人教版九年级上数学《第24章圆》检测试卷含解析教学反思设计案例学案说课稿.doc
人教版九年级上数学《第24章圆》检测试卷含解析教学反思设计案例学案说课稿.doc

⼈教版九年级上数学《第24章圆》检测试卷含解析教学反思设计案例学案说课稿.doc班级: 姓名:得分: C '、第6题图第⼆⼗四章检测卷时间:120分钟满分:150分⼀、选择题(本题共12⼩题,每⼩题3分,共36分)1-。
的半径为3cm,点A 到圆⼼。
的距离OA=4cm,则点A 与。
的位置关系是)A. 点A 在(DO 上B.点⼈在内C.点A 在。
外D.⽆法确定2. 如图,。
是△ABC 的外接圆,若⼔ACB=40。
,则ZAOB 的度数为()A. 20°B. 40°C. 60°D. 80°3. 如图,弦ABJLOC,垂⾜为点C,连接CM,若()C=2, AB=4,则OA 等于()A. 2⽫B. 2也C. 3⽫D. 2%4. 如图,在。
中,AB=AC,⼔AO8=40。
,则⼔4DC 的度数是()A. 40°B. 30°C. 20°D. 15°5. 如图,四边形ABCD 是。
的内接四边形,若ZB=75°, ZC=85°,则ZD~ZA =()A. 10°B. 15°C. 20°D. 25°6. 数学课上,⽼师让学⽣尺规作图画RtAABC,使其斜边AB=c, ⼀条直⾓边BC=a,⼩明的作法如图所⽰,你认为这种作法中判断/ACB 是直⾓的依据是()A.勾股定理B.勾股定理的逆定理C .直径所对的圆周⾓是直⾓ D. 90。
的圆周⾓所对的弦是直径c第7题图7. 如图,AB 是。
的弦,A 。
的延长线与过点8的。
的切线交于点C,如果ZABO=20。
,则⼔C 的度数是()A. 70°B. 50°C. 45°D. 20°B 第2题图 A B第4题图第5题图8.⼀元钱硬币的直径约为24mm,则⽤它能完全覆盖住的正六边形的边长最⼤不能超过()A. 12mmB. 12,mmC. 6mmD. 6y/3mm9.如图,若△ABC的三边长分别为AB=9, BC=5, CA = 6, ZUBC的内切圆。
人教版初中数学课标版九年级上册第二十四章22.1圆的有关性质说课稿

人教版九年级上册第24章第1节《弧、弦、圆心角》说课稿各位老师:我今天说课的课题是人教版九年级上册第24章第1节《弧、弦、圆心角》。
接下来,我将从教材,学情,教法,学法,教学过程五个方面来说课。
教材分析1.地位与作用本节课是在学习了旋转,圆的有关知识和垂径定理的基础上进行的。
整节课是以圆的旋转不变性为主线。
通过感性认识到理性认识的转化,展开对弧、弦、圆心角之间关系的研究的。
是对圆的性质的进一步学习。
它将为证明线段相等、角相等提供重要依据,将为今后学习圆的有关内容打下基础,在本章中起着承上启下的重要作用。
2.教学目标知识与技能:1.理解圆的旋转不变性和圆心角的概念.2.掌握弧、弦、圆心角关系定理及推论并能解决有关问题.过程与方法:1.培养学生观察、分析、归纳的能力.2.向学生渗透旋转变换思想及由特殊到一般的认识规律.情感与态度:通过引导学生对图形的观察,激发学生探究,发现数学问题的兴趣和欲望.3.教学重难点重点: 掌握弧、弦、圆心角关系定理及推论并能解决相关问题.难点: 利用圆的旋转不变性推导弧、弦、圆心角关系定理及推论.弧、弦、圆心角的关系定理的灵活运用.学情分析九年级学生已初步具备数学分析、解决问题的能力,但学生对圆的旋转不变性不甚了解,所以在探讨弧、弦、圆心角之间的相等关系时可能感到困难。
学生尽管逻辑思维能力很强,但对于圆的认识还很浅肤,对圆的相关概念很少接触,故而在掌握知识的深度和灵活性方面还有欠缺。
本节课引导学生积极参与探究活动,充分理解圆的旋转不变性,同时通过变式训练,让学生能够灵活应用定理来解决问题。
教法分析本节课采取观察,猜想,证明,归纳的教学模式。
采用引导发现,探究证明的教学方法。
学法分析本节课采取动手操作,猜想验证,归纳总结,反思拓展的学习方法。
接下来,重点说一说本节课的教学过程。
教学过程一.创设情境导入新课导语:古希腊数学家这样描述圆:在一切平面图形中,圆是最美的!我们知道圆是轴对称图形,并由圆的轴对称性得到了垂径定理及推论。
人教版数学九年级上册第二十四章圆单元测试含教学反思案例教案学案说课稿.docx

第二十四章圆测试题 一、选择题(每小题3分,共33分) 1. 为 A. 若。
O 所在平面内一点P 到。
O 上的点的最大距离为a,最小距离为b (a>b ), ()a +b 则此圆的半径 2 1 + /? a-b C. --------或 ---- 2 2 2. 如图 24—A —1, 则弦AB 的长是( A.3. A.4. A. a-b B. ------ 2 D. a + b^a - b OO 的直径为10,圆心O 到弦AB 的距离OM 的长为3,) C. 7 4 B. 6 己知点。
为ZXABC 的外心,若ZA=80° ,则ZBOC 的度数为()40° B. 80°C. 160° 如图24—A —2, A ABC 内接于OO, 20°D. 8 D. 120° 若ZA=40° ,则ZOBC 的度数为( D. 70° B. 40° C.50°)小明同学设计了一个测量圆直径的工具, 持垂直,在测直径时,把。
点靠在圆周上,读得刻度OE=8个单位, )12个单位 1个单位 A. C. 6. A. 7. B. 10个单位 D. 15个单位 5.如图24 —A —3, 标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保 OF=6个单位,则圆的直径为 如图24—A —4, AB 为。
O 的直径,点C 在。
O 上,若ZB=60° 80° B. 50° C. 40° D. 30° 如图24—A —5, P 为。
O 外一点,PA 、PB 分别切。
于A 、B, PA 、PB 于点C 、D,若PA=5,则Z\PCD 的周长为() ,则NA 等于()CD 切。
O 于点E,分别交 A. 5 B. 7 C. 8 D. 108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m,母线长为3m,为防雨需在粮仓顶部铺上 油毡,则这块油毡的面积是() A. 6m 2 B. 671m 2 C. 12m 2 D.9. 如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P,大圆 弦CD 经过点P,且CD=13, PC=4, A. 16 兀 B. 36 n C. 52 兀 10. 己知在△ABC 中,AB=AC=13, 为() 10 A.—— 3 则两圆组成的圆环的面积是() D. 81 兀 BC=10,那么AABC 的内切圆的半12 B.—— 5 C. 2 D. 3 11. 如图24—A —7,两个半径都是4cm 的圆外切于点C, 一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的.E绕行,蚂蚁在这8段路径上不断爬行,直到行走2006 Ji cm后才停下来,则蚂蚁停的那一个点为()A. D点B. E点C. F点D. G点二、填空题(每小题3分,共30分)12.如图24—A—8,在(30中,弦AB等于(30的半径,OC_LAB交。
2024年人教版九年级数学上册教案及教学反思第24章24.3 正多边形和圆(第1课时)

