发电机无刷励磁系统基本原理(修改版)
无刷励磁同步电机原理
无刷励磁同步电机原理一、工作原理无刷励磁同步电机是一种先进的电机,其工作原理主要基于磁场与电流的相互作用。
电机的转子上安装有励磁绕组,通过向励磁绕组提供直流电流来产生恒定的磁场。
定子绕组在气隙中产生旋转磁场,当电机转动时,转子上的永磁体产生的磁场与定子绕组产生的旋转磁场相互作用,产生转矩,驱动电机旋转。
二、励磁系统无刷励磁同步电机的励磁系统主要包括励磁电源和控制系统。
励磁电源负责提供直流电流,控制系统则负责控制励磁电流的大小和方向,以实现电机的正常运行和调速控制。
三、控制方式无刷励磁同步电机的控制方式主要包括开环控制和闭环控制。
开环控制基于电机的工作原理,通过改变励磁电流的大小和方向来控制电机的输出转矩和转速。
闭环控制则引入了反馈环节,通过比较实际转速与设定转速的差异,调整励磁电流的大小和方向,以达到更高的控制精度和稳定性。
四、运行特性无刷励磁同步电机具有高效、节能、高精度和高可靠性的特点。
由于其励磁系统采用直流电源,可以方便地进行调速控制,同时减小了电机内部的损耗和温升,提高了电机的效率。
此外,由于无刷励磁同步电机采用永磁体产生磁场,其结构简单、维护方便,且具有较高的动态响应性能。
五、优点与缺点优点:1.效率高:由于采用永磁体产生磁场,电机的损耗和温升较低,因此效率更高。
2.结构简单:电机结构简单、紧凑,维护方便。
3.调速性能好:通过调整励磁电流的大小和方向,可以实现电机的平滑调速。
4.可靠性高:电机具有较高的稳定性和可靠性,能够适应恶劣的工作环境。
5.高响应性能:具有较高的动态响应性能,能够快速响应控制信号的变化。
缺点:1.成本较高:由于采用永磁体等高成本材料,电机的制造成本较高。
2.弱磁场能力较低:对于较大的磁场变化和较大的转矩输出,无刷励磁同步电机的性能可能不如其他类型的电机。
发电机无刷励磁系统
第一章:励磁系统概述第一节:同步发电机励磁系统介绍它励可控硅励磁系统主要的优点是在发电站出口附近发生短路故障时,强励能力强,有利于提高系统的暂态稳定水平,在故障切除时间比较长、系统容量相对小的50、60年代这一优点是很突出的.但是,随着电力系统装机容量的增大,快速保护的应用,故障切除时间的缩短,它励可控硅励磁系统的优势已不是很明显.自并励可控硅励磁系统的优点是结构简单,元部件少,其励磁电源来自机端变压器,无旋转部件,运行可靠性高,维护工作量小.且由于变压器容量的变更比交流励磁机的变更更简单、容易,因而更经济,更容易满足不同电力系统、不同电站的暂态稳定水平对励磁系统强励倍数的不同要求.它励可控硅励磁系统的缺点是由于交流励磁机是非标准产品,难以标准化,即使是同容量的发电机,尤其是水轮发电机,由于水头、转速的不同,强励倍数的不同,交流励磁机的容量、尺寸也不同,因此,价格较自并励可控硅励磁系统贵.另外它励可控硅励磁系统与自并励可控硅励磁系统相比较,元部件多,又有旋转部件,可靠性相对较低,运行维护量大.自并励可控硅励磁系统的缺点是它的励磁电源来自发电机端,受发电机机端电压变化的影响.当发电机机端电压下降时其强励能力下降,对电力系统的暂态稳定不利.不过随着电力系统中快速保护的应用,故障切除时间的缩短,且自并励可控硅励磁系统可以通过变压器灵活地选择强励倍数,可以较好地满足电力系统暂态稳定水平的要求.综合考虑技术和经济两方面因素,推荐在发电机组采用自并励快速励磁方式.为验证其正确性,通过稳定计算研究了满发时发电机组采用自并励励磁方式的稳定情况,计算结果表明,发电机组采用自并励励磁方式可满足系统稳定的要求,但必须同时加装电力系统稳定器<PSS>.直流机励磁方式是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流.其中直流发电机称为直流励磁机,其优点是与无励磁机系统比较,厂用电率较低.缺点是直流励磁机存在整流环,功率过大时制造有一定困难,100MW以上汽轮发电机组难以采用.直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子磁电流,形成有碳刷励磁.直流机励磁方式又可分为自励式和它励式.专门用来给同步发电机转子回路供电的直流发电机系统称为直流励磁机系统,它励直流励磁方式,就是在它励系统中增加副励磁机,用来供给励磁机的励磁电流,副励磁机FL为主励磁机JL的励磁机,副励磁机与主励磁机均与发电机同轴.与自励直流励磁机系统比较,自励与他励的区别是对主励磁机的励磁方式而言的.他励直流励磁机系统比自励励磁机系统多用了一台副励磁机,所用设备增多,占用空间大,投资大.但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数.他励直流励磁机系统一般只用在水轮发电机组上.自励直流励磁机系统原理接线图他励直流励磁机系统原理接线图采用直流励磁供电的励磁方式,在过去的十几年间,是同步发电机的主要励磁方式.目前大多数中小型同步发电机仍采用这种励磁方式.长期的运行经验证明,这种励磁方式具有独立的,不受外系统干扰的励磁电源.励磁可靠性高,且调节方便的优点.但换向器和电刷的维护工作量大.近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制.因此,直流励磁方式愈来愈不能满足要求.目前,在100MW与以上发电机上很少采用.我厂为保证励磁系统的高可靠性而配备的备用励磁机就是它励直流机励励磁方式.第二节:交流机励磁方式用直流机作为励磁电源,不仅维护困难,而且在应用上也有限制.采用交流机励磁方式,由于励磁机容量相对较小,只占同步发电机容量的0.3~0.5,且时间常数也较小〔即响应速度快〕.因此在现代电力系统中的大容量发电机〔如200MW、300MW等〕,都采用交流励磁机系统.现在大容量的发电机,要求励磁系统有很高的可靠性和很快的响应速度.而直流励磁机系统存在的整流环是安全运行的薄弱环节,容量不能制造的很大,所以100MW与以上容量机组都用交流励磁机系统.交流励磁机系统的核心设备是交流励磁机,其容量相对较小,只占同步发电机容量的0.3%~0.5%.由于要求其响应速度很快,所以大型机组的交流励磁机系统一般采用他励方式,既有主励磁机,也有副励磁机.交流励磁机系统是采用专门的交流励磁机代替了直流励磁机,并与发电机同轴.它运行发出的交流电,经整流电路后变成直流,供给发电机励磁.第三节:其他励磁方式1.1自励交流励磁机系统自励交流励磁机的励磁电源从本机出口电压直接获得.为了维持端电压的恒定用可控硅整流元件.因此,自动励磁调节器的调整电流输出至何处向发电机转子送电:方案中,自励的交流励磁机经可控硅整流桥B向发电机转子送电,自动励磁调节器控制此可控硅的导通角,调整其输出电流,以维持发电机端电压的恒定.交流励磁机本身则经过令一个反馈回路,由自身的恒压单元来保证其交流励磁电压的恒定.由于这种方案完全不考虑励磁机的时间常数,因而,励磁电压响应速度比较快,时间常数小,但是,对其容量要求较大.1.2无刷励磁系统在他励和自励交流励磁机系统中,发电机的励磁电流全部由可控硅〔或二极管〕供给,而可控硅〔或二极管〕是静止的故称为静止励磁.在静止励磁系统中要经过滑环才能向旋转的发电机转子提供励磁电流.滑环是一种转动接触元件.随着发电机容量的快速增大,巨型机组的出现,转子电流大大增加〔3000~5000安培〕,转子滑环中通过如此大的电流,滑环的数量就要增加很多.为了防止机组运行当中个别滑环过热,每个滑环必须分担同样大小的电流.为了提高励磁系统的可靠性取消滑环这一薄弱环节,使整个励磁系统都无转动接触的元件,就产生了无刷励磁系统,如下图所示:无刷励磁系统方案之一副励磁机FL是一个永磁式中频发电机,其永磁部分画在旋转部分的虚线框内.为实现无刷励磁,主励磁机与一般的同步发电机的工作原理基本相同,只是电枢是旋转的.其发出的三相交流电经过二极管整流后,直接送到发电机的转子回路作励磁电源,因为励磁机的电枢与发电机的转子同轴旋转,所以它们之间不需要任何滑环与电刷等转动接触元件,这就实现了无刷励磁.