弹塑性力学第三章
湖南大学弹塑性力学第三章
y u0 ,
y2 M x2 2EI
x
v0。
(d)
第三章 平面问题的直角坐标解答 求位移
例1:如图简支梁,求刚体位移 u0 , v0 , . 和梁轴的挠度。
M
o
M
y
l
M
A
x
( l >>h)
解:在铰支座O没有水平和铅直位移,在连杆支座A没有铅直位移.
则约束条件为: (u)x0 0, (v)x0 0, (v)xl 0.
1. 弯应力 σx与材料力学的解相同。
2.
铅直线的转角
u y
M EIx Nhomakorabea ,
故在同一横截面上,x是
常数,因而β也是常数。可见:同一横截面上的各铅直线
段的转角相同,说明横截面保持为平面,即平面截面假
设成立。
3.不论约束情况如何,梁的各纵向纤维的曲率为:
1 2v M
x2 EI
第三章 平面问题的直角坐标解答
逆解法
例4 设图中所示的矩形长梁,l >>h,试考
察应力函数 Φ
F 2h3
xy(3h2
4 y2 )能解决什么
样的受力问题?
o
h/2
h/2
x
l y
( l >>h)
第三章 平面问题的直角坐标解答
解:按逆解法。 1. 将 Φ代入相容方程,可见 4Φ 0 是
满足的。
对于单连体,(c)通常是自然满 足的。只须满足(a),(b)。
由Φ
求应力的公式是
σ
x
2Φ y 2
岩土弹塑性力学教学课件(共13章)第3章_应变状态
§3.1 应变状态11
• 三个刚性转动分量及6个应变分量合在一起,才全 面反映了物体变形
xyz x y z xy yz zx
B
B’’ 刚性转动
B’’’
B’
变形
A 刚性平动 A`
§3.1 应变状态12
• 工程应变: ln l0
l0
变形后长度 原始长度
不适用于大变形
• 自然应变/对数应变:
在塑性变形较大时,用-曲线不能真正代表加载和变形的状态。
x y z
• ——弹性体一点的体积改变量
• 引入体积应变有助于简化公式。
• 大于零表示体积膨胀,小于零体积压缩。
• 注意:土力学中塑性体应变符号约定相反。
§3.2 主应变与应变主方向8
应变Lode参数: 为表征偏量应变张量的形式,引入应变Lode参数:
22 3 1 3
1
(1.66)
如果两种应变状态με 相等,表明它们所对应的应变莫尔圆 相似,也即偏应变张量的形式相同。
Vz y
;
zx
Vz x
Vx z
;
§3.3 应变率张量 2
小变形情况下,应变速率分量与应变分量间存在如下关系:
x
Vx x
du x dt
d dt
u x
x
u x
y
Vy y
dv y dt
d v
dt
y
y
v y
z
Vz z
z
dw dt
d w dt z
z
w z
线应变速率
j
Vj,i )
(1.56)
§3.3 主应变与应变主方向 4
由于时间度量的绝对值对塑性规律没有影响,因
弹塑性力学课件第三章
zx C61x C62 y C63z C64 xy C65 yz C66 zx
C ij
ijkl kl
Cijkl Cijlk
2021/1/10
4
第三章 本构关系
一、线性弹性体的本构方程——具有一个弹性对称面的线
性弹性体
x
y
C11
C12 C22
C13 C23
C14 C24
2021/1/10
10
第三章 本构关系
一、线性弹性体的本构方程——各向同性弹性体
x
1 E
x
( y
z ) ,
xy
1 G
xy
y
1 E
y
( x
z ) ,
yz
1 G
yz
z
1 E
z
( x
y ) ,
zx
1 G
zx
ij 1Eij Ekkij
2021/1/10
11
第三章 本构关系 一、线性弹性体的本构方程——各向同性弹性体
0 x
0
y
z xy
C33 0 0
对
C44 0
0 z
0
xy
yz
zx
称
C55
0 C66
yz zx
2021/1/10
6
第三章 本构关系 一、线性弹性体的本构方程——正交各向异性弹性体
x y z xy
1 Ex
xy
1 Ey
对
xz
yz
弹塑性力学课件第三章
第三章 本构关系
本章学习要点:
掌握各项同性材料的广义Hooke定律 掌握弹性应变能密度函数的概念及计算 理解初始屈服、后继屈服以及加卸载的概 念 掌握几个常用的屈服条件 理解弹塑性材料的增量和全量本构关系的 基本概念
第三章-弹塑性断裂力学PPT课件
(20)
对弹塑性情况, δ可由弹性的δe和塑性的δp两部分
组成,即:
.
