,符合题意,本选项正确;C、不是轴对称图形,不符合题意,本选项错误;D、不是轴对称图形,不符合题意,本选项错误.故选:B.根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】A【解析】解:将0.000028用科学记数法表示为2.8×10-5.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】C【解析】解:A、a2+a3,无法计算,故此选项错误;B、a•a2=a3,故此选项错误;C、(a3)2=a6,正确;D、a2÷a8=a-6,故此选项错误;故选:C.直接利用整式的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别判断得出答案.此题主要考查了整式的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.5.【答案】D【解析】解:∵等腰三角形有一个角的度数为50°,∴若50°的角为顶角,则可知底角为:=65°,若50°的角为底角,则它的底角的度数为50°,∴它的底角的度数为50°或65°.故选:D.由等腰三角形有一个角的度数为50°,即可分别从50°的角为顶角或底角去分析,根据等边对等角的知识,即可求得答案.此题考查了等腰三角形的性质.此题比较简单,解题的关键是注意分类讨论思想的应用,小心别漏解.6.【答案】B【解析】解:分式可变形为:=-.故选:B.直接利用分式的基本性质变形得出答案.此题主要考查了分式的基本性质,正确将原式变形是解题关键.7.【答案】A【解析】解:∵点A(-2,a)与点B(b,3)关于x轴对称,∴a=-3,b=-2,∴a+b的值是:-3-2=-5.故选:A.直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.8.【答案】D【解析】解:如图,作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE 的值最小.由对称性可知:∠EPD=∠FPD,∵∠CPA=∠FPD,∴∠APC=∠DPE,∴DP+PB最小时,点P应该满足∠APC=∠DPE,故选:D.作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE的值最小,依据轴对称的性质即可得到∠APC=∠DPE.本题考查轴对称最短问题、对顶角的性质等知识,解题的关键是学会利用轴对称解决最短问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.9.【答案】【解析】解:原式=1-=.故答案为:.直接利用负指数幂的性质以及零指数幂的性质计算得出答案.此题主要考查了负指数幂的性质以及零指数幂的性质,正确把握负指数幂的性质是解题关键.10.【答案】m(x+2y)(x-2y)【解析】解:原式=m(x2-4y2)=m(x+2y)(x-2y).故答案为:m(x+2y)(x-2y)原式提取m,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.【答案】12【解析】【分析】根据线段垂直平分线的性质即可得到结论.本题考查的是线段的垂直平分线的性质,熟练掌握线段垂直平分线的性质是解答此题的关键.【解答】解:∵AB的垂直平分线交BC于点E,∴AE=BE,AD=BD,∴△AEC的周长=AC+BC,AB=2AD=8,∵△ABC周长=AC+BC+AB=20,∴△AEC的周长=△ABC周长-AB=20-8=12,故答案为:12.12.【答案】【解析】解:已知等式整理得:=5,即x-y=5xy,则原式===,故答案为:已知等式左边通分并利用同分母分式的减法法则计算,整理后代入原式计算即可求出值.此题考查了分式的值,熟练掌握运算法则是解本题的关键.13.【答案】0,1【解析】解:根据分式的值为整数,得到3x-1=±1,±2,解得:x=,x=0,x=1,x=-,则整数x的值为0,1,故答案为:0,1根据分式的值为整数,得到分母为2的因式,即为±1,±2,求出整数x的值即可.此题考查了分式的值,熟练掌握运算法则是解本题的关键.14.【答案】-=【解析】解:设京津城际铁路复兴号动车组原来的运行时速为x公里/小时,则提速后的运行时速为(x+35)公里/小时,根据题意得:-=.故答案为:-=.设京津城际铁路复兴号动车组原来的运行时速为x公里/小时,则提速后的运行时速为(x+35)公里/小时,根据时间=路程÷速度结合提速后比提速前少用小时,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.15.