主励磁机的励磁绕组JLLQ是静止的,即主励磁机是一个磁极静止,电枢旋转的同步发电机.静止的励磁机励磁绕组便于自动励磁调节器实现对励磁机输出电流的控制,以维持发电机端电压保持恒定.无刷励磁系统方案之二在方案一中,考虑到励磁机励磁绕组LLQ的时间常数,其响应速度较慢.为了提高响应速度可以采用方案二,就是将可控硅整流桥装设旋转部分,代替方案一旋转部件中的二极管整流桥.方案二中由中频副励磁机ZPF供电给交流主励磁机JL的直流励磁绕组JLLQ.可控硅的触发脉冲由同轴旋转的触发脉冲发生器PG供给.PG也是一个由多相绕组组成的电枢,它的磁场由d、q两个互相垂直的绕组的磁场合成,因此当d、q磁场的大小作各种不同的变化时,PG的合成磁场〔相对JLLQ磁场〕就在作不同角度的转变,转变的范围为90°.这样就使得PG的触发脉冲与主励磁机JL各相交流电压之间,产生不同的相角变化,从而控制主励磁机送至发电机转子绕组的励磁电流的大小,以达到维持发电机端电压恒定的目的.在方案二中,不必考虑主励磁机励磁绕组JLLQ时间常数的影响,所以其响应速度比方案一快,其自动励磁调节器的输出与其他励磁系统不同,显得较为复杂一些,但并不难实现.总的来说,其优点是:革除了滑环和碳刷等转动接触部分.其缺点是:在监视与维修上有其不方便之处.由于与转子回路直接连接的元件都是旋转的,因而转子回路的电压电流都不能用普通的直流电压表、直流电流表直接进行监视,转子绕组的绝缘情况也不便监视,二极管与可控硅的运行状况,接线是否开脱,熔丝是否熔断等等都不便监视.因而在运行维护上不太方便.但随着科技的发展,监视问题正在得到逐步解决.1.3无励磁机发电机自并励系统励磁机本身就是可靠性不高的元件,可以说它是励磁系统的薄弱环节之一,因励磁机故障而迫使发电机退出运行的事故并非鲜见,故相应地出现了不用励磁机的励磁方案.如下图所示:发电机的励磁电源直接由发电机端电压获得,经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电机端电压恒定的励磁方式,是无励磁机的发电机自励系统.最简单的发电机自励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统.自并励系统中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统.下图为无励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元件SCR由自动励磁调节器控制.系统起励时需要令加一个起励电源.无励磁机发电机自并励系统框图无励磁机发电机自并励系统的优点是:不需要同轴励磁机,系统简单,运行可靠性高;缩短了机组的长度,减少了基建投资与有利于主机的检修维护;由可控硅元件直接控制转子电压,可以获得较快的励磁电压响应速度;由发电机机端获取励磁能量,与同轴励磁机励磁系统相比,发电机组甩负荷时,机组的过电压也低一些.其缺点是:发电机出口近端短路而故障切除时间较长时,缺乏足够的强行励磁能力,对电力系统稳定的影响不如其它励磁方式有利.由于以上特点,使得无励磁机发电机自并励系统在国内外电力系统大型发电机组的励磁系统中受到相当重视.在发电机与系统间由升压变压器的单元接线和抽水蓄能机组等励磁系统中得到实际应用.随着微机励磁调节器的应用,氧化锌非线性灭磁电阻的研制成功与大功率晶闸管与晶体管的广泛应用,提高了发电机励磁系统的可靠性,较大地改善了励磁系统静态和动态品质,大大提高了系统的技术性能指标.在诸多励磁系统中,直接励磁机维护困难,调节器响应时间长达1~5s,动态性能差,当空载起励时,电压超调量大,频率特性差;他励可控硅励磁系统需装设交流励磁机,并要求厂房高度高,当其用于慢速水轮机时,交流励磁机体质量大、尺寸大、维修工作量大.20世纪70~80年代,发电厂开始用自复励与自并励的可控硅励磁系统,由于它们均属于快速励磁系统,动态性能优良,尤其是带有微型计算机励磁调节器的自并激静止励磁系统在发电厂中得以广泛的应用.自并激励磁系统接线简单、设备少、造价低、占地面积小、无转动部件并维护简单,是快速响应系统.尤其是水电站往往远离负荷中心的地区,为提高输电的稳定性,对励磁系统要求能快速响应,而自并激励磁系统恰好能满足这个要求.1.4自励交流励磁机系统自励交流励磁机的励磁电源从本机出口电压直接获得.为了维持端电压的恒定用可控硅整流元件.因此,自动励磁调节器的调整电流输出至何处向发电机转子送电:方案中,自励的交流励磁机经可控硅整流桥B向发电机转子送电,自动励磁调节器控制此可控硅的导通角,调整其输出电流,以维持发电机端电压的恒定.交流励磁机本身则经过令一个反馈回路,由自身的恒压单元来保证其交流励磁电压的恒定.由于这种方案完全不考虑励磁机的时间常数,因而,励磁电压响应速度比较快,时间常数小,但是,对其容量要求较大.1.5无刷励磁系统在他励和自励交流励磁机系统中,发电机的励磁电流全部由可控硅〔或二极管〕供给,而可控硅〔或二极管〕是静止的故称为静止励磁.在静止励磁系统中要经过滑环才能向旋转的发电机转子提供励磁电流.滑环是一种转动接触元件.随着发电机容量的快速增大,巨型机组的出现,转子电流大大增加〔3000~5000安培〕,转子滑环中通过如此大的电流,滑环的数量就要增加很多.为了防止机组运行当中个别滑环过热,每个滑环必须分担同样大小的电流.为了提高励磁系统的可靠性取消滑环这一薄弱环节,使整个励磁系统都无转动接触的元件,就产生了无刷励磁系统,如下图所示:无刷励磁系统方案之一副励磁机FL是一个永磁式中频发电机,其永磁部分画在旋转部分的虚线框内.为实现无刷励磁,主励磁机与一般的同步发电机的工作原理基本相同,只是电枢是旋转的.其发出的三相交流电经过二极管整流后,直接送到发电机的转子回路作励磁电源,因为励磁机的电枢与发电机的转子同轴旋转,所以它们之间不需要任何滑环与电刷等转动接触元件,这就实现了无刷励磁.主励磁机的励磁绕组JLLQ是静止的,即主励磁机是一个磁极静止,电枢旋转的同步发电机.静止的励磁机励磁绕组便于自动励磁调节器实现对励磁机输出电流的控制,以维持发电机端电压保持恒定.无刷励磁系统方案之二在方案一中,考虑到励磁机励磁绕组LLQ的时间常数,其响应速度较慢.为了提高响应速度可以采用方案二,就是将可控硅整流桥装设旋转部分,代替方案一旋转部件中的二极管整流桥.方案二中由中频副励磁机ZPF供电给交流主励磁机JL的直流励磁绕组JLLQ.可控硅的触发脉冲由同轴旋转的触发脉冲发生器PG供给.PG也是一个由多相绕组组成的电枢,它的磁场由d、q两个互相垂直的绕组的磁场合成,因此当d、q磁场的大小作各种不同的变化时,PG的合成磁场〔相对JLLQ磁场〕就在作不同角度的转变,转变的范围为90°.这样就使得PG的触发脉冲与主励磁机JL各相交流电压之间,产生不同的相角变化,从而控制主励磁机送至发电机转子绕组的励磁电流的大小,以达到维持发电机端电压恒定的目的.在方案二中,不必考虑主励磁机励磁绕组JLLQ时间常数的影响,所以其响应速度比方案一快,其自动励磁调节器的输出与其他励磁系统不同,显得较为复杂一些,但并不难实现.总的来说,其优点是:革除了滑环和碳刷等转动接触部分.其缺点是:在监视与维修上有其不方便之处.由于与转子回路直接连接的元件都是旋转的,因而转子回路的电压电流都不能用普通的直流电压表、直流电流表直接进行监视,转子绕组的绝缘情况也不便监视,二极管与可控硅的运行状况,接线是否开脱,熔丝是否熔断等等都不便监视.因而在运行维护上不太方便.但随着科技的发展,监视问题正在得到逐步解决.1.6无励磁机发电机自并励系统.励磁机本身就是可靠性不高的元件,可以说它是励磁系统的薄弱环节之一,因励磁机故障而迫使发电机退出运行的事故并非鲜见,故相应地出现了不用励磁机的励磁方案.如下图所示:发电机的励磁电源直接由发电机端电压获得,经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电机端电压恒定的励磁方式,是无励磁机的发电机自励系统.