27
e P
(21)
式中, δe为对应于载荷P的裂纹尖端弹性张开位移,
(1)D-B模型假设:裂纹尖端的塑性区沿裂纹线两边 延伸呈尖劈带状;塑性区的材料为理想塑性状态,整 个裂纹和塑性区周围仍为广大的弹性区所包围;塑性
区与弹性区交界面上作用有均匀分布的屈服应力σs 。
.
9
于是,可以认为模型在远场均匀拉应力σ作用下
裂纹长度从2a延长到2c,塑性区尺寸R=c-a,当以带 状塑性区尖端点c为“裂尖”点时,原裂纹(2a)的 端点的张开量就是裂纹尖端张开位移。
按等效原则,令非贯穿裂纹的等于无限大板中心穿透裂纹
的,则等效穿透裂纹长度为:. a*= α2 a
(17)
22
(c)材料加工硬化修正
考虑材料的加工硬化修正,可用流变应力σf代替 屈服点,对于σs =200~400MPa的低碳钢,一般取:
σf =0.5( σs + σb)
(18)
式中σb为材料的抗拉强度。
δ与应变e、裂纹几何和材料性能之间的关系,即引入 应变这一物理量。
由含中心穿透裂纹的宽板拉伸试验,可绘出无量 钢COD即/2esa 与标称应变 e / e s 之间的关系曲线 。
.
16
其中es是相应于材料屈服点σs的屈服应变,a是裂 纹尺寸,标称应变e是指一标长下的平均应变,通常 两个标点取在通过裂纹中心而与裂纹垂直的线上。
R
a
sec
2
s
1
若将 s e c 按级数展开,则 2 s
12 54 sec2s 122s242s
2
当
弹塑性力学第三章
3. STRAIN3.1. Deformation and Strain tensorIn present chapter we examine the deformation geometry of the deformable solid without regard for the actual forces required to produce it. The most obvious and direct method of describing the motion of a continuum solid is to consider the motion of each and every particle making up the solid. If the relative position of every particle is not changed, there is only rigid moving and rotation, then we may consider it as a rigid displacement. If the relative position of every particle is changed, in the same time the initial shape of the body is distorted, then we called there is a deformation. In the following, we will discuss the deformation of elastic-plastic body.Suppose the distance between two points P o(x o, y o) and P(x,y) is P o P in plane Oxy before deformation. After deformation the two ends of segment P o P moved to P o′(x o′y o′) and P′(x′, y′). Let P o P =s, P o′P′= s ′then the components of vectors s′and s along the x , y axes are:s x′=s x+ s xs y′=s y′+s yThe displacement component at point P o isu o =x o′‑x ov o =y o′‑y o (3.1) Similarly, at point P the displacement component is(Fig.3.1):u =x′– xv =y′– y (3.2) Suppose the displacement u and v are the single-value continuously functions of x and y, then we can expand the displacement at point P in an infinite Taylor series about point P o, that is:u = u o + s x + s y + 0 (s x2, s y2 )v =v o + s x + s y+ 0(s x2, s y2) (3.3) Because point P is in the neighbourhood of the point P o, therefore the quantity s is sufficiently small, so that we obtain the formulas x =s x′–s x = (x′-x ) – (x o′-x o ) = s x+s ys y =s y′–s y = (y′-y) – (y o′-y o )= s x+Using the indicial notation and summation convention, these equationsmay be written more compactly ass i = u i ,j s j (3.4) where (i,j =x, y ) in two dimensional case, ( i,j =x, y, z ) in three dimensional case, this givesu i , j = (3.5) which is so called relative displacement tensor.Fig. 3.1 displacement of a segmentIn order to get a clear idea of strain, we shall return by considering the figure 3.1,from which we know there is a rigid displacement only, when the segment s moved to s′, without any deformation. The length of s is not changed, then we obtains2 =s′ 2 = ( s x + s x)2 +( s y + s y)2 (3.6)Expanding above formula (3.6) and neglecting the high-order small quantity s i , we obtains2= s2 + 2 (s x s x + s y s y )From which we haves x s x + s y s y= 0ors i s i = 0 (3.7) From equation (3.4) we obtaineds i u i , j s j = 0 (3.8) ors x2 +s x s y + s y2 = 0In view of the arbitrary of s x , s y , we have(3.9) Similar to above discussion for planes Oyz and Oxz we can obtain another three conditions:= 0+ = = 0Therefore we haveu i , j = --u j ,i (3.10) It means that the relative displacement tensor of rigid-body motion must be a skew-symmetric tensorEvery second-order tensor can