【答案】-4【解析】解:∵a#b=-,(-2)#(-3)=,∴,解得,m=-4,故答案为:-4.根据a#b=-,(-2)#(-3)=,可以得到关于m的方程,从而可以得到m的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.【答案】∠2-∠1=2∠B【解析】解:如图,设AB与B'E的交点为F,∵折叠∴∠B=∠B',∵∠BFE=∠B'+∠1,∠2=∠B+∠BFE,∴∠2=∠B'+∠B+∠1,∴∠2-∠1=2∠B,故答案为:∠2-∠1=2∠B由折叠的性质可得∠B=∠B',根据三角形的外角的性质,可得∠BFE=∠B'+∠1,∠2=∠B+∠BFE,可求∠B、∠1、∠2满足的等量关系.本题考查了翻折变换,折叠的性质,熟练运用三角形外角的性质解决问题是本题的关键.17.【答案】解:(1)•(-)3÷=•(-)•=-=-;(2)-=-==;(3)1-÷=1-×=1-==-;(4)(x+2+)•=[-]•=×=-2(x+3)=-2x-6.【解析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.本题主要考查了分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.18.【答案】解:原式=•=•=,把x=y+2代入得:原式==1.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.【答案】(1)如图,△OBF即为所求;(2)BC BD到线段两端点的距离相等的点在线段的垂直平分线上【解析】解:(1)见答案(2)完成下面的证明.证明:∵OC=BC,OD=BD,∴CD是线段OB的垂直平分线(到线段两端点的距离相等的点在线段的垂直平分线上).故答案为BC,BD;到线段两端点的距离相等的点在线段的垂直平分线上.(1)根据几何语言画出对应的几何图形;(2)利用作法得到OC=BC,OD=BD,然后根据线段垂直平分线的性质定理的逆定理可得到CD⊥OB.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.【答案】解:(1)如图所示;(2)∵AB=AC,AD是BC边上的中线,∴∠BAD=∠CAD,∵AD⊥BC,EF⊥BC,∴AD∥EF,∴∠BAD=∠E,∠DAG=∠AGE,∴∠E=∠AGE,∴AE=AG.【解析】(1)根据题意作出图形即可;(2)根据等腰三角形的性质和平行线的性质即可得到结论.本题考查了等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.21.【答案】解:AB⊥BE.理由如下:如图,过点E作EM⊥BD,交DB延长线于点M.∵∠ACB=90°,DE⊥AD,∴∠ADC+∠EDM=90°,∠ADC+∠DAC=90°,∴∠DAC=∠EDM.又DE=AD,∠C=∠M=90°,∴△EMD≌△DCA(AAS),∴EM=CD,MD=CA=BC,∴MD-BD=BC-BD,∴BM=CD=EM,∴∠MEB=∠MBE=45°.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∴∠ABE=180°-∠MBE-∠ABC=90°,∴AB⊥BE.【解析】过点E作EM⊥BD,交DB延长线于点M,由“AAS”可证△EMD≌△DCA,可得EM=CD,MD=CA=BC,可得EM=BM,由等腰直角三角形的性质可得∠ABC=45°=∠MBE,可得∠ABE=90°,即AB⊥BE.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.22.【答案】解:(1)方程的两边同乘x(x+1),得5x+2=3x,解得x=-1.检验:把x=-1代入x(x+1)=0.所以原分式方程无解;(2)方程的两边同乘(2x+5)(2x-5),得2x(2x+5)-2(2x-5)=(2x+5)(2x-5),解得x=-.检验:把x=-代入(2x+5)(2x-5)≠0.所以原方程的解为:x=-.【解析】(1)观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解;(2)观察可得最简公分母是(2x+5)(2x-5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.【答案】解:如图,连接AC;作线段AC的垂直平分线l,作点D关于直线l的对称点E;连接AE,则AE即为线段a;故CD与AE关于l对称;作∠BAE的角平分线AF,则AE与AB关于AF对称.