24.3 正多边形和圆第1课时一、教学目标【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系.【情感态度与价值观】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、边心距,边长之间的关系.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课出示课件2,3:观察上边的美丽图案,思考下面的问题:(1)这些都是生活中经常见到的利用正多边形得到的物体,你能找出正多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样做一个正多边形呢?学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.(板书课题)(二)探索新知探究一正多边形的对称性教师问:什么叫做正多边形?(出示课件5)学生答:各边相等,各角也相等的多边形叫做正多边形.教师问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?学生答:矩形不是正多边形,因为矩形不符合各边相等;菱形不是正多边形,因为菱形不符合各角相等;教师强调:正多边形:①各边相等;②各角相等,两个条件,缺一不可.教师问:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?(出示课件6,7)学生动手操作,交流,感受正多边形的对称性.教师归纳:正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.探究二正多边形的有关概念教师问:以正四边形为例,根据对称轴的性质,你能得出什么结论?(出示课件8,9)师生结合图形共同探究:EF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD、BC的垂直平分线,∴OA=OD,OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.AC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.出示课件10:教师问:所有的正多边形是不是也都有一个外接圆和一个内切圆?学生答:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.教师问:一个正多边形的各个顶点在同一个圆上?学生答:一个正多边形的各个顶点在同一个圆上,则这个正多边形就是这个圆的一个内接正多边形,圆叫做这个正多边形的外接圆.教师问:所有的多边形是不是都有一个外接圆和内切圆?学生答:多边形不一定有外接圆和内切圆,只有是正多边形时才有,任意三角形都有外接圆和内切圆.教师出示概念:(出示课件11)1.正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心.2.外接圆的半径叫做正多边形的半径.3.内切圆的半径叫做正多边形的边心距.4.正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360.n练一练:(出示课件12)完成下面的表格:学生计算交流并填表.探究三 正多边形的有关计算出示课件13:如图,已知半径为4的圆内接正六边形ABCDEF :①它的中心角等于 度; ②OC BC(填>、<或=); ③△OBC 是 三角形;④圆内接正六边形的面积是△OBC 面积的 倍. ⑤圆内接正n 边形面积公式:_______________________. 学生计算交流后,教师抽学生口答.①60;②=;③等边;④6;⑤1=2S ⨯⨯正多边形周长边心距出示课件14:例 有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(精确到0.1m 2).教师分析:根据题意作图,将实际问题转化为数学问题.师生共同解答:(出示课件15)解:过点O 作OM ⊥BC 于M.在Rt △OMB 中,OB =4,MB =4222BC ==,利用勾股定理,可得边心距r ==亭子地基的面积:2112441.6(m ).22S l r =⋅=⨯⨯≈ 巩固练习:(出示课件16)如图所示,正五边形ABCDE 内接于⊙O ,则∠ADE 的度数是( )A .60°B .45°C .36°D .30° 学生独立思考后自主解答:C.教师归纳:圆内接正多边形的辅助线(出示课件17)1.连半径,得中心角;2.作边心距,构造直角三角形. 巩固练习:(出示课件18)已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?学生独立思考后解答,一生板演.解:∵直角三角形两直角边之和为8,设一边长为x. ∴ 另一边长为8-x.则该直角三角形面积:S=(8-x )x ÷2,即214.2s x x =-+ 当x=2b a -=4,另一边为4时,S 有最大值244ac b a -=8.∴当两直角边都是4时,直角面积最大,最大值为8. (三)课堂练习(出示课件19-24)1.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=______度.2.填表:3.若正多边形的边心距与半径的比为1:2,则这个多边形的边数是_____.4.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为_____度.(不取近似值)5.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为,点P为六边形内任一点.则点P 到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON的度数与正n边形的边数n的关系.参考答案:1.360°解析:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°.2.3.34.412875.6.解:∵正方形的面积等于4, ∴正方形的边长AB=2. 则圆的直径AC=2, ∴⊙O 的半径=.∴⊙O 的面积为22.ππ=7.解:过P 作AB 的垂线,分别交AB 、DE 于H 、K ,连接BD ,作CG ⊥BD 于G.22∵六边形ABCDEF 是正六边形, ∴AB ∥DE ,AF ∥CD ,BC ∥EF ,∴P 到AF 与CD 的距离之和,及P 到EF 、BC 的距离之和均为HK 的长. ∵BC=CD ,∠BCD=∠ABC=∠CDE=120°, ∴∠CBD=∠BDC=30°,BD ∥HK ,且BD=HK.∴CG=12BC=.∵CG ⊥BD ,∴BD=2BG=2×=2×3=6.∴点P 到各边距离之和=3BD=3×6=18. 8.解:⑴①120°;②90°;③72°;⑵360MON n ︒∠=.(四)课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?(五)课前预习22BG BC-预习下节课(24.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.。
《24.1.1 圆》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《圆》教学设计方案(第一课时)一、教学目标1. 掌握圆的定义、性质及相关概念;2. 能够运用圆的性质解决相关问题;3. 培养学生的观察、思考和解决问题的能力。
二、教学重难点1. 教学重点:圆的定义和性质的应用;2. 教学难点:理解并掌握圆心角、弦、弧之间的关系以及圆中的有关计算问题。
三、教学准备1. 准备教学用具:圆规、圆板、绳子、剪刀等;2. 准备教学材料:相关例题和练习题;3. 安排教学时间:本课时为单课时,约45分钟。
四、教学过程:(一)引入1. 复习引入:请学生回忆小学学习过的平面图形有哪些?2. 设问引入:在初中,我们将学习一种特殊的几何图形——圆。
那么,圆在生活中有哪些应用呢?我们如何来研究圆呢?(二)新课活动一:感知圆的形状1. 请学生利用手中的圆规和圆规画圆,并观察圆的形成过程。
2. 讨论:圆的形成与什么有关?圆的大小与什么有关?圆的位置与什么有关?3. 汇报交流:圆的位置用定点、定长来描述;圆的半径、直径的变化规律;圆的形状特征。
活动二:画圆工具介绍介绍圆的各部分名称,重点讲解圆心和半径。
并介绍画圆的工具——圆规。
活动三:探究圆的特征请学生尝试用量角器、圆规等工具对以下问题进行探究:(1)任意两个半径分别相等吗?(2)任意两个直径分别相等吗?(3)所有半径的长度都相等吗?(4)所有直径的长度都相等吗?通过探究引导学生归纳总结出圆的特征。
活动四:生活中的圆请学生列举生活中的圆形物体,并思考为什么我们经常使用圆形?生活中哪些地方用到了圆的知识?目的是激发学生学习兴趣,体会数学在生活中的应用。
(三)小结(学生回答教师补充)通过本节课的学习,你有什么收获?特别要注意哪些概念和特征?哪些内容需要我们牢记的?本节课与小学的数学知识有什么联系与区别?还有什么疑问?(鼓励求异思维)(四)作业布置(必做题、选做题)必做题:教材66-67页练习题。
选做题:思考题。
思考题为:有三个完全一样的等腰直角三角形ABC,∠ACB=90°,AC=BC=a,试着用这些三角形拼成各种形状的圆,并求出每个圆的面积。
2023-2024学年九年级数学上册《第二十四章 圆》单元测试卷有答案(人教版)