be decomposed into two parts uniquely, one is a symmetric tensor and another is a skew-symmetric. Hence we can write u i ,j as the following form:u i , j = ( u i , j + u j , i ) + ( u i , j – u j , i ) ( 3.11) oru i , j =i j + i j (3.11a) where= (3.12)ij= (3.13)ijand ij are the strain tensor and rotation tensor respectively for two-ijdimensional case.From equation (3.11) we can easy write the expression of strain tensor and rotation tensor for three-dimensional cases.In this case, equation (3.4) may be written ass i = ij s j (3.14) If segment s is parallel x-axis, then we haves x = s, s y = 0and= x = = (3.15)xxIt is clear that x is the unit elongation ( compression) of a unit line element vector paralleled x-axis, and the same to y , z , so called line strain or normal strain.If vector s1and vector s2are parallel axes O x, O y respectively before deformation,i, j are the unit vector along the direction of O x, O y axes, respectively. ( Fig. 3.2 ) Therefore we haves1 = i s1 s2 = i s2After deformation s1, s2became to s1’, s2’ , respectively. Then we haves1′ = i (s1x + s1) + j s1ys2′ = i s2x+j (s2y +s2 )Fig.3.2 The change of angle between two vectorsLet the angle between vectors s1’and s2’, then from the definition of inner product of two vectors, we obtains1′s2′= s1′ s2′ cos (3.16) and s1′s2′= (s1x′ i+s1y′ j) (s2x′ i+s2y′ j )=s1x′ s2x′ +s1y′ s2y′where s1y′ =s1y s2x′ = s2xNeglecting the two-order small quantity of s, we haves1′s2′ = s1s2x + s2s1y (3.17)Substituting this relation into the expression (3.16) and neglecting high-order small quantity again, after some reduction that we can obtaincos(s1s2x+s2s1y) / s1s2 =+Let the change in the angle between line elements s1, s2 , after deformation is, considering that is a small quantity too, then we havecos= cos (/2—) =sin=From xy = yx , we find=xy + yx= 2xySo that the strain component xy is seen to represent simply one- half the change in the angle between line elements lying initially in the x and y axes directions. A similar interpretation also applies to the strain components xz and yz, that isLet the angle between the two lines which is perpendicularly each other and coincident with positive direction of axes O x, O y before deformation have been changed after deformation, if the changed quantity is xy namely shear strain, then= = 2xy = + (3.19)xyor (3.19’ )In the following, we customarily take positive sign (or negative sign ) of shear strain, when the perpendicular angle between two coordinate axes is decreased ( or negative sign ). The strain components are clearly in two-dimensional case are= , y =, xy= + (3.20)xand in three-dimensional case are (in compact form )=u i , i ( i , j= x,y,z ) (3.21)ii= u i, j+u j , i (3.21′)ijwhere u x u, u y v, u z w, and as before by using the von. Karman’s notation:, yyy , zz=z , andxxx= ji (3.22)ijEquation (3.21) is the strain displacement relation:=1/2 ( u i ,j + u j , i ) (i ,j =x,y,z ) (3.23)ijIt is clearly when i =j ,we get a normal strain , ij , we get a shear strain. In addition we have= ji (3.24)ij3.2. Principal Strain and Octahedral StrainIn last chapter, it has been demonstrated that there exist at least three mutually orthogonal planes, which have no shear stress acting on them, that is, the principal planes and their associated principal directions, known as principal axes. In the analysis of strain at a point, such principal axes also exist. As we known, that the principal axis or direction is the direction for which the shear strains would be