∴线段a与线段AB成轴对称,与线段CD也成轴对称.【解析】连接AC;作线段AC的垂直平分线l,作点D关于直线l的对称点E;连接AE,则AE即为线段a.本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.24.【答案】(1)30°-α(2)△EFC是等边三角形,理由如下:∵∠EBC=60°-α,BF平分∠EBC,∴∠FBC=∠EBC=30°-α.∴∠FBC=∠EAC.∵∠FCB=60°-∠ACF,∠ECA=60°-∠ACF,∴∠FCB=∠ECA,又CA=CB,∴△BFC≌△AEC(ASA).∴CF=CE.又∠ECF=60°,∴△EFC是等边三角形.【解析】解:(1)∵BE=AB,∴∠BAE=(180°-α)=90°-α.∴∠CAE=∠BAE-60°=30°-α.故答案为:30°-α.(2)见答案(1)根据等腰三角形的性质用α表示∠BAE度数,减去60°即可;(2)证明△BFC≌△AEC得到CF=CE,再结合60度角即可说明是等边三角形.本题主要考查全等三角形的判定和性质、等边三角形的判定和性质.25.【答案】(1)C,D;(2)-1≤n≤;(3)2【解析】解:(1)如图1中,观察图象可知△OAB的关联点在图中的虚线(包括虚线上)区域内(虚线上的点到△OAB的顶点或边的距离为1).故△OAB的关联点是点C,D.故答案为C,D.(2)①如图2中,设直线l交图中虚线于C′,F.作C′G⊥OA于G,FN⊥x轴于N.在Rt△AFN中,∵∠FAN=30°,AF=1,∴FN=,AN=,∴N(2+,),在Rt△AC′G中,∵∠C′AG=30°,C′G=1,∴AG=,AC′=2,∴OG=2-,∴C′(2-,-1)∴满足条件的点F的纵坐标:-1≤n≤.故答案为-1≤n≤.②当点F与C′重合时,△FAB的面积最大,面积的最大值S=×2×2=2.故答案为2.【分析】(1)如图1中,观察图象可知△OAB的关联点在图中的虚线区域内(包括虚线上)(虚线上的点到△OAB的顶点或边的距离为1).(2)①如图2中,设直线l交图中虚线于C′,F.解直角三角形求出点C′,F的坐标即可判断;②当点F与C′重合时,△FAB的面积最大;本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,图形M的关联点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。
2018-2019学年北京西城13中学高三上学期期中考试数学(理)试题
![2018-2019学年北京西城13中学高三上学期期中考试数学(理)试题](https://img.taocdn.com/s3/m/3b2001ac8bd63186bdebbc4b.png)
北京市第十三中学2018-2019学年度第一学期高三年级数学期中(理科)测试一、选择题(本大题共8小题,每小题5分,共40分)最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。
1.设集合|(1)(2)0Ax x x ,集合|13Bx x,则AB ().A .|13x xB .|11x xC .|12x xD .|23x x【答案】A 【解析】∵|12A x x,|13B x x ,|13ABx x.故选A .2.若复数(1i)(i)a在复平面内对应的点在第四象限,则实数a 的取值范围是().A .(,1)B .(,1)C .(1,)D .(1,)【答案】C【解析】复数(1i)(i)a ,2ii i aa ,(1)(1)i a a ,对应点(1,1)a a 在第四象限,1010a a ,解出1a.故选C .3.已知(0,π),3cos5,则tan ().A .34B .34C .43D .43【答案】D 【解析】3cos 5且(0,π),24sin 1cos 5,sin 4tancos3.故选D .4.设A 、B 为直线3330x y与圆221xy的两个交点,则||AB ().A .1B .2C .3D .2【答案】C【解析】圆心(0,0)到直线距离d 为22312(3)3,22||23AB r d.故选C .5.已知函数1()22xxf x ,则()f x ().A .是奇函数,且在R 上是增函数B .是奇函数,且在R 上是减函数C .是偶函数,且在R 上是增函数D .是偶函数,且在R 上是减函数【答案】B 【解析】1()2()2xf x x xR ,1()2()2xxf x f x ,∴()f x 为奇函数,又∵函数12xy与2xy都是减函数,两个减函数之和仍为减函数.故选B .6.设n a 是等差数列,下列结论中正确的是().A .