最简单的发电机自励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统.自并励系统中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统.下图为无励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元件SCR由自动励磁调节器控制.系统起励时需要令加一个起励电源.无励磁机发电机自并励系统框图无励磁机发电机自并励系统的优点是:不需要同轴励磁机,系统简单,运行可靠性高;缩短了机组的长度,减少了基建投资与有利于主机的检修维护;由可控硅元件直接控制转子电压,可以获得较快的励磁电压响应速度;由发电机机端获取励磁能量,与同轴励磁机励磁系统相比,发电机组甩负荷时,机组的过电压也低一些.其缺点是:发电机出口近端短路而故障切除时间较长时,缺乏足够的强行励磁能力,对电力系统稳定的影响不如其它励磁方式有利.由于以上特点,使得无励磁机发电机自并励系统在国内外电力系统大型发电机组的励磁系统中受到相当重视.在发电机与系统间由升压变压器的单元接线和抽水蓄能机组等励磁系统中得到实际应用.随着微机励磁调节器的应用,氧化锌非线性灭磁电阻的研制成功与大功率晶闸管与晶体管的广泛应用,提高了发电机励磁系统的可靠性,较大地改善了励磁系统静态和动态品质,大大提高了系统的技术性能指标.在诸多励磁系统中,直接励磁机维护困难,调节器响应时间长达1~5s,动态性能差,当空载起励时,电压超调量大,频率特性差;他励可控硅励磁系统需装设交流励磁机,并要求厂房高度高,当其用于慢速水轮机时,交流励磁机体质量大、尺寸大、维修工作量大.20世纪70~80年代,发电厂开始用自复励与自并励的可控硅励磁系统,由于它们均属于快速励磁系统,动态性能优良,尤其是带有微型计算机励磁调节器的自并激静止励磁系统在发电厂中得以广泛的应用.自并激励磁系统接线简单、设备少、造价低、占地面积小、无转动部件并维护简单,是快速响应系统.尤其是水电站往往远离负荷中心的地区,为提高输电的稳定性,对励磁系统要求能快速响应,而自并激励磁系统恰好能满足这个要求.第二章:下花园电厂发电机励磁系统概况分析第一节:静止励磁系统与工作原理我厂3台发电机的励磁系统是采用的静止整流器励磁方式原理图如下图所示.在图示的交流励磁机系统中主励磁机L和副励磁机FL,是与发电机同步旋转的交流机,而整流设备为静止元件.主励磁机L的频率为100HZ的交流发电机,必须经过硅整流桥GZ整流,变为直流电源,供给发电机转子绕组的励磁.副励磁机FL是一个频率500HZ的中频交流永磁发电机.本身不另设励磁回路.简化了励磁系统.FL的输出功率,KZ通过整流,作为主励磁机L的励磁电源.励磁调节装置ZTL的作用是根据发电机端电压的偏差信号,输出一个相应的触发脉冲,对可控硅的导通角进行控制,控制了主励磁机的输出功率,从而改变了发电机的励磁电流.实现了励磁电流的自动调节.在静止整流器励磁系统中,由于硅整流元件代替了直流励磁机的换向器,因此,改善了励磁机的运行条件,使维护工作量减少.采用交流励磁机的励磁系统与直流励磁系统一样,具有独立的励磁电源.不受外系统干扰,供电可靠的优点.同时解决了整流子运行维护问题.且交流励磁机的容量不受限制,所以用于大型发电机的励磁系统.因为采用交流励磁机系统,体积庞大、价格昂贵,各励磁机之间的功率传送仍通过电刷,因此也属于有刷励磁系统.他励交流励磁机系统原理接线图上图为他励式交流励磁机同步发电机的励磁系统简图:他励交流励磁机系统的副励磁机一般为中频发电机,频率为400HZ或500HZ,主励磁机的频率为100HZ,组成响应速度快的励磁系统.副励磁机是自励式的交流发电机,为保持其端电压的恒定,由一个简单的自动调压器调整其励磁电流,其励磁绕组FLLQ由本机组电压经可控硅整流后供电,由于可控硅的可靠起励电压较高,在启动时需要外加一个直流起励电压,直至副励磁机的交流电压值足以使可控硅导通时,才能正常工作.此时起励电源退出运行.这是交流自励式发电机与直流自励式发电机的不同之处.其缺点是如果一个发电厂的所有发电机组都需要用起励电源的交流励磁机系统,当发生全厂性停电事故十,在锅炉、汽机等都用备用汽泵启动以后,发电机终究会因为没有合适的起励电源而不能发电,这将延误事故情况下的机组发电时间.所以起励电源一般不从机组母线上引出.为弥补他励式交流励磁机系统的不足,现在大型机组一般采用永磁式的副励磁机,如下图所示:上图中,用永磁式感应子中频发电机作副励磁机,省掉了自励恒压单元,永磁机的出口交流电压可以认为是恒定不变的.在他励式交流励磁机同步发电机的励磁系统中,自动励磁调节器输出的调整电流是控制主励磁机的励磁电流的;在永磁式副励磁机系统中,自动励磁调节器输出的调整电流是控制发电机转子的励磁电流的.在永磁式副励磁机系统中,要求主励磁机的运行容量较大,在响应速度方面也较他励式交流励磁机同步发电机的励磁系统快,这是容量换来的速度.新厂3台发电机、老厂#5发电机的励磁电流全部由可控硅供给,可控硅是静止的,称之为静止励磁方式.第二节:旋转无刷励磁系统由于励磁系统比较复杂,上述机组的励磁系统大家也比较熟悉,#7发电机励磁调节器的功能,使用方法与其他机组励磁调节器的功能相同,不在详述.老厂新安装的#7发电机组为旋转无刷励磁方式的发电机.与我厂的其他发电机励磁方式不同,而且存在很大的区别.下面是我粗浅的认识,与大家共同学习.#7发电机在转子达到额定转速3000r/min时,合初励电源,初励电源经励磁调节器的初励控制回路加在励磁机定子的励磁线圈上.励磁机与一般的发电机原理相同,但它的电枢是旋转的,即励磁机的转子<电枢>与发电机转子同步旋转,其电枢绕组切割初励电源建立的初磁场产生三相电流,经过熔断器通过旋转二极管整流送至发电机转子为其提供励磁电流.瞬间在发电机端建立15%的发电机额定电压.初励电源回路不保持,建立初磁场后自动退出.励磁调节器采集发电机机端电压互感器1YH、2YH电压量,定子电流4LH、励磁变低压侧转子电流CT电流量通过变换器进入微机励磁调节装置,经过逻辑软件控制产生触发脉冲控制可控硅整流桥的励磁电流输出,并控制外附小型中间继电器提供励磁系统各种正常、异常、故障信号.初励电源在发电机端建立15%的发电机额定电压后,经过发电机机端的励磁变压器提供励磁电源经过可控硅整流后送至励磁机定子的励磁线圈上建立磁场,励磁机电枢绕组切割这个磁场产生三相电流,再经过熔断器通过旋转二极管整流送至发电机转子为其提供励磁电流.。
发动机无刷励磁结构及原理
收电机无刷励磁结构及本理之阳早格格创做一、励磁系统效率励磁系统的主要效率便是保护收电机的电压正在给定范畴,主要有以下三面:1、是包管电力系统运止设备的仄安.电力系统中的运止设备皆有其额定运止电压战最下运止电压.包管收电机端电压正在容许火仄上,是包管收电机及其电力系统设备仄安运止的前提条件之一,那便央供收电机励磁系统不但是不妨正在固态下,而且正在大扰动后的稳态下包管收电机正在给定的容许火仄上,普遍收电机运止电压不得下于额定值的10%.2、包管收电机运止的经济性.收电机正在额定值附近运止是最经济的,如果收电机电压下落,则输出相共的功率所需的定子电流将减少,进而使耗费减少.普遍收电机运止电压不得矮于额定值的90%;当收电机电压矮于95%时,收电机该当限背荷运止.3、普及保护收电机电压本领的央供战普及电力系统宁静的央供正在许多圆里是普遍的.二、有刷励磁战无刷励磁的劣缺面收电机励磁系统普遍分为有刷励磁战无刷励磁,它们各有劣缺面,简曲辨别如下:1、有刷励磁是通过与收电机共轴的曲流收电机收出曲流电,再通过电刷战滑环加正在收电机转子线圈上.便宜是:收电机与励磁系统界限明隐,相对于独力、曲瞅明白,转子励磁电流、励磁电压简单博得,数值准确、检建便当.