zero. The corresponding strains are called principal strains. Obviously, the direction of principal strain is coincides with principal direction. This strain is the normal strain. Other word, if the outward normal of a plane is coincides with the principal direction, then this plane is just the principal plane.Suppose vectors s n, coincide with the outward normal line of plane ABC ( Fig. 3.3 ).In the process of deformation the direction of s n is unchanged and only changed its length. If the quantity of changing is s n , then we haves n / s n =s x / s x = s y / s y = s z / s zWhere s x , s y , s z and s x , s y , z are the projection of s n , and s n on axes Ox, Oy, Oz respectively. Considering thatFig. 3.3 Principal strainn(3.25)Then we haves n = n s n (3.26) As we have discussed before, the relative displacement vector corresponding to pure deformation is called the strain vector, then we obtain from equation (3.14)s i= ij s j (3.27) From equations (2.5) and (2.6) we have(ij –ijn ) s j = 0 (3.28) Similarly, we have a cubic algebra equation of n:n 3 – I1′n2 +I2′n – I3′ = 0 (3.29)whereI1′ =I2′ = xy +yz +zx – (xy2 +yz2 +zx2 ) (3.30)I3′==xyz+2xyyzzx –(xyz2+yzx2+zyx2)Where I1′ I2′ and I3′are called the first, second, and third invariant of strain tensor. In terms of the principal strain 1, 2, and3, we haveI1′ =1+2+ 3I2′ =12+23+31 (3.31)I3′ = 123The shear strain for some directions at a point that assume stationary values are called the principal shear strains. The principal shear strain and the corresponding directions can therefore be obtained in exactly the same manner as for stresses. Thus, designating the maximum shear strain by 1, 2, and 3 , we can write1= (2 - 3)2= (1 - 3) (3.32)3= (1 - 2)The octahedral shear strain is= [(x –y)2 +(y –z)2 +(z –x)2 +6(xy2 +yz2 +zx2 )]1/2 (3.33)8or= (I1′ 2 – 3I2′ )1/2 (3.34)83.3. Strain Deviator TensorIn the same manner as for stresses we can obtain the strain deviator tensor and their invariant . As in the case of the stress tensor, the strain tensor can be decomposed into two parts too, a spherical part associated with a change in volume, and a deviatoric part associated with a change in shape distortion. that is ,= e ij +kk ij (3.35)ijwhere e ij is defined here as the strain deviator tensor and 1/3(kk ) is the mean strain or the hydrostatic strain. Thus, the strain deviator tensor e ij becomes(3.36)The invariants of the strain deviator tensor e ij are analogous to those obtained for stress deviator tensor s ij, these deviatoric strain invariants appear in the cubic equation of the determinant equation [e ij- e ij]=0.e3- J1′e2 – J2′e – J3′ = 0 (3.37)whereJ1′ =e ii =0J2′ =e1e2+e2e3+e3e1 (3.38)J3′= e1e2e3orJ1′ = 0J2′ = 1/3 (I1′ – 3I2′ )J3′= 1/27 (2I1′ 3 – 9I1′I2′ +27I3′ ) (3.39) It can be seen that the octahedral shear strain 8is related to the second invariant of the deviator strain tensor J’2, as was the case for stresses:(3.40)Now we introduce two special quantities, which is useful in theory of plasticity, the effective strain(3.41) and shear strain strength (or equivalent shear strain )(3.42) 3.4. Equations of Strain CompatibilityFor static elasticity in the last chapter, it has been pointed out that we must establish the equilibrium equations to ensure that the body is always in a equilibrium state. In the analysis of strain , however, there must be some conditions to be imposed on the strain components so that the deformed body remains continuous. In mathematical review, that the displacement function