2023-2024学年九年级数学上册《第二十四章圆》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点归纳1、圆在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作⊙O,读作“圆O”。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
小于半圆的弧叫做劣弧。
大于半圆的弧叫做优弧。
能够重合的两个圆叫做等圆。
在同圆或等圆中,能重合的弧叫等弧。
2、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线过圆心,且平分弦对的两条弧.3、弧、弦、圆心角之间的关系定义:顶点在圆心的角叫做圆心角。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
注:在同圆或等圆中,如果两个圆心角,两条弦,两条弧、两个弦的弦心距中,有一组量相等,那么其余各组量也分别相等4、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等。
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
圆内接四边形的性质:圆内接四边形的对角互补。
5、点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离为OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r 。
性质:不在同一条直线上的三个点确定一个圆。
人教版九年级上册数学教案:第24章圆(二)回顾与反思

九年级《数学》学教案课题:第24章圆(二)回顾与反思学习目标:知识目标:1.了解点与圆,直线与圆以及圆和圆的位置关系.2.了解切线的概念,切线的性质及判定.3.会过圆上一点画圆的切线.能力目标:1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过画圆的切线,训练学生的作图能力.3.通过全章内容的归纳总结,训练学生各方面的能力.情感目标:1.通过探索,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.学习重、难点:学习重点:1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.学习难点:探索各种位置关系及切线的性质.节前预习:(预习课本P53-54,完成下列问题。
)一、回顾本章内容这节课我们对本章的所有知识进行回顾,并讨论这些知识间的关系,绘制本章知识结构图,还要对有关知识加以巩固.知识结构图:二、总结与反思1.点和圆的位置关系有三种:(1)________、(2)________、(3)________对应的点到圆心的距离d和r之间的数量关系是:(1)________、(2)________、(3)________如何利用数量关系判断点和圆的位置关系?师生共同回顾,一起画出本章的知识结构图。
4.如图(1),在Rt△ABC中,∠C=90°,AC=12,BC=9,D 是AB上一点,以BD为直径的⊙O切AC于点E,求AD的长.5.如图(2),AB是⊙O的直径,C是⊙O上一点,∠CAE=∠B,你认为AE与⊙O相切吗?为什么?6.两个同心圆中,大圆的弦AB和AC分别和小圆相切于点D和E,则DE与BC的位置关系怎样?DE与BC之间有怎样的数量关系?7.设⊙O1和⊙O2的半径分别为R、r,圆心距为d,在下列情况下,⊙O1和⊙O2的位置关系怎样?①R=6cm,r=3cm,d=4cm;②R=6cm,r=3cm,d=0;③R=3cm,r=7cm,d=4cm;④R=1cm,r=6cm,d=7cm;⑤R=6cm,r=3cm,d=10cm;⑥R=5cm,r=3cm,d=3cm;⑦R=3cm,r=5cm,d=1cm8.已知两个等圆的半径为5cm,公共弦长6cm,求圆心距.9.如图,⊙O是Rt△ABC的内切圆,∠ACB=90°,AB=13,AC=12,求图中阴影部分的面积.四、点滴收获(一)本节所学的知识点:(二)本节课所学的思想方法:数形结合总结回顾学习内容,帮助学生学会归纳,反思。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案