缺面是:由于电刷的存留,减少了交战电阻,随着励磁电流的减少,电刷战滑环时常果交战不良引导收热,宽沉时会爆收环火而废弃刷架战滑环,而且电刷的品量也间接效率到运止的宁静性,障碍率下;电刷磨益爆收的碳粉对于环境卫死有一定效率,简单传染轴启座,落矮绝缘,给仄安运止戴去一定隐患;由于电刷存留磨益,运止人员要时常巡视、揩拭、调换电刷,正在揩拭、调换时存有一定仄安隐患.2、无刷励磁系统是由收电机战与收电机共轴对接的励磁收电机组成,那种励磁收电机分歧于战收电机共轴的曲流收电机,那种励磁收电机本量上是接流收电机,它所收出的三相接流电通过对接正在其轴上的转化整流器举止整流,输出的曲流电间接接正在收电机转子绕组上,用去爆收转子磁场.便宜是:由于不电刷也便不存留交战不良以及果此爆收的收热问题,更不会果爆收电火花而废弃设备;不电刷也便不磨益的碳粉,收电机二端会比较净净;运止中不必调换电刷,运止维护少.缺面是:果励磁收电机输出的曲流电间接接正在收电机转子绕组上,那样很易丈量转子的本量电流,普遍根据转子电压等相闭参数估计出转子电流,估计值战本量值存留一定偏偏好.而且一朝转化整流器出现障碍,不但是维建艰易(需要停机检建)而且会威胁收电机的仄常运止.1、励磁系统基础处事本理SAVR-2000励磁安排器支集收电机机端接流电压Ua、Ub、Uc、定子接流电流Ia、Ib、Ic等模拟量,安排器通过模拟旗号板将下压(100V)大电流(5A)旗号举止断绝并变换为±5V电压旗号,而后传输到主CPU板上的A/D变换器,将模拟量变换为数字旗号.正在一个周波内(20ms)举止多面采样,末尾估计出机端电压的数据.正在励磁系统中由励磁形成励磁系统提供励磁能源,励磁机电枢是转化的,它收出的三相接流电经转化的二极管整流桥整流后间接支至收电机转子回路.由于励磁机电枢及其硅整流器与收电机转子皆正在共一根轴上转化,它们之间不需要所有滑环及电刷等转化交战元件,那样真足割除了滑环、电刷等转化交战元件,普及了运止稳当性战缩小机组运止维护量.2、励磁系统摆设励磁系统由励磁变压器、可控硅整流桥、自动励磁安排器及起励拆置、灭磁拆置等组成.1)、励磁变压器励磁变压器为搞式变压器,主假如为励磁系统提供励磁能源.2)、可控硅整流桥整流拆置采与了三相齐控桥式接法,便宜是半导体启受的电压矮,励磁变压器的利用率下.齐控桥式整流巩固励磁的本领较强,正在减磁时正在顺变运止时可爆收背的励磁电压,把励磁电流缓慢下落到整,把能量反馈到电网.3)、励磁统制拆置包罗自动电压安排器战起励统制回路,励磁安排器丈量收电机极度电压,并与给定值举止比较,当机端电压下于给定值时,删大可控硅的统制角,缩小励磁电流,使收电机机端电压回到设定值.当机端电压矮于给定值时,缩小控启闭的统制角,删大励磁电流,保护收电机机端电压为设定值.4)灭磁呵护拆置正在机组出现障碍时,呵护拆置会赶快把收电机与系统举止断启,但是磁场电流爆收的感触电势会继启保护障碍电流,时间少会制成导线、绝缘战铁芯的益坏,所以正在呵护动做赶快切断收电机主启闭时,灭磁回路会赶快的消耗掉转子磁场储藏的能量,那个历程便是灭磁呵护,完毕那一历程的设备便是自动灭磁拆置.以上便是尔公司收电机的励磁系统本理战主要励磁拆置.。
发电机原理及无刷励磁系统
二、励磁系统
励磁系统的分类:
01
ቤተ መጻሕፍቲ ባይዱ
按励磁方式分: .自励 .他励
02
按励磁电源分类: 直流励磁机励磁系统 交流励磁机励磁系统
03
按励磁的接入方式分类: (旋转整流)无刷励磁 (静止整流)有刷励磁
04
①.自励:即从发电机出口引出一条支路,通过励磁变压器降压以后输入励磁调节器,励磁调节器的输出作为励磁电源为转子磁场提供电流。 特点:系统简单,发电机出口电压较稳定,励磁调节器输出电流稳定,但需要起励电源。
四、发电机孤立运行和并网运行的特点
--一次调频,机组本身的功能
同时
孤立运行发电机组的特点:机组负荷、电压、周波等参数随外界负荷的需求和性质的变化而变化,并且波动比较大。在机组调节过程中需要人为干预。
1
2
3
4
5
2、发电机同大网并联运行时的调节
发电机与大网并列运行后就被拉入同步,这时发电机的电压、周波比较稳定,单台机组运行工况的改变对整个系统运行影响不大。 机组有功的调节是靠改变机组的进汽量进行的,而无功的调节是靠改变机组的励磁电流来实现的。
无刷励磁发电机原理
无刷励磁发电机原理无刷励磁发电机是一种直流发电机,与传统的有刷励磁发电机相比,其结构更加简单,维护成本更低,同时具有更好的稳定性和可靠性。
下面将介绍无刷励磁发电机的原理以及工作过程。
无刷励磁发电机的原理是利用电磁感应的原理,通过旋转磁场产生电能。
其基本组成部分包括转子、定子、永磁体和电子元件。
其中,转子和定子是发电机的核心部分,永磁体则用于产生磁场,电子元件则用于控制和调节发电机的输出电压和电流。
具体来说,无刷励磁发电机的转子上固定有一组永磁体,这些永磁体产生的磁场随着转子的旋转而不断变化。
当转子旋转时,磁场会穿过定子上的线圈,并在其中产生电磁感应作用,从而产生电流。
电子元件则将这些电流进行整流和调节,最终将输出电流和电压调整到合适的水平。
无刷励磁发电机的工作过程可以分为四个阶段:励磁、发电、整流和调节。
首先是励磁阶段,此时电子元件会向转子上的永磁体提供一个电流,使其产生一个强磁场。
这个磁场会随着转子的旋转而不断变化,从而在定子上产生一个交变电场。
接下来是发电阶段,此时电磁感应作用开始发挥作用,定子上的线圈中就会产生电流。
这个电流的大小和方向取决于磁场的强度和方向,以及线圈的位置和方向。
然后是整流阶段,此时电子元件会对产生的交流电进行整流,将其转换为直流电。
整流后的直流电可以直接输出,也可以通过调节电子元件来控制电流和电压的大小。
最后是调节阶段,此时电子元件会对电流和电压进行调节,使其符合实际需求。
这个过程中需要进行多次反馈和控制,以确保输出的电流和电压稳定、可靠。
无刷励磁发电机的原理和工作过程非常复杂,需要多个部件和元件的协同作用才能实现。
但是,由于其结构简单、维护成本低、稳定性和可靠性高,因此在实际应用中得到了广泛的应用和推广。
无刷励磁发电机原理
无刷励磁发电机原理
无刷励磁发电机是一种采用无刷技术进行励磁的发电机。
其原理是利用转子上的永磁体产生磁场,通过感应原理在定子上产生交变电压,从而实现电能的转换。
无刷励磁发电机的转子上装有永磁体,并与电源相连。
当电源通电时,产生的电流通过转子线圈,流经永磁体,形成磁场。
这个磁场与定子线圈上的光滑铁芯产生磁链,引起定子上的感应电动势。
由于转子上的永磁体是恒定不变的,因此不需要通过刷子和电刷进行励磁,避免了刷子与电刷产生的摩擦和磨损,降低了噪音和维护成本。
在工作过程中,当转子通过磁铁甩过定子线圈时,由于磁感线的变化,产生的感应电动势就会引起定子上的电流。
这个电流经过定子绕组,然后导出电能。
由于定子线圈上没有电刷,因此电流可以直接通过导线导出,而不需要经过刷子和电刷的切换,更加稳定和高效。
无刷励磁发电机与传统的刷式励磁发电机相比有许多优点。
首先,无刷励磁发电机的转子没有刷子和电刷,所以没有摩擦和磨损,寿命更长。
其次,无刷励磁发电机的效率更高,因为没有电刷和刷子的能量损耗。
最后,无刷励磁发电机的噪音更小,因为刷子和电刷之间没有接触和摩擦的声音。
总之,无刷励磁发电机利用无刷技术的优势,通过转子上的永磁体和定子上的光滑铁芯之间的磁链耦合,实现了高效、稳定和低噪音的发电转换。
无刷励磁电机原理
无刷励磁电机原理
无刷励磁电机是一种将电能转换为机械能的装置,它的原理基于电磁感应和电动机的工作原理。
无刷励磁电机由两部分组成:转子和定子。
转子是由永磁体组成的圆盘,定子则是由线圈组成的电磁体。
转子上的永磁体通过磁场生成励磁磁极。
当电流通过定子线圈时,定子线圈产生的磁场会与转子上的励磁磁极相互作用。
这个作用产生的力使转子开始旋转。
当转子旋转时,感应电动势会产生在转子上。
由于电子元件的控制,定子线圈会在恰当的时机改变电流的方向。
这种改变产生的磁场将持续地推动转子旋转。
在无刷励磁电机中,通过不断变化的电流方向和大小,磁场也不断变化。