若120a a ,则230a a B .若130a a ,则120a a C .若10a ,则2123()()a a a a D .若120a a ,则213a a a 【答案】D【解析】A 项.∵120a a ,∴2312()2a a a a d ,d 的正负无法判断,23a a 正负无法判断,错误,B 项错误,∵130a a ,∴12()0a a d,12a a 正负无法判断,C 项错误,22123()()0a a a a d,D 项正确,∵1210a a a d ,∴0d ,22213111()(2)0a a a a d a a d .∴213a a a .7.设a ,b 是非零向量,且ab .则“||||a b ”是“()()a b a b ”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】 C 【解析】充分性:当||||a b 时,22()()||||0a b a b a b ,∴()()a b ab ,必要性:当()()a b a b 时,22()()||||0ab a b a b ,∵ab ,∴||||a b .故选C .8.某地区在六年内第x 年的生产总值y (单位:亿元)与x 之间的关系如图所示,则下列四个时段中,生产总值的年平均增长率......最高的是().A .第一年到第三年B .第二年到第四年C .第三年到第五年D .第四年到第六年【答案】 A【解析】设年平均增长率为m ,末年生产总值为P ,起始年生产总值为Q ,则1nP mQ.(n 为年间隔数)∴两年间的年平均增长率1P mQ ,由图知,第一年到第三年的P Q最大.故选A .二、填空题(本大题共6小题,每小题5分,共30分)9.在5(2)x 的展开式中,3x 的系数为__________.(用数字作答)【答案】40【解析】5(2)x 展开式中含3x 项为32335C 240xx .10.已知双曲线2221(0)x ya a的一条渐近线为30x y,则a__________.【答案】33【解析】2221x ya的渐近线为3x yx a,∴33a.11.在极坐标系中,点π2,6到直线(cos 3sin )3的距离为__________.【答案】32【解析】直角坐标系中,直线方程为33x y,点坐标为ππ2cos,2sin (3,1)66,到直线距离22|333|321(3)d.12.在ABC △中,4a ,5b ,6c ,则sin 2sin A C __________.【答案】1【解析】∵2222536163cos 22564bca A bc ,且sin sin a c A C,即sin 2sin 3A a Cc,∴sin 22sin cos 2321sin sin 34A A ACC.13.已知点P 在圆221x y上,点A 的坐标为(2,0),O 为原点,则AO AP 的最大值为__________.【答案】6【解析】设(cos ,sin )P ,(2,0)AO ,(cos2,sin )AP,∴2cos4AO AP ,∵cos [1,1],当cos1时,∴max2146AO AP .14.某科技小组由学生和教师组成,人员构成同时满足以下三个条件:(i )男学生人数多于女学生人数.(ii )女学生人数多余教师人数.(iii )教师人数的两倍多余男学生人数.①若教师人数为5,则女学生人数的最大值为__________.②该小组人数的最小值为__________.【答案】812【解析】设男学生,女学生,教师人数分别为x ,y ,z .由题意,建立方程组.2x y y z z x ③①②,【注意有文字】①当5z时,由方程组解出510y x,故此时女学生最多有8人.②设小组总人数为Mx y z ,∵由上述方程组可得2zy x z ,即z 最小为3才能满足条件,此时min 5x ,min4y ,故min54312M ,即小组人数最少为12人.三、解答题(本大题共6小题,共80分)15.(本小题满分13分)已知函数2()23sin cos2cos222x x x f x .(I )求π3f的值.(II )求函数()f x 的单调递减区间及对称轴方程.【答案】(I )π03f (II )单调递减区间为25π2π,π2π33k k ,kZ ,对称轴为2ππ3xk ,()kZ .【解析】(I )()3sin 1cos f x x x ,π31310322f .(II )∵()3sin cos 1f x xx ,312sin cos 122xx,π2sin 16x,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 3 2018北京海淀区高三(上)期中