24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、教学目标【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?(出示课件2)解决这个问题要研究点和圆的位置关系.(板书课题)(二)探索新知探究一点和圆的位置关系教师问:观察下图中点和圆的位置关系有哪几种?(出示课件4)学生交流,回答问题.教师点评:点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.教师问:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?(出示课件5)学生答:教师问:反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?学生观察思考交流后,师生共同得到结论:(出示课件6)点与圆的三种位置关系及其数量间的关系:边结论.读作“等价于”.⑵要明确“d”表示的意义,是点P到圆心O的距离.出示课件7,8:例如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)学生独立思考后,师生共同解答.解:⑴AD=4=r,故D点在⊙A上;AB=3<r,故B点在⊙A内;AC=5>r,故C点在⊙A外.⑵3≤r≤5.巩固练习:(出示课件9)1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_______;点B在_______;点C在_______.2.圆心为O的两个同心圆,半径分别为1和2,若,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外学生独立思考后口答:1.圆内;圆上;圆外 2.D探究二过不共线三点作圆教师问:如何过一个点A作一个圆?过点A可以作多少个圆?(出示课件10)学生动手探究,作图,交流,得出结论,教师点评并总结.以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.教师问:如何过两点A、B作一个圆?过两点可以作多少个圆?(出示课件11)学生动手探究,作图,交流,得出结论,教师点评并总结.作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.教师问:过不在同一直线上的三点能不能确定一个圆?(出示课件12)学生思考后师生共同解答:经过A,B两点的圆的圆心在线段AB的垂直平分线上.经过B,C两点的圆的圆心在线段BC的垂直平分线上.经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.教师归纳:不在同一直线上的三点确定一个圆.(出示课件13)出示课件14:例已知:不在同一直线上的三点A、B、C.求作:⊙O,使它经过点A、B、C.学生动手探究,作图,交流后,师生共同解答.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.教师问:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?(出示课件15)学生动手探究,交流,在教师指导下作图.作法:1.在圆弧上任取三点A、B、C;2.作线段AB、BC的垂直平分线,其交点O即为圆心;3.以点O为圆心,OC长为半径作圆.⊙O即为所求.巩固练习:(出示课件16)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.学生独立思考后口答:∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.探究三三角形的外接圆及外心已知△ABC,用直尺与圆规作出过A、B、C三点的圆.(出示课件17)学生复述作法.教师对照图形进行归纳:(出示课件18)1.外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.⊙O叫做△ABC的外接圆,△ABC叫做⊙O的内接三角形.2.三角形的外心定义:外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.作图:三角形三边中垂线的交点.性质:到三角形三个顶点的距离相等.练一练:判断下列说法是否正确.(出示课件19)(1)任意的一个三角形一定有一个外接圆.( )(2)任意一个圆有且只有一个内接三角形.( )(3)经过三点一定可以确定一个圆. ( )(4)三角形的外心到三角形各顶点的距离相等.( )学生口答:⑴√⑵×⑶×⑷√画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.(出示课件20)学生动手探究,作图,交流后,教师总结.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.出示课件21,22:例1 如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).(1)求∠DAO的度数;(2)求点A的坐标和△AOB外接圆的面积.学生独立思考后师生共同解答.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;⑵∵点D的坐标是(0,3),∴OD=3.在Rt△AOD中,∵∠DOA=90°,∴AD为直径.又∵∠DAO=30°,∴AD=2OD=6,OA=因此圆的半径为3.点A的坐标(0),∴△AOB外接圆的面积是9π.教师强调:解题妙招:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.巩固练习:(出示课件23)如图,已知直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标.(2)判断点D(5,-2)和圆M的位置关系.学生独立解答.解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),所以圆心M的坐标为(2,0).(2)圆的半径AM==线段DM所以点D在圆M内.出示课件24:例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.学生独立思考后师生共同解答.解:连接OB ,过点O 作OD ⊥BC.则OD =5cm ,112cm 2BD BC ==在Rt △OBD 中,13cm OB ==,即△ABC 的外接圆的半径为13cm.巩固练习:(出示课件25)在Rt △ABC 中,∠C=90°,AC=6 cm,BC=8cm,则它的外心与顶点C 的距离为( )A.5cmB.6cmC.7cmD.8cm学生思考后口答:A探究四 反证法教师问:经过同一条直线上的三个点能作出一个圆吗?(出示课件26)学生动手探究,作图,交流后,师生共同解答.如图,假设过同一条直线l 上三点A 、B 、C 可以作一个圆,设这个圆的圆心为P.那么点P 既在线段AB 的垂直平分线l 1上,又在线段BC 的垂直平分线l 2上,即点P 为l 1与l 2的交点.而l 1⊥l ,l 2⊥l 这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾.所以过同一条直线上的三点不能作圆.教师归纳:(出示课件27)1.反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.2.反证法的一般步骤⑴假设命题的结论不成立(提出与结论相反的假设);⑵从这个假设出发,经过推理,得出矛盾;⑶由矛盾判定假设不正确,从而肯定命题的结论正确.出示课件28:例求证:在一个三角形中,至少有一个内角小于或等于60°.师生共同解答.已知:△ABC.求证:△ABC中至少有一个内角小于或等于60°.证明:假设△ABC中没有一个内角小于或等于60°,则∠A>60°,∠B>60°,∠C>60°.因此∠A+∠B+∠C>180°.这与三角形的内角和为180度矛盾.假设不成立.因此△ABC中至少有一个内角小于或等于60°.巩固练习:(出示课件29)利用反证法证明“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一锐角都大于45°学生口答:D(三)课堂练习(出示课件30-36)1.已知△ABC的三边a,b,c,满足a+b2+|c﹣,则△ABC的外接圆半径=______.2.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.3.如图,请找出图中圆的圆心,并写出你找圆心的方法?4.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A______;点C在⊙A______;点D在⊙A______.5.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外6.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=______.7.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.8.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.10.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.参考答案:1.2582.3.解:如图所示.4.上;外;上5.B6.57.70°8.B9.解:如图所示.10.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材95页练习2.2.配套练习册内容八、板书设计:九、教学反思:本节课通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.。
人教版九年级上册数学教案:第24章《圆的复习》优秀教学案例