这种动态调节使得电机能够实现更高的效率和更稳定的运行。
无刷励磁电机的工作原理可以总结为以下几个步骤:
1. 电源将电流传递到定子线圈上,并产生初始磁场。
2. 初始磁场与励磁磁极相互作用,使得转子开始旋转。
3. 电子元件控制定子线圈中电流的方向和大小,不断改变磁场。
4. 这种动态的磁场改变持续地推动转子旋转。
5. 电源持续为定子线圈提供电流,从而使转子保持旋转。
通过这个原理,无刷励磁电机可以高效地将电能转换为机械能,广泛应用于工业生产、交通工具、家用电器等领域。
无刷励磁发电机原理
无刷励磁发电机原理无刷励磁发电机是一种利用磁场和电流相互作用产生电能的装置。
它的工作原理是基于电磁感应和磁场的相互作用,通过转动发电机的转子来产生电能。
无刷励磁发电机相比传统的励磁发电机具有结构简单、维护方便、效率高等优点,因此在现代发电领域得到了广泛的应用。
首先,无刷励磁发电机的核心部件是转子和定子。
转子上安装有永磁体,当转子转动时,永磁体会产生磁场。
定子上安装有线圈,当转子转动时,磁场会穿过定子线圈,产生感应电动势。
这是基本的电磁感应原理,也是无刷励磁发电机工作的基础。
其次,无刷励磁发电机的励磁原理是通过电子器件来实现的。
在传统的励磁发电机中,需要使用刷子和集电环来给转子通电,以产生磁场。
而无刷励磁发电机则通过电子器件来实现转子的励磁,不需要使用刷子和集电环,因此减少了摩擦和磨损,提高了发电机的可靠性和使用寿命。
另外,无刷励磁发电机的工作原理还涉及到电子调节技术。
通过电子器件控制转子的励磁电流,可以实现对发电机输出电压和频率的精确调节,从而满足不同负载条件下的电能需求。
这种电子调节技术使得无刷励磁发电机在电力系统中具有更好的稳定性和可控性。
总的来说,无刷励磁发电机的工作原理是基于电磁感应和电子调节技术的相互作用。
通过转子的旋转产生磁场,再通过电子器件实现对转子的励磁,最终将机械能转化为电能输出。
这种发电机具有结构简单、维护方便、效率高等优点,因此在风力发电、水力发电、汽车发电等领域得到了广泛的应用。
在实际应用中,无刷励磁发电机的原理和技术还在不断地发展和完善,以满足不同领域对电能的需求。
未来随着新材料、新工艺和新技术的不断涌现,无刷励磁发电机将会更加高效、稳定和可靠,为人类的生产生活提供更加可靠的电能支持。
无刷励磁系统工作原理
无刷励磁系统工作原理今天咱们来唠唠无刷励磁系统的工作原理,这可有点像探索一个神秘小世界呢。
你知道吗?无刷励磁系统就像是一个超级低调但又超厉害的幕后小助手,默默地在很多大型设备里发挥着巨大的作用。
先来说说它的基本构成吧。
这个系统主要有这么几个关键的部分,就像一个小团队里的不同成员一样。
有主励磁机、旋转整流器还有副励磁机呢。
主励磁机就像是一个能量大工厂,它的任务就是产生电能,而且是那种专门为了给发电机提供励磁电流的电能哦。
副励磁机呢,它就像是个小启动器,负责给主励磁机提供初始的励磁能量,让整个系统开始运转起来。
这就好比是一个小火苗,点燃了整个能量供应的大火炉。
那旋转整流器又是什么角色呢?它呀,就像是一个超级聪明的小管家。
主励磁机产生的交流电,就像一群调皮的小娃娃,乱糟糟的。
这个时候,旋转整流器就登场啦,它把这些交流电整整齐齐地变成直流电,就像把一群乱跑的小娃娃排成了整齐的队伍。
然后呢,这个变成直流电的电能就可以顺利地送到发电机的励磁绕组里面去啦。
咱们再深入一点,看看它到底是怎么工作的。
当整个设备开始启动的时候,副励磁机就先动起来啦,它输出一个比较小的交流电。
这个交流电就像一个小小的信号,告诉主励磁机:“兄弟,该干活啦!”主励磁机收到这个信号之后,就开始马力全开,产生出交流电。
这时候,旋转整流器就开始施展它的魔法,把交流电变成直流电。
这个直流电就像是一股稳定而强大的力量,顺着线路就跑到发电机的励磁绕组里面去了。
你看啊,无刷励磁系统的这个设计可真是巧妙极了。
它没有那种传统的电刷结构,这就避免了很多麻烦事儿呢。
要是有电刷的话,就像两个小伙伴在互相摩擦,时间长了就会磨损,还可能会产生电火花,就像两个小伙伴闹别扭了一样。
但是无刷励磁系统就没有这个烦恼啦,它就安安静静、稳稳当当的在那工作,像一个乖巧又能干的小天使。
而且哦,无刷励磁系统的这种工作方式,还能让整个发电系统更加稳定可靠。
就好比是一个队伍里,每个成员都分工明确,配合默契,没有那些磕磕绊绊的小问题。
无刷励磁发电机原理
无刷励磁发电机原理
无刷励磁发电机是一种利用磁场和电磁感应原理来实现发电的装置。
它不同于
传统的励磁发电机,无刷励磁发电机采用了无刷技术,使得其结构更加简单、效率更高、维护成本更低。
下面我们将详细介绍无刷励磁发电机的原理。
首先,无刷励磁发电机的原理基于电磁感应定律。
当导体在磁场中运动或磁场
的大小发生变化时,就会产生感应电动势。
无刷励磁发电机通过转子上的永磁体和定子上的线圈之间的相对运动,产生了感应电动势。
这个感应电动势经过整流和滤波后,就可以输出为稳定的直流电。
其次,无刷励磁发电机的励磁原理是利用永磁体来产生磁场,从而激发定子线
圈中的电流。
这种励磁方式相比传统的励磁发电机,无需外部直流电源来提供励磁电流,因此更加简单可靠。
同时,由于永磁体的磁场稳定性好,使得无刷励磁发电机的输出电压和频率更加稳定。
另外,无刷励磁发电机采用了电子换向技术,不再需要机械换向装置。
这使得
无刷励磁发电机的结构更加简单,同时也减少了维护成本。
电子换向技术通过控制电子器件对定子线圈的通断,实现了定子线圈的正确定向,从而保证了发电机的正常运行。
总的来说,无刷励磁发电机的原理是基于电磁感应定律和永磁体的磁场产生的。
它通过电子换向技术和永磁体励磁技术,实现了对定子线圈的正确定向和稳定的励磁磁场。
这使得无刷励磁发电机具有结构简单、效率高、维护成本低等优点,逐渐在各种领域得到了广泛应用。
以上就是关于无刷励磁发电机原理的详细介绍,希望对大家有所帮助。
如果你
对无刷励磁发电机还有其他疑问,欢迎继续阅读相关文档或咨询专业人士。
简述船舶无刷同步发电机励磁系统的基本原理
简述船舶无刷同步发电机励磁系统的基本原理船舶无刷同步发电机励磁系统是一种激发同步发电机的装置,用于在船舶上利用汽油机驱动发电机发电,具有发电质量好,使用范围广,故障发现快等特点,已经得到了广泛的应用。
下面将详细介绍其原理和特点。
一、无刷同步发电机励磁系统的原理
无刷同步发电机励磁系统是一种采用无刷电动机原理的发电机,它的电子控制装置是利用发电机内部的永磁体来提供静态励磁力,从而使电路的“静态”电压达到要求的标准。
在启动过程中,发电机的转子原来是静止的,但是连接在转子上的永磁体把转子启动起来,当发电机的转子达到预定的频率和角度时,控制电路就会开启一个调节器,把转子上的励磁电路中的电压降低到转子工作定子电流的要求。
此时,转子就能保持自身的转动,发电机就能正常工作了。
二、无刷同步发电机励磁系统的特点
1、发电质量好:由于无刷同步发电机励磁系统采用无刷电动机原理,迹磁体和转子上的永磁体电流可调,使发电机的运行稳定,输出的电压可调,并具有比较平稳的谐波分量,因此发电质量好。
2、使用范围广:无刷同步发电机励磁系统的使用范围很广,它不仅可以满足船舶的发电需求,还可以用于其他工业上的发电。
3、故障发现快:无刷同步发电机励磁系统在控制和检测方面采用了微机控制,电子元件采用了晶体管和可控硅等组合,使发电机的故障发现快,了解发电机故障的原始模式,有助于及时处理故障。
三、总结
以上就是船舶无刷同步发电机励磁系统的基本原理,它具有发电质量好,使用范围广,故障发现快等特点,已经得到了广泛的应用。
无刷同步发电机励磁系统有助于船舶发电供电,有利于更好地提高船舶运行效率。
发电机无刷励磁工作原理
发电机无刷励磁工作原理
无刷发电机是现代化的发电机,它同传统的发电机一样,也是将
机械能转化为电能的装置。
在无刷发电机中,励磁是发电机工作的一
个重要环节。
励磁可以使发电机产生磁通,从而使旋转在磁场中的发
电机产生感应电势。
那么,无刷发电机的励磁如何实现呢?