数 学(理) 2018.11 本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{}|0A x x a =-≤,{}1,2,3B =,若A B φ=,则a 的取值范围为
A. (,1]-∞
B. [1,)+∞
C. (,3]-∞
D. [3,)+∞
2. 下列函数中,是偶函数且在(0,)+∞上单调递增的是 A. 2()f x x x =- B. 21
()f x x = C. ()ln f x x = D.()x f x e = 3. 11
e dx x =⎰
A. 1-
B. 0
C. 1
D.e
4.在等差数列{}n a 中,1=1a ,65
2a a =,则公差d 的值为 A. 13- B. 13 C. 14- D. 1
4
5.角θ的终边经过点(4,)P y ,且sin θ=3
5-,则n ta θ= A. 43- B. 4
3 C. 34- D. 3
4
6.已知数列{}n a 的通项公式为n a
a n n =+,则“21a a ”是“数列{}n a 单调递增”的
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
7.已知向量a,b,c 满足a +b +c =0,且222a b c ,则a b 、b c 、c a 中最小的值是 A. a b B. b c C. c a D. 不能确定的
8.函数()f x x =,2()3g x x x =-+.若存在129
,,...,[0,]
2n x x x ∈,
使得1()f x +2()...f x ++1()n f x -+()n g x =1()g x +2()...g x ++1()n g x -+()n f x ,则n 的最大值为
A. 5
B. 63
C.7
D.8
二、填空题共6小题,每小题5分,共30分。
9. 计算lg4lg25______.+=
10. 已知向量(1,2)=a ,(3,1)=b ,则向量a ,b 夹角的大小为______.
2 /
3 11. 已知等比数列{}n a 的前n 项和为n S ,下表给出了的部分数据: 则数列的公比q = ,首项1=
a 。
12.函数()sin 2
x f x a =-在区间[0,]π上的最大值为2,则a = 13.能说明“若()
()f x g x 对任意的[0,2]x ∈都成立,则()f x 在[0,2]上的最小值大于()g x 在[0,2]上的最大值”为假命题的一对函数可以是()f x = ,()g x = 。
14.已知函数ln ,0(),x x a f x e x a x
≤⎧⎪=⎨⎪⎩ (1)若函数()f x 的最大值为1,则a = ;
(2)若函数()f x 的图像与直线a y e =
只有一个公共点,则a 的取值范围为
三、解答题共6小题,共80分。
解答应写出文字说明、演算步骤或证明过程。
15. (本小题满分13分)
设{}n a 是等比数列 ,n S 为其前n 项的和 ,且22a =, 120a S +=. (Ⅰ)求{}n a 的通项公式;
(Ⅱ)若80n S ≥,求n 的最小值.
16.(本小题满分13分) 已知函数cos2()2sin sin cos x f x x x x =+
+. (Ⅰ)求(0)f 的值;
(Ⅱ)求函数()f x 在[0,
]2π上的单调递增区间.
17. (本小题满分13分)
已知函数32()1f x x x ax =++-.
(Ⅰ)当1a =-时,求函数()f x 的单调区间; (Ⅱ)求证:直线2327
y ax =-是曲线()y f x =的切线; (Ⅲ)写出a 的一个值,使得函数()f x 有三个不同零点(只需直接写出数值)
3 / 3 18. (本小题满分13分)
ABC ∆中, 7c =,26sin 5C =
. (Ⅰ)若5cos 7
B =,求b 的值; (Ⅱ)若11a b +=,求AB
C ∆的面积。
19.(本小题满分14分) 已知函数2ln ()x f x mx x m =--
(Ⅰ)求函数()f x 的极值; (Ⅱ)求证:存在0x ,使得0()1f x 的切线;
20.(本小题满分14分)
记无穷数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n n n M m b += (Ⅰ)若23n n a n =-,请写出1234,,,b b b b 的值; (Ⅱ)求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件; (Ⅲ)若*,2018,1n
n n N a b ∀∈= ,求证:存在*k N ∈,使得n k ∀≥,有1n b +=n b。