(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,总结学习方法和学习经验,提高学生的我管理能力。
2.同伴评价:组织学生互相评价,给予同伴肯定和鼓励,培养学生的评价能力和良好的人际关系。
3.探究情境:组织学生进行小组讨论,探讨圆的性质和公式,引导学生主动参与学习,培养学生的发现问题、分析和解决问题的能力。
(二)问题导向
1.设计问题链:围绕圆的知识,设计一系列由浅入深的问题,引导学生层层递进地思考,如“圆是什么形状?”“圆有哪些性质?”“圆的周长和面积如何计算?”等。
2.问题导向教学:在教学过程中,以问题为导向,引导学生自主学习、合作交流,使学生在解决问题的过程中,掌握圆的相关知识。
三、教学策略
(一)情景创设
1.生活情境:以日常生活中常见的圆形物品为例,如硬币、圆桌、车轮等,创设情境,引导学生关注圆的形状和特征,激发学生的学习兴趣。
2.问题情境:设计一些与圆相关的问题,如“圆形草坪的面积是多少?”“自行车轮子的周长是多少?”等,让学生在解决问题的过程中,自然地引入圆的相关知识。
2.问题导向的教学策略:本案例中,教师以问题为导向,设计了一系列由浅入深的问题,引导学生层层递进地思考。这种问题导向的教学策略,不仅有助于激发学生的思维,培养学生的批判性思维和问题解决能力,还能够帮助学生建立起知识之间的联系,形成系统化的知识结构。
3.小组合作的学习方式:通过组织学生进行小组讨论和合作交流,本案例充分调动了学生的学习主动性,培养了学生的合作能力和团队意识。在小组合作的过程中,学生不仅能够互相学习、互相帮助,还能够提高自己的表达能力和沟通技巧,培养良好的人际关系。
人教版数学九年级上册第二十四章圆检测题含教学反思案例教案学案说课稿

第二十四章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.如图,在⊙O 中,AC ∥OB ,∠BAO =25°,则∠BOC 的度数为( ) A .25° B .50° C .60° D .80°第1题图第2题图2.如图,在平面直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P 的所有弦中,最短的弦的长为( )A .4B .5C .8D .103.(2016·自贡)如图,⊙O 中,弦AB 与CD 交于点M ,∠A =45°,∠AMD =75°,则∠B 的度数是( )A .15°B .25°C .30°D .75°第3题图第4题图4.(2016·黔南州)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为5 cm ,则圆心O 到弦CD 的距离为( )A .52cm B .3 cm C .3 3 cm D .6 cm 5.(2016·河北)如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ) A .△ACD 的外心 B .△ABC 的外心 C .△ACD 的内心 D .△ABC 的内心第5题图第6题图第8题图6.(2016·邵阳)如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD.若∠ACD =30°,则∠DBA 的大小是( )A .15°B .30°C .60°D .75°7.(2016·自贡)圆锥的底面半径为4 cm ,高为5 cm ,则它的表面积为( )A .12π cm 2B .26π cm 2C .41π cm 2D .(441+16)π cm 28.(2016·昆明)如图,AB 为⊙O 的直径,AB =6,AB ⊥弦CD ,垂足为点G ,EF 切⊙O 于点B ,∠A =30°,连接AD ,OC ,BC ,下列结论不正确的是( )A .EF ∥CDB .△COB 是等边三角形C .CG =DGD .BC ︵的长为32π9.如图,边长为40 cm 的等边三角形硬纸片,小明剪下与边BC 相切的扇形AEF ,切点为D ,点E ,F 分别在AB ,AC 上,做成圆锥形圣诞帽(重叠部分忽略不计),则圆锥形圣诞帽的底面圆的半径是( )A .103 3 cm B .203 cm C .36 cm D .233 cm第9题图第10题图10.(2016·深圳)如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是AB ︵的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A .2π-4B .4π-8C .2π-8D .4π-4 二、填空题(每小题3分,共24分)11.(2016·南京)如图,扇形OAB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =______°.第11题图第14题图12.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数是________.13.(2016·宁夏)已知正△ABC 的边长为6,那么能够完全覆盖这个正△ABC 的最小圆的半径是______.14.(2016·台州)如图,△ABC 的外接圆O 的半径为2,∠C =40°,则AB ︵的长是______. 15.(2016·呼和浩特)在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为______.16.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,直到半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于______.第16题图第17题图第18题图17.如图,AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O.以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D ,E ,则阴影部分的面积是________.18.一走廊拐角的横截面如图所示,已知AB⊥BC ,AB ∥DE ,BC ∥FG ,且两组平行墙壁间的走廊宽度都是1 m ,EF ︵的圆心为O ,半径为1 m ,且∠EOF =90°,DE ,FG 分别与⊙O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与⊙O 相切于点P ,P 是EF ︵的中点,则木棒MN 的长度为____________m .三、解答题(共66分)19.(6分)如图所示,破残的圆形轮片上弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D. (1)求作此残片所在的圆;(不写作法,保留作图痕迹) (2)已知AB =16,CD =4,求(1)中所作圆的半径.20.(6分)如图,AB 和CD 分别是⊙O 上的两条弦,过点O 分别作ON ⊥CD 于点N ,OM ⊥AB 于点M ,若ON =12AB ,求证:OM =12CD.21.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO 的延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是圆O的切线;(2)若PB=6,DB=8,求⊙O的半径.22.(8分)如图所示,已知圆锥底面半径r=10 cm,母线长为40 cm.(1)求它的侧面展开图的圆心角和表面积;(2)若一小虫从A点出发沿着圆锥侧面运动到母线SA的中点B处,请你计算它所走的最短路线是多少?23.(8分)如图,AB是⊙O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.24.(9分)如图,⊙O 是△ABC 的外接圆,弦BD 交AC 于点E ,连接CD ,且AE =DE ,BC =CE. (1)求∠ACB 的度数;(2)过点O 作OF ⊥AC 于点F ,延长FO 交BE 于点G ,DE =3,EG =2,求AB 的长.25.(10分)如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC ,BC 分别交于点D ,E ,过点D 作DF ⊥BC ,垂足为点F.(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.26.(11分)如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD ︵=BC ︵,连接AB ,AD ,BD ,弦AB 不经过圆心O ,延长AB 到E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF.(1)若⊙O 的半径为3,∠DAB =120°,求劣弧BD ︵的长;(2)求证:BF=12 BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.。
九年级数学上册第二十四章圆教案新人教版