首先,我们需要了解无刷发电机的结构。
无刷发电机由外壳、定子、转子和电子舱组成。
定子和转子中分别包含N个楔形的磁极,每
个磁极之间夹着N个线圈。
当转子旋转时,线圈中就会产生电磁感应,从而形成电能。
其次,我们需要了解无刷发电机的励磁。
在无刷发电机中,采用
的是传感器检测定子上的磁场,然后通过电子舱对转子的电流进行控制,从而产生所需的磁通。
具体地说,电子舱中的元器件可以对转子
线圈的电流进行调节,使得转子产生适当的磁通,并保证磁场的稳定性。
通过这种励磁方式,就可以保证发电机的输出电压和电流稳定,
并使得发电机可以在更广泛的负载下工作。
最后,需要说明的是,无刷发电机相比传统的发电机具有精度高、工作效率高、噪音小等优点。
在现代化的制造中,无刷发电机得到了
广泛的应用。
无刷励磁发电机原理
无刷励磁发电机原理
无刷励磁发电机是一种新型的发电机技术,它通过无刷电子调节器来生成励磁电流,从而实现发电。
相比传统的刷式发电机,无刷励磁发电机具有更高的效率和更低的维护成本。
无刷励磁发电机的工作原理如下:
1. 励磁电流产生:无刷励磁发电机通过励磁线圈来产生励磁电流,这个线圈通常由永磁材料制成。
当励磁线圈接通电源时,会在线圈中产生电流,然后这个电流会激励励磁线圈周围的永磁材料,使其产生磁场。
2. 转子运动:无刷励磁发电机的转子通常由多个磁极组成,并且与励磁线圈相对。
当转子运动时,其磁极会与励磁线圈中的磁场相互作用,从而产生电动势。
3. 无刷调节器:为了使发电机能够持续产生电流,无刷励磁发电机需要一个高效的电子调节器来控制励磁电流。
这个调节器通常由多个功率晶体管组成,可以根据发电机输出电压的变化来调整励磁电流的大小。
4. 输出电流稳定:无刷调节器会根据发电机输出电压的大小来调整励磁电流的强弱,以稳定输出电流。
无刷励磁发电机的输出电流和输出电压可以通过改变调节器中的电子元件来进行调整。
综上所述,无刷励磁发电机通过励磁线圈产生励磁电流,利用
转子磁极与励磁线圈磁场的相互作用产生电动势,然后通过无刷调节器来控制励磁电流的大小,从而实现高效稳定的发电。
发电机励磁机无刷励磁
发电机励磁机无刷励磁发电机励磁机无刷励磁介绍:发电机励磁机无刷励磁是一种新型的励磁系统,用于发电机的励磁过程中。
本文将详细介绍该系统的组成、工作原理以及维护注意事项等内容。
1.励磁机无刷励磁的工作原理1.1 励磁机无刷励磁原理概述1.2 励磁机无刷励磁的基本工作原理1.3 励磁机无刷励磁的特点和优势2.励磁机无刷励磁的组成部分2.1 发电机主体2.2 励磁机无刷励磁系统2.3 励磁控制装置2.4 励磁机无刷励磁系统的传感器3.励磁机无刷励磁的工作过程3.1 励磁机无刷励磁系统的启动流程3.2 励磁机无刷励磁的运行稳定过程3.3 励磁机无刷励磁系统的故障处理流程4.励磁机无刷励磁的维护和保养4.1 定期检查和清洁4.2 故障排除和维修4.3 励磁机无刷励磁系统的维护标准5.附件本文档附带的附件包括:附件1:励磁机无刷励磁系统的电气连线图附件2:励磁机无刷励磁系统的主要零部件清单附件3:励磁机无刷励磁系统的维护记录表6.法律名词及注释6.1 励磁机无刷励磁:指一种采用无刷励磁技术的发电机励磁系统6.2 励磁机:用于产生磁场的设备,常用于发电机的励磁过程6.3 无刷励磁:采用电子器件代替传统的机械刷碳结构,实现更稳定的励磁效果7.结束语本文详细介绍了发电机励磁机无刷励磁的工作原理、组成部分以及维护注意事项等内容。
附件中提供了励磁机无刷励磁系统的电气连线图、零部件清单和维护记录表供参考。
附件:附件1:励磁机无刷励磁系统的电气连线图附件2:励磁机无刷励磁系统的主要零部件清单附件3:励磁机无刷励磁系统的维护记录表法律名词及注释:1.励磁机无刷励磁:指一种采用无刷励磁技术的发电机励磁系统2.励磁机:用于产生磁场的设备,常用于发电机的励磁过程3.无刷励磁:采用电子器件代替传统的机械刷碳结构,实现更稳定的励磁效果。
2024版发电机原理及无刷励磁系统
高可靠性
无刷结构减少了机械磨损 和电气火花,提高了系统 的可靠性和安全性。
高效能
无刷励磁系统采用先进的 控制策略,提高了发电机 的响应速度和调节精度, 优化了发电效率。
两者结合提高发电效率
优化设计
结合发电机和无刷励磁系统的特性, 进行整体优化设计,提高发电机的效 率和性能。
角。
电磁感应现象是发电机工作的基 础。
发电机工作原理
发电机利用电磁感应原理,将 机械能转换为电能。
发电机的主要组成部分包括定 子、转子、励磁系统和电刷等。
当发电机转子在定子中旋转时, 会在定子绕组中产生感应电动 势,从而产生电流输出。
发电机类型及特点
01
02
03
04
同步发电机
转速与电网频率同步,适用于 大型电站和稳定负载。
06
安装调试及运行维护注意事项
安装前准备工作和检查清单
01
确认发电机型号、规格 和参数是否符合设计要 求
02
检查发电机外观是否完 好,有无损坏或变形
03
核对发电机附件和配件 是否齐全
04
准备安装工具和测试仪 器,确保安装过程顺利 进行
调试过程记录和问题解决方案
记录调试过程中的各项参数和数据, 如电压、电流、频率等
励磁电流
流过主发电机励磁绕组的电流大小, 决定了主发电机的磁场强度和输出电 压。
整流装置效率
整流装置将交流电转换为直流电的效 率,影响励磁系统的整体效率。
自动电压调节器精度
自动电压调节器维持发电机端电压稳 定的精度,决定了发电系统的稳定性 和可靠性。
05
无刷励磁发电机原理
无刷励磁发电机原理无刷励磁发电机是一种常见的发电机类型,它利用电磁感应原理将机械能转化为电能。
在无刷励磁发电机中,励磁是一个重要的环节,它决定了发电机的性能和输出电压稳定性。
下面我们将详细介绍无刷励磁发电机的工作原理。
首先,无刷励磁发电机的基本结构包括转子和定子两部分。
转子上装有励磁绕组,而定子上装有电磁绕组。
当转子旋转时,励磁绕组产生磁场,通过电磁感应原理,感应出定子上的感应电动势,从而产生电流。
这样就实现了机械能到电能的转换。
其次,无刷励磁发电机的励磁原理是通过外部直流电源对励磁绕组施加电流,产生磁场。
这个磁场通过定子上的电磁绕组,感应出电动势。
在无刷励磁发电机中,由于没有电刷和换向器,励磁绕组和电磁绕组都是通过电子器件实现的,因此称为“无刷”。
在实际应用中,无刷励磁发电机的励磁系统通常采用PWM控制技术,即脉宽调制技术。
通过控制电源开关管的导通时间,可以控制励磁电流的大小,从而调节发电机的输出电压和电流。
这种控制方式具有响应速度快、稳定性好的特点,适用于各种工况下的发电要求。
另外,无刷励磁发电机的励磁原理还涉及到磁场分布和磁路设计。
合理的磁路设计可以提高磁场利用率,减小磁阻,从而提高发电机的效率。
同时,励磁绕组的设计也需要考虑到磁场分布的均匀性,以及与定子绕组的匹配性,从而确保发电机的性能稳定和可靠。
总的来说,无刷励磁发电机的原理是基于电磁感应和励磁控制技术的结合,通过合理的磁路设计和励磁系统控制,实现机械能到电能的高效转换。
它在风力发电、水力发电、汽车发电等领域有着广泛的应用,是一种重要的发电设备。
通过对无刷励磁发电机原理的深入了解,可以更好地应用和维护这类发电设备,为各种工程项目提供可靠的电力支持。
同时,不断改进和创新无刷励磁发电机技术,将有助于提高发电机的效率和可靠性,推动清洁能源领域的发展。
发电机励磁机无刷励磁(二)
发电机励磁机无刷励磁(二)引言:本文主要介绍发电机中的无刷励磁技术。
无刷励磁技术是一种在发电机中使用的新型励磁技术,它能够在保证发电机稳定运行的同时,降低能耗和提高效率。
正文:一、无刷励磁技术的原理1. 无刷励磁技术的基本原理2. 无刷励磁技术的工作流程3. 无刷励磁技术与传统励磁技术的区别4. 无刷励磁技术的优势和局限性5. 无刷励磁技术的应用领域二、无刷励磁技术的发展历程1. 无刷励磁技术的起源2. 无刷励磁技术的发展趋势3. 无刷励磁技术在发电行业中的应用情况4. 无刷励磁技术的市场前景5. 无刷励磁技术的发展挑战三、无刷励磁技术的优势1. 无刷励磁技术能够降低能耗2. 无刷励磁技术能够提高发电机的效率3. 无刷励磁技术能够减少维护成本4. 无刷励磁技术能够提高发电机的寿命5. 无刷励磁技术能够提高电力系统的稳定性四、无刷励磁技术的应用案例1. 无刷励磁技术在风力发电中的应用2. 无刷励磁技术在水力发电中的应用3. 无刷励磁技术在太阳能发电中的应用4. 无刷励磁技术在发电机组中的应用5. 无刷励磁技术在海洋发电中的应用五、无刷励磁技术的未来发展方向1. 无刷励磁技术的研究重点2. 无刷励磁技术的性能优化方向3. 无刷励磁技术的成本降低方案4. 无刷励磁技术的标准和规范制定5. 无刷励磁技术的市场竞争态势总结:通过对无刷励磁技术的介绍和分析,可以看出这一技术在发电机领域具有广阔的应用前景。