九年级数学上册第二十四章圆教案新人教版第一篇:九年级数学上册第二十四章圆教案新人教版第二十四章圆教案单元要点分析教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积. 2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用. 5.不在同一直线上的三个点确定一个圆.6.直线L和⊙O相交 dr及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d与r1和r2之间的关系:外离⇔d>r1+r2;外切⇔d=r1+r2;相交⇔│r2-r1│11.正多边形和圆中的半径R、边心距r、中心角θ之间的等量关系并应用这个等量关系解决具体题目.nπR2nπR 12.n°的圆心角所对的弧长为L=,n°的圆心角的扇形面积是S扇形=及其180360运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算.教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题. 3.有关圆周角的定理的探索及推导及其它的运用. 4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用. 8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R、边心距r、中心角θ的关系的应用.nπR2nπR 11.n的圆心角所对的弧长L=及S扇形=的公式的应用.180360 12.圆锥侧面展开图的理解.教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、•性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,•发展学生有条理的思考能力及语言表达能力.单元课时划分本单元教学时间约需13课时,具体分配如下:24.1 圆3课时24.2 与圆有关的位置关系 4课时 24.3 正多边形和圆 1课时24.4 弧长和扇形面积 2课时教学活动、习题课、小结 3课时第二篇:九年级数学上册圆教案九年级《数学》上册《圆》教案教学内容:正多边形与圆第二课时教学目标:(1)理解正多边形与圆的关系;(2)会正确画相关的正多边形(3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.教学重点:会正确画相关的正多边形(定圆心角与弧长)教学难点:会正确画相关的正多边形(定圆心角与弧长)教学活动设计:(一)观察、分析、归纳:实际生活中,经常会遇到画正多边形的问题,举例(见课本如画一个六角螺帽的平面图,画一个五角星等等。
人教版九年级数学上册:第24章圆周角说课稿

《圆周角》说课稿我今天说课的内容是九年级上册第二十四章第一节第四部分《圆周角》的第一课时。
下面我从将从教材分析,教法学法,教学程序几个方面对本课的设计进行说明。
一、教材分析㈠本课在教学的地位和作用本节课的内容是在学生已经学习圆心角、弧、弦之间关系的基础上进行研究的,通过本节课的学习,进一步巩固了圆心角有关知识,也为今后学习圆的有关性质打下坚实的基础,因而本课的内容起着承上启下的重要作用。
另外通过对圆周角的学习,可以培养学生严谨治学的学习态度和良好的思维品质,同时教会学生从特殊到一般和分类讨论的思维方法,因此这节课不论在知识上,还是在方法上,都起着十分重要的作用。
㈡教学目标根据课标,结合教材的特点和学生的知识现状,确定本节课的教学目标。
⑴知识目标:①使学生掌握圆周角的概念及圆周角定理;②准确地运用圆周角定理进行计算或证明。
⑵能力目标:①能用类比的方法探索新知识②学会运用以特殊情况为依托,通过转化来解决一般性问题的化归思想③学生学会运用分类讨论的数学思想证明数学命题④提高学生的识图能力⑶情感目标:在圆周角概念和定理的探索过程中,不断变化图形,通过观察、实验、类比、猜想、论证、反思,使学生树立运动变化和对立统一的辩证唯物主义观点和严谨的科学态度。
㈢教学重点与难点⑴重点:圆周角概念及定理的发现与论证⑵难点:圆周角定理证明方法的探讨二、教学方法及学法指导㈠学情分析:来源学&科&网我所任教班级的学生基础知识较扎实,养成了良好的学习习惯,他们能以主人的形式积极地参与到教学活动中,但也有个别同学基础较差,需要设置简单的教学内容.㈡教法说明:根据本节课的特点及学生的思维特点,充分利用多媒体等手段,采用了探究式教学法,通过操作、探究、合作、交流、概括、检验、应用来培养学生的创新精神与实践能力。
㈢学法指导:本节课主要是采用了学生思考、动手操作观察、分析问题、归纳问题、化归等方法,使学生感受了圆周角,学生的学习兴趣,大大提高了,积极参与数学这门学科,有利于开发学生大脑浅在思维意识,养成爱动脑筋、乐于探索的优秀品质。
人教版数学九年级上册24.2.1《点与圆的位置关系》说课稿

人教版数学九年级上册24.2.1《点与圆的位置关系》说课稿一. 教材分析《点与圆的位置关系》是人教版数学九年级上册第24章第2节的一部分。
这部分内容主要介绍了点与圆的位置关系的判定及其应用。
在教材中,通过生活中的实例引入点与圆的位置关系,然后引导学生通过观察、思考、探究,总结出点与圆的位置关系的判定方法。
教材内容由浅入深,逐步引导学生掌握点与圆的位置关系的判定及其应用,培养学生的观察能力、思考能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有一定的了解。
但是,对于点与圆的位置关系的判定及其应用,可能还比较陌生。
因此,在教学过程中,需要结合学生的实际情况,从他们的认知水平出发,引导学生逐步理解和掌握点与圆的位置关系。
三. 说教学目标1.知识与技能目标:让学生掌握点与圆的位置关系的判定方法,并能够运用点与圆的位置关系解决实际问题。
2.过程与方法目标:通过观察、思考、探究,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作精神。
四. 说教学重难点1.教学重点:点与圆的位置关系的判定方法及其应用。
2.教学难点:点与圆的位置关系的判定方法的推导和理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、合作学习法等,引导学生主动参与,积极思考。
2.教学手段:利用多媒体课件、几何画板等教学辅助工具,直观展示点与圆的位置关系,帮助学生理解和掌握。
六. 说教学过程1.导入:通过生活中的实例,引导学生关注点与圆的位置关系,激发学生的学习兴趣。
2.新课导入:介绍点与圆的位置关系的判定方法,引导学生进行观察和思考。
3.探究活动:分组讨论,让学生通过实际操作,总结出点与圆的位置关系的判定方法。
4.讲解与演示:教师对点与圆的位置关系的判定方法进行讲解,并用几何画板进行演示。
5.练习与解答:学生进行练习,教师进行解答和指导。
新人教版九年级数学上册《24 圆 测试》精品课教案_9

《圆》专题检测试卷讲评课教学设计课题:圆内求线段的长和阴影部分面积难点突破设计理念:通过对最近三年中考题做考点分析,2015年考一个解答题,9分,2016年一个解答题9分,2017年圆的相关考题为19分,更是把圆放到了最后一个解答题的位置,在中考中占比很高,通过最近复习中的套卷练习,发现很大一部分同学圆的解答题会空题,所以设计了本次专题检测,通过本次检测发现圆的解答题问题最大的为圆内求线段长或阴影面积,切线的证明则相对较好,故本节课的课题定位为圆内求线段长和阴影部分面积难点突破。
学生考情分析:初三学生目前已临近中考,对于基础知识掌握的不错,但是对于圆解答题尤其是第(2)问的相关计算得分率不高,基于此,力求通过试卷题目的具体分析,及原题变式,让学生更深层次的理解相似求线段长的方法,并培养学生对于两个基础相似模型的敏感度。
教学目标:1. 切线的证明方法回顾2. 圆内求线段长度:勾股定理,解直角三角形,三角形相似教学重、难点:圆内用相似(平行相似、双垂直相似)求线段长度教学方法:学生自主合作学习与教师讲授相结合教具:多媒体和实物展台教学基本流程:分析考试情况→试卷12题讲评→原题变式→试卷13题讲评→原题变式→小结教学过程:题12. 如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).第(1)问答题情况较好,快速解决,第(2)问丢分情况较多,重点分析,结合学生原卷实物投影,分析丢分点练习1【12题(2)变式】如图,在△ABC中,∠C=90°,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,且半径OD⊥BC。
若AC=6,tan∠B=34,求⊙O的半径将12题(2)换一下条件和问题,则将求线段长的方法从勾股定理变为了三角形相似1.2.3. 13.如图,已知点P是⊙O外一点,PB切⊙O于点B,BA 垂切线的证明基本用的是三角形全等或三线合一,少数同学用的是垂直平分线,或者垂径定理,进而改变条件,并将问题由求线段长改为阴影部分面积的求法,也是昆明市中考的重点内容一、切线的证明平行、互余、全等二、圆内求线段长。
人教版九年级数学上册第二十四章:圆(教案)

-圆与直线、圆与圆的位置关系:识别并理解相离、外切、相交、内切、内含五种位置关系,以及对应的几何特征和计算方法。
-实际应用题:运用圆的相关知识解决实际问题,如计算弓形面积、弧长和扇形面积等。
-弓形面积和弧长的计算:这部分涉及到圆的扇形和弓形的相关计算,学生需要理解并掌握相应的计算公式。
-解决实际应用题:将圆的知识应用于解决综合性问题,如涉及多个圆或圆与其他几何图形的组合问题。
举例:在讲解圆与圆的位置关系时,难点在于如何通过比较两圆半径之和与圆心距离的大小来判断它们的位置关系。教师需要通过图示和具体例子来帮助学生理解和记忆这个判定方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调圆的基本性质和圆的方程这两个重点。对于难点部分,如圆的一般方程推导,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆相关的实际问题,如圆的面积和周长的计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用绳子画圆,演示圆的基本原理。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)24.1.2 垂直于弦的直径教案