未来,随着能源需求的不断增长和可再生能源的快速推广,无刷励磁技术有望得到更广泛的应用和发展。
同时,也需要加强研究和合作,进一步优化无刷励磁技术,提高其性能和降低成本,以满足电力系统的需求,并推动清洁能源发展。
励磁无刷发电机原理
励磁无刷发电机原理
励磁无刷发电机是一种利用电磁感应原理转化机械能为电能的设备。
它是由励磁部分和发电机部分组成。
励磁部分是负责产生磁场的部分,它通常由永磁体或者电磁铁组成。
当外加直流电流通过励磁绕组时,会在绕组中产生磁场。
这个磁场可以是恒定的,也可以是可调的。
磁场的强度和方向对发电机的性能有着重要影响。
发电机部分是负责转化机械能为电能的部分。
它由定子和转子两部分组成。
定子绕组通过外部连接的负载,形成了一个闭合回路。
当转子旋转时,由于磁场的作用,定子绕组中会产生感应电动势,进而产生电流。
励磁无刷发电机的工作原理是通过定子绕组和永磁体或电磁铁之间的磁场相互作用。
当转子以一定的转速旋转时,磁场会随着转子的转动而变化。
由于磁场的变化,定子绕组中就会产生感应电动势。
这个感应电动势的大小和方向会随着磁场的变化而变化。
为了使无刷发电机能够持续产生电能,励磁部分需要不断地维持磁场的稳定性。
正因如此,无刷发电机通常需要外部提供励磁电流或通过电子设备控制励磁电流的大小和方向,以确保磁场的稳定性。
总的来说,励磁无刷发电机的工作原理是通过磁场的变化产生
感应电动势,进而将机械能转化为电能。
励磁部分的产生稳定的磁场是实现发电机持续工作的关键。
发动机无刷励磁结构及原理
发电机无刷励磁结构及原理一、励磁系统作用励磁系统的主要作用就是维持发电机的电压在给定范围,主要有以下三点:1、是保证电力系统运行设备的安全。
电力系统中的运行设备都有其额定运行电压和最高运行电压。
保证发电机端电压在容许水平上,是保证发电机及其电力系统设备安全运行的基础条件之一,这就要求发电机励磁系统不仅能够在静态下,而且在大扰动后的稳态下保证发电机在给定的容许水平上,一般发电机运行电压不得高于额定值的10%。
2、保证发电机运行的经济性。
发电机在额定值附近运行是最经济的,如果发电机电压下降,则输出相同的功率所需的定子电流将增加,从而使损耗增加。
一般发电机运行电压不得低于额定值的90%;当发电机电压低于95%时,发电机应该限负荷运行。
3、提高维持发电机电压能力的要求和提高电力系统稳定的要求在许多方面是一致的。
二、有刷励磁和无刷励磁的优缺点发电机励磁系统一般分为有刷励磁和无刷励磁,它们各有优缺点,具体区别如下:1、有刷励磁是通过与发电机同轴的直流发电机发出直流电,再经过电刷和滑环加在发电机转子线圈上。
优点是:发电机与励磁系统界限明显,相对独立、直观明了,转子励磁电流、励磁电压容易取得,数值准确、检修方便。
缺点是:由于电刷的存在,增加了接触电阻,随着励磁电流的增加,电刷和滑环常常因接触不良导致发热,严重时会产生环火而烧毁刷架和滑环,并且电刷的质量也直接影响到运行的稳定性,故障率高;电刷磨损产生的碳粉对环境卫生有一定影响,容易污染轴承座,降低绝缘,给安全运行带来一定隐患;由于电刷存在磨损,运行人员要经常巡视、擦拭、更换电刷,在擦拭、更换时存有一定安全隐患。
2、无刷励磁系统是由发电机和与发电机同轴连接的励磁发电机组成,这种励磁发电机不同于和发电机同轴的直流发电机,这种励磁发电机实际上是交流发电机,它所发出的三相交流电通过连接在其轴上的旋转整流器进行整流,输出的直流电直接接在发电机转子绕组上,用来产生转子磁场。
发电机无刷励磁系统基本原理(修改版)
晶闸管的控制原理-单相半波可控整流电路
• 控制角α:从晶闸管承受正向电压起到触发脉冲加入时的 电角度。
• 导通角θ:晶闸管在一个周期内导通的角度。 • 移相:改变α的大小即改变脉冲在每个周期内出现的时刻
;对单相半波电路α的移相范围是0~π。 a越大即脉冲向后 移晶闸管导通时间越小,电阻上的输出电压越小。 • 单相半波可控桥输出电压和电流为:
灭磁原理图
DVR-2100B励磁调节器主要保护(一)
• 1、PT断线保护 程序将测量到的仪表PT值和量测PT的值进行比较,如果其差值大于较大值的1/8,则发 PT断线信号,如果是量测PT断线,除发信号外,运行方式由自动运行切换到手动运行 方式。
• 2、触发脉冲丢失保护 触发脉冲重新被CPU重新回读,并进行综合判断,确定失脉冲的相,并显示在液晶显示 器上。失脉冲发生时,发报警信号。
单相全波半控桥式整流电路
单相桥式整流模块
灭磁系统
灭磁,即是快速把转子电感中储存的大电流释放掉,以保证发电机安全运 行,保护机组和其它设备安全 。
转子电感是大的储能元件,电感中的电流是不能突变的。储存能量为:
W
1 2
L
f
I
f
2
灭磁系统由灭磁开关、灭磁电阻及灭磁回路开通控制单元组成。灭磁,就
是把转子中储存的能量转移到灭磁电阻中来消耗掉。
DVR-2100B励磁调节器主要保护(二)
5、欠励限制和保护 欠励限制按两段整定,如图所示,第一条线为限制线,第二条线为保护线。当发电 机无功功率进入低励限制区时,DVR-2100B微机励磁调节器将封闭减磁按钮,不会再 继续减磁,并且发报警信号,同时自动进行增磁,直到退出低励状态。如果DVR2100B微机励磁调节器在某种工况下进入低励限制区,而没有被控制住,无功功率继 续减少,当无功功率低于保护线时,DVR-2100B微机励磁调节器发报警信号并且切手 动方式运行。 欠励限制线和欠励环参数可以在菜单上进行整定。保护线为对应的限制线上无功功 率的1.25倍。其中,Qa点为零有功时,允许进相的无功功率值。Pb为点允许发电机无 功为零进相运行时的最大有功功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
励磁系统主要类型
目前,国内、外汽轮发电机机组的励磁系统主要有以下两 种方式:无刷励磁系统和自并励静态励磁系统。 • 1、无刷励磁系统 • 2、自并励静态励磁系统 国际上运行中的汽轮发电机主要采用无刷励磁的公司有: 西屋、三菱、ALSTOM、西门子等;主要采用自并励静态 励磁的公司有:ABB、东芝、日立等。 国内135MW及以下容量汽轮发电机组采用无刷励磁系统 及自并励静态励磁系统,300MW及以上的大部分采用自 并励静态励磁系统。
单相全波半控桥式整流电路
单相桥式整流模块
灭磁系统
灭磁,即是快速把转子电感中储存的大电流释放掉,以保证发电机安全运 行,保护机组和其它设备安全 。 转子电感是大的储能元件,电感中的电流是不能突变的。储存能量为:
W
灭磁系统由灭磁开关、灭磁电阻及灭磁回路开通控制单元组成。灭磁,就 是把转子中储存的能量转移到灭磁电阻中来消耗掉。 发电机正常运行中,励磁电压比较小,控制单元不能触发可控硅开通,灭 磁电阻回路中没有电流通过 。 当灭磁开关分断后进行灭磁时,转子电感两端出现较大的反向电压,同时 控制单元快速接通反向可控硅触发回路,把灭磁电阻接入、灭磁电阻回路
•
脉冲电源:24V1,用于脉冲放大和触发回路。
自动励磁调节器功率系统
DVR-2100B微机励磁调节器的功率输出部件为单相半控晶闸管整流桥。为了保
证其输出直流电压连续可调,要求控制角α在0~170度之间变化。DVR-2100B微 机励磁调节器中由脉冲同步电路来保证各晶闸管的依次导通,用大规模逻辑器
件直接将数字控制量转换成相应控制角α的触发脉冲信号。
A(运行)、通道B(运行)、切除。 QK2 就地/主控开关:该开关打到主控位置,本柜操作开关失效,DVR-2100B微机励磁调节器受 主控开关的控制;该开关打到就地位置,DVR-2100B微机励磁调节器接受本柜开关的命令,主控 室的对应开关失去作用。运行中如果进行主控/就地切换时,应先将主控和就地的开关位置先对 应成一致状态。 QK4 减/增磁开关:为自复归开关,用来调整发电机电压或无功功率的大小。
DVR-2100B励磁调节器主要保护(二)
5、欠励限制和保护 欠励限制按两段整定,如图所示,第一条线为限制线,第二条线为保护线。当发电 机无功功率进入低励限制区时,DVR-2100B微机励磁调节器将封闭减磁按钮,不会再 继续减磁,并且发报警信号,同时自动进行增磁,直到退出低励状态。如果DVR2100B微机励磁调节器在某种工况下进入低励限制区,而没有被控制住,无功功率继 续减少,当无功功率低于保护线时,DVR-2100B微机励磁调节器发报警信号并且切手 动方式运行。 欠励限制线和欠励环参数可以在菜单上进行整定。保护线为对应的限制线上无功功 率的1.25倍。其中,Qa点为零有功时,允许进相的无功功率值。Pb为点允许发电机无 功为零进相运行时的最大有功功率。
自动励磁调节器电源系统
• 为了提高系统的可靠性,系统的供电电源由两路冗余,来自永磁机发电机输 出的交流电源经过隔离变压器隔离后,经过整流变为直流,并经过二极管和 来自厂用蓄电池的直流电并联运行,共同为机箱内的开关电源供电,为了提 高系统的抗干扰能力,按照不同的功能将系统电源分为3部分。 • CPU电源:5V,±12V,其中DSP芯片的内核电压1.8V,外设电压3.3V,低压 系统保证了高速CPU低功耗和高可靠性。 • 操作电源:24V2,用于开关量的输入输出,对于双通道的励磁系统,其两个 通道的24V2经过二极管并联,提供操作信号。两个通道的0V2直接并联。这 样就保证了24V2电源的冗余。
自并励静态励磁系统原理图
无刷励磁与自并激静止励磁的比较表
项目 技术特点 1 轴系 2 3 4 5 6 主设备 滑环和碳刷 无刷励磁系统 长度大,投资大; 支点多,振动大,动平衡复杂; 旋转励磁,两个旋转电机维护量大。 无刷,不耗能,免维护。 自并激静止励磁系统 长度小,节能电站投资; 支点少,振动小,动平衡简便; 免维护静止励磁,无旋转机械。 有刷,有耗能,需维护。
1 2 Lf I f 2
开通,转子电流就可以快速转移到灭磁电阻回路,通过灭磁电阻把电流转
换为热量释放。
灭磁原理图
DVR-2100B励磁调节器主要保护(一)
• 1、PT断线保护 程序将测量到的仪表PT值和量测PT的值进行比较,如果其差值大于较大值的1/8,则发 PT断线信号,如果是量测PT断线,除发信号外,运行方式由自动运行切换到手动运行 方式。 • 2、触发脉冲丢失保护 触发脉冲重新被CPU重新回读,并进行综合判断,确定失脉冲的相,并显示在液晶显示 器上。失脉冲发生时,发报警信号。 • 3、系统自检故障检测 系统自检功能含存储器校验、电源检测、可控硅故障,通讯故障等、当有故障发生时, 发通道故障信号,同时本通道退出运行。对于主备用系统,备用通道自投。 • 4、旋转二极管故障报警 通过检测励磁机励磁绕组电流的1、2、3、4、5、6次谐波的有效值和22次谐 波的有效值比值来判断旋转二极管是否发生故障:当1、2、3、4、5和6次谐波 的有效值之和与22次谐波的有效值的比值小于0.1时判为正常运行状态,比值大 于0.1时,判断为故障;当1、3、5次谐波有效值之和与22次谐波有效值的比 值大于50时判为一臂短路故障;当2、4次谐波有效值分别与22次谐波有效值相 除,所得两个比值相乘,结果小于1时判为一臂断路,小于10而大于1时判为一相 开路,大于10时判为多相开路。
P:
ARF: F0:
有功功率
可控硅输出角 系统频率
Q: 无功功率
COS: 功率因数 ILD:本通道电流
DVR-2100B励磁屏主要结构(三)
• 4、开关层 有交流电源开关QS1、直流电源开关QS2、通道A电源输入开关KKA、通道B电源输入开 关KKB。
QS1:DVR-2100B微机励磁控制柜的工作电源开关。机组达到额定转速,永磁发电机输
DVR-2100B励磁调节器主要保护(三)
6、过励限制和保护 过励限制是为了防止发电机转子励磁绕组长期过负载而采取的限制励磁措施 ,从转子励磁绕组发热考虑,当强励时,其容许的强励时间t是随发电机励磁 电流Ifd2的大小成反比关系。过励限制和保护按照下列原则: • 励磁电流 Ifd>Ifd_max时,延时1.5秒直接封锁脉冲退出运行。 Ifd_max为菜单整定的瞬时过励值; • Ifd>1.1Ifdn、 Ifd<1.0 Ifdn时计算反时限等效时间: Heat=∫(Ifd2- Ifdn2)*t ; Heat_n= ∫(Ifd_2set- Ifdn2)*t_set ; 其中:Ifd_set:设定的强励倍数的电流值 t_set:强励时间; H0:显示在液晶上,便于监视。 H0>50%,发信号,限制增磁 H0>80%,切手动运行,并且手动运行给定值设为90%Ifdn H0<10%,复归过励信号
有可控硅模块、二极管整流模块、熔断器。
功率单元由可控硅模块和二极管整流模块组成单相可控桥式整流电路。功率 单元A和功率单元B经过逆止二极管并联后向外供电。
•
6、其它器件
包括电源变压器T、LEM、瓷管电阻、分流器FL1、FL2、FL3,继电器K1、 K2、K3、K4等。 电源变压器T将给DVR-2100B微机励磁控制柜供电的中频交流电隔离、降压 ,整流后与厂用直流电经过逆止二极管并联给DVR-2100B微机励磁调节器供 电。 LEM是用于DVR-2100B微机励磁控制柜励磁输出电流的测量。 FL1、FL2用于发电机中控盘或DCS的显示,FL3用于本柜的励磁输出电流表 的显示。
7
10
灭磁
差,但由于封闭母线的采用,故障概率几乎为 0; 对主保护无影响,对后备保护采取适当措施也 可正确动作。 无法安装灭磁开关,只能是自然续流 可安装灭磁开关和非线性灭磁电阻,以实现逆 灭磁,灭磁速度慢,尤其是故障情况 变灭磁; 下。 灭磁速度快,可靠无损伤,防止事故扩大。
无刷励磁主要部件
• • • • 1、永磁机 2、交流励磁机 3、旋转硅整流装置(旋转二极管+快速熔断器) 4、自动电压ห้องสมุดไป่ตู้节装置
DVR-2100B励磁调节器主要组成
• • • • • • • • • • 开关电源组件1 (+5V,±12V) (电源Ⅰ) 开关电源组件2 (24V1,24V2) (电源Ⅱ) 主机板 开关量输入输出板 (开入开出) 脉冲放大板 模拟量信号处理板 (信号处理) PT/CT及同步变压器板 (PT/CT) 功率单元 总线后底板 键盘及液晶显示面板
DVR-2100B励磁屏主要结构(一)
• 1、表计层
表计层装设发电机机端电压表,永磁机电压表,励磁电流表,便于就地试验监视。
• 2、操作层 QK3 自动/手动开关:用来选择DVR-2100B微机励磁调节器在自动运行、手动运行方式。
QK1 通道选择开关:可以通过此开关进行通道间的切换,共有四个位置可供选择,即切除、通道
KKA:通道A励磁电源输入开关。机组达到额定转速,DVR-2100B微机励磁调节器参数
设定完成,机组具备投励时合上该开关。 KKB:通道B励磁电源输入开关。机组达到额定转速,DVR-2100B微机励磁调节器参数 设定完成,机组具备投励时合上该开关。
DVR-2100B励磁屏主要结构(四)
• 5、功率单元
发电机励磁一次系统
旋转整流盘
三相全波桥式整流电路
励磁调节器基本任务
微机励磁控制柜的基本任务是维持发电机的机端电压恒定、通过 合理的调差设置保证并列运行的机组间无功功率的合理分配,通过快 速的励磁响应提高电力系统的暂态稳定和静态稳定。
DVR-2100B励磁调节器主要功能
1、自动运行方式即发电机恒机端电压PID调节;
出电压达到额定值时,合上该开关,永磁发电机向DVR-2100B微机励磁控制柜提供工作 电源。 QS2:DVR-2100B微机励磁控制柜辅助工作电源开关。机组未运行时合上该开关,220V 直流母线向DVR-2100B微机励磁控制柜提供工作电源,也可用于DVR-2100B微机励磁控 制柜静态时的参数调整或其他试验。机组运行时,合上该开关,220V直流为DVR-2100B 微机励磁控制柜提供备用工作电源。