24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为cm,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级: 姓名: 得分: C '、第6题图 第二十四章检测卷时间:120分钟满分:150分一、选择题(本题共12小题,每小题3分,共36分)1-。
的半径为3cm,点A 到圆心。
的距离OA=4cm,则点A 与。
的位置关系是 )A. 点A 在(DO 上B.点人在内C.点A 在。
外D.无法确定2. 如图,。
是△ABC 的外接圆,若匕ACB=40。
,则ZAOB 的度数为( )A. 20°B. 40°C. 60°D. 80°3. 如图,弦ABJLOC,垂足为点C,连接CM,若()C=2, AB=4,则OA 等于( )A. 2皿B. 2也C. 3皿D. 2%4. 如图,在。
中,AB=AC,匕AO8=40。
,则匕4DC 的度数是( )A. 40°B. 30°C. 20°D. 15°5. 如图,四边形ABCD 是。
的内接四边形,若ZB=75°, ZC=85°,则ZD~ZA =( )A. 10°B. 15°C. 20°D. 25°6. 数学课上,老师让学生尺规作图画RtAABC,使其斜边AB=c, 一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断/ACB 是直角的依据是( )A.勾股定理B.勾股定理的逆定理C .直径所对的圆周角是直角 D. 90。
的圆周角所对的弦是直径c第7题图7. 如图,AB 是。
的弦,A 。
的延长线与过点8的。
的切线交于点C,如果ZABO=20。
,则匕C 的度数是( )A. 70°B. 50°C. 45°D. 20°B 第2题图 A B第4题图第5题图8.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A. 12mmB. 12,mmC. 6mmD. 6y/3mm9.如图,若△ABC的三边长分别为AB=9, BC=5, CA = 6, ZUBC的内切圆。
O切AB,BC, AC于点。
,E, F,则AF的长为()A. 5B. 10C. 7.5D. 4*A D g第9题图y\DA ~ C第10题图U静」gcA第11题图10.如图为4x4的网格图,A, B, C, D, O均在格点上,点O是()A. AACD的外心B. △ABC的外心C. △ACZ)的内心D. △A8C的内心11.如图,一•扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120。
,"长为25cm,贴纸部分的宽8D为15cm,若纸扇两面贴纸,则贴纸的面积为()A. 1757rcm2B. 350丸cm?C.^r^7icm2D. 1507rcm212.如图,直线AB、CD相交于点O, ZAOD=30°,半径为1cm的OP的圆心在射线OA上,旦与点。
的距离为6cm.如果OP以Icm/s的速度沿由A向B的方向移动,那么多少s后。
P与直线CD相切()CDA.4sB.8sC.4s 或6sD.4s 或8s二、填空题(本大题共6小题,每小题4分,共24分)13.己知弦旭把圆周分成1 : 5的两部分,则弦旭所对的圆心角的度数为.14.如图,OA, 08是。
的半径,点C在<3。
上,连接AC, BC,若匕AOB=120。
,则AACB= °,4第18题图第14题图〃\ 〃 第15题图15. 如图,AB 是。
的直径,BD,CD 分别是过。
上点B, C 的切线,NBDC=110。
.连接 AC,则匕A 的度数是。
.16. 己知一条圆孤所在圆的半径为9,弧长为京,则这条弧所对的圆心角是.17. 如图,半圆O 的直径AE=4,点B, C, D 均在半圆上.若AB=BC, CD=DE,连接 OB, OD,则图中阴影部分的面积为.18. 如图,在。
中,AB 是直径,点D 是。
上一点,点C 是而的中点,B 于点E, 过点。
的切线交EC 的延长线于点G,连接AD,分别交CE 、CB 于点P 、。
,连接AC,关于下列 结论:①ZBAD=ZABC ; @GP=GD ;③点F 是△ACQ 的外心.其中正确的结论是(只需 填写序号).三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19. (10分)如图,巳知CD 是。
的直径,弦ABLCD.垂足为点点P 是届上一点,且 Z BPC=60。
.试判断△ ABC 的形状,并说明你的理由.20. (10分)如图,AB 是。
的直径,半径O C1AB,过OC 的中点。
作弦EF//AB,求匕ABE 的度数.IIE 第17题图P A21.(10分)如图,己知。
中直径AB与弦AC的夹角为30。
,过点C作。
的切线交的延长线于点D, QD=30cm.求直径AB的长.22.(10分)如图,由正方形ABCD的顶点A引一直线分别交BD、CD及BC的延长线于£ F、G,连接EC.求证:CE是△CGF的外接圆(DO的切线.23.(12分)己知等边△A8C和(DM.(1)如图①,若③M与BA的延长线AK及边AC均相切,求证:AM//BC;(2)如图②,若。
M与B4的延长线AK、的延长线CF及边AC均相切,求证:四边形是平行四边形.E224.(12分)如图,四边形ABCD是。
的内接四边形,8C的延长线与AO的延长线交于点E,且DC=DE.(1)求证:ZA = ZAEB;(2)连接OE,交CD于点、F, OE1CD.求证:△△班:是等边三角形.25.(12分)如图,AB是。
的直径,弦CD1AB于点E,点P在。
0上,PB与CD交于点F, ZPBC=ZC.(1)求证:CB//PD;(2)若NP8C=22.5。
,的半径R=2,求劣孤AC的长度.26.(14分)如图,。
是△ABC的外接圆,圆心。
在AB上,且匕B=2£4, M是上一点,过M作的垂线交AC于点N,交8C的延长线于点E,直线CF交功于点F, EF=FC.(1)求证:CF是。
O的切线;(2)若的半径为2,旦AC=CE,求AM的长.E2.D3.A4.C5.A6.C7.B8.A9.A 11.BAZCOD=60°.(3 分)V DC 切。
于C, AZOCD=90°, /.ZD=30°.(6 分)L OD=30cm, /. OC=^OD= 15cm, /M5=20C=30cm.(10答案1. c 10. B 12. D 解析:①由题意CD 与OP 】相切于点E, AP^ICD,又V ZAOD=30°f r=lcm,二在△OEPi 中,OP|=2cm.又・.・OP=6cm, .,.P 1P=4cm, A OP 到达。
R 需要时间为 47=4(秒); ②当圆心P 在直线CD 的右侧时,PP 2 = 6+2 = 8(cm ), A0P 到达。
P?需要时间为脂1 =8(秒),综 上可知,0P 与直线CD 相切时,时而为4秒或8秒,故选D.13. 60° 14.60 15.35 16.50°18.②③ 解析:如图,连接OD.DG 是。
O 的切线,.••NGDO=9()O.「・NGQP+Z :AOO= 90。
.在 RtA4PE 中,匕OAO+/APE=90。
,9:AO=DO, :. ZOAD= ZADO.:. ZGPD= ZAPE= ZGDP, :.GP=GD.:.结论②正确..「AB 是。
的直径,A ZACB=90°. A ZCAQ+ ZAQC=90°//点 C 是人。
的中点,:.ZCAQ=ZABC.又:/ABC+匕3。
£=90。
.二 £4QC= NBCE,:・PC=PQ.・「Z :ACP+NBCE=90。
,匕AQC+NCAF=90。
,:.ZCAP=ZACP, :.AP=CP, :.AP=CP=PQ ,:•点P 是△AC 。
的外心.结论③正确•:不能确定BD 与以)的大小关系一•.不能确定 匕84。
与ZABC 的大小关系.•.•结论①不一定正确.故答案是②③.19.解:ZSABC 是等边三角形.(2分)理由如下:•「CD 是。
的直径,ABLCD, :.AC=20. 解:如图,连接 OE ・(1 分)•:EF 〃AB, OC1AB, :.EFYOC.Q 分)'••点。
是 OC 的中点,/. OD=^OC=^OE,.・.匕。
匹。
=30。
.(7 分)•: EF//AB,二 404 = 30。
,A ZABE=^ZEOA = 15°.(10 分)21. 解:..•£4 = 30。
,OC=OA, :. ZACO=ZA = 30Q 9分)22.证明:如图,连接OC,贝y OG=OC. :.ZG=ZOCG.(2分)1•四边形ABCD 是正方形, :.AB=CB,ZABE=ZCBE=45Q .(4 分)又•: BE=BE,二△ABEMCBE(SAS ), :.ZBAE=BC,:.AM=AB~BM=4-1 —0 = 3—0.(14 分)ZBCE.(6 分)ZBAE+ ZG=90°, /. ZBCE+ ZOCG=90°, (8 分).L 匕ECO=90。
, :.EC 是 △CGF 的外接圆。
O 的切线.(10分)23. 证明:(1)・..。
以与AK 、AC 相切,・・・AM 平分匕KAC.(2分)又•「△ABC 是等边三角形, /.Z/C4C=120°, (4 分)AZ/C4A/=ZB=60°, :.AM//BC ; (6 分)(2)由⑴得AM//BC,同理CM//AB, (10分)...四边形ABCM 是平行四边形.(12分)24. 证明:(I );四边形ABCD 是。
的内接四边形,...£4 + NBCD=180o.(2分)..・匕7)(¥+ ZBCD= 180°, :WA = ZDCE.TDC=DE, :. ZDCE= ZAEB.(4 分).L ZA= ZAEB ; (6 分)(2)V OELCD,:・CF=DF, .LOE 是 CD 的垂直平分线,/.ED=EC.(8 分)又•:DC=DE, :.DC=DE=EC, :. A DCF 是等边三角形./. Z>4EB=60°.(10 分)L/人=£4EB,「•△ABE 是等腰 三角形....△A8E 是等边三角形.(12分)25. (1)证明:ZPBC=ZD, ZPBC= ZC, .\ZC=ZD, :.CB//PD ; (4 分)(2)解:如图,连接OC 、OD.(5分)・.・人8是。
的直径,弦CDA.AB 于点E,:・BC=BD.(7 分)ZPBC=ZBCD=22.5。