u, v, and w must be the continuum single-value function in their definite region. After deformation, there are no cracks, no rips, and no folds in whole body. The mathematical restriction on strain components which ensure that this is the case are known as the compatibility equations.To establish these equations, let us first suppose that displacement components do indeed exist. In this case, we have that the strain components2ij = u i,j + u j,I (3.44) It can be shown that the compatibility equations for a simply connected region may be written in the form+ kl , ji – ik , jl – jl ,ik = 0 (3.45)ij , klIn other hand, if we take the second derivative of x with respect to y, and y with respect to x, then after added together we can obtained(3.46) Equation (3.46) is the compatibility equation for two-dimensional problem.Expanding equation (3.45), we get(3.47)These 6 compatibility equations are the necessary and sufficient conditions required to ensure that the strain components give single-valued continuous displacements for a simply connected region. It is clear that the compatibility equations are introduced from the equations of strain-displacement relation. Therefore, if we can find the displacement functions u, v, w and strain components correctly according to strain-displacement relations, then the strain compatibility equations will be satisfied spontaneously.Problems1. Expand , that is write it in conventional notation.2. Given the strain tensorFind : (a) principal strains; (b) principal directions; (c) octahedral shear strain; (d) invariance of strain.Anwser: (a) -2.764 -7.236; (b) inclined to x-axis; (c) (d)3. Prove I1′is a invariant while coordinate system is rot。
考博弹塑性力学,第三章
h/2 h/2
M
x
y
l ( l >>h)
第三章
平面问题的直角坐标解答
本题属于平面应力问题,且为单连体, Φ 若按 Φ 求解, 应满足相容方程及 S = Sσ 上的应力边界条件。 求解步骤: ⑴ 由逆解法得出,可取 Φ = ay ,且满足 4 ∇ Φ=0 ⑵ 求出应力分量 σ x = 6ay, σ y = τ xy = 0 (a)
3Ah 3Ah
o
3Ah
h/2 h/2 l 3Ah (a)
x
y
第三章
平面问题的直角坐标解答
(2)对于坐标轴不同,可以解决不同的问 题。对于图(b)所示的坐标系,可解决矩形截 面梁的偏心受拉问题;对于图(c)所示的坐标 系,则可解决偏心受压问题。
o h 6Ah y l (b) 6Ah y x 6Ah o h l (c) x 6Ah
3
第三章
平面问题的直角坐标解答
⑶ 检验应力边界条件,原则是: a.先校核主要边界(大边界),必须 精确满足应力边界条件。 b.后校核次要边界(小边界),若不 能精确满足应力边界条件,则应用圣维南 原理,用积分的应力边界条件代替。
第三章
平面问题的直角坐标解答
对于主要边界 y = ± h / 2
(σ y ) y=± h/2 = 0, (τ xy ) y =± h / 2 = 0
(a)
( lσ
x
+ mτ xy ) = f x ,
S
( lτ
xy
+ mσ y ) = f y
S
(b )
⑶ 多连体中的位移单值条件。
(c)
第三章
平面问题的直角坐标解答
对于单连体,(c)是自动满足的。只 须满足条件(a)和(b)。 由 Φ 求应力分量的公式:
第三章 弹塑性本构关系
d ij d 0 dσ n 0
p ij
加载准则
意义:只有当应力增量指向加载面的外部时才能产生塑性变形。
3德鲁克塑性公设的评述
德鲁克公设的适用条件:
(1)应力循环中外载所作 的真实功与ij0起点无关;
p ij
ij d ij 0
(2)附加应力功不符合功的 定义,并非真实功
1 屈服曲面的外凸性
0 ( ij ij )dijp | A0 A || d p | cos 0
ij
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向 与塑性应变向量之间所成的夹角不应 该大于90° 稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
0 ij
由得屈服条件流动法则硬化规律判断何时达到屈服屈服后塑性应变增量的方向也即各分量的比值决定给定的应力增量引起的塑性应变增量大小本节内容屈服后塑性应变增量的方向也即各分量的比值1加载曲面后继屈服面由单向拉伸试验知道对理想塑性材料一旦屈服以后其应力保持常值屈服应力卸载后再重新加载时其屈服应力的大小也不改变没有强化现象
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性 位势理论。他假设经过应力空间的任何一点M,必有 一塑性位势等势面存在,其数学表达式称为塑性位势 函数,记为:
g I1, J 2 , J3 , H 0
g ij , H 0
或
式中, H 为硬化参数。 塑性应变增量可以用塑性位势函数对应力微分的表达 式来表示,即: g p
残余应力增量与塑性 应变增量存在关系:
p p d ij D d ij
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
弹塑性力学第3章
设一点应力:
四面体在所有力的作用下保持力的平衡
px = x l x yx l y + zx lz
py = xy l x y l y + zy lz pz = xz l x yz l y + z lz pi ij l j
x0 y0 z 0
px A= x l x A yx l y A+ zx lz A
sx x m
s1 1 m
sy y m
s2 2 m
sz z m
s3 3 m
偏应力的主轴方向与应力张量的主轴方向一致
J1 sx s y sz 0
2 2 J 2 s x s y s y sz sz s x s xy s2 s yz zx
对应的三个主应力的方向称之为主轴. 求解一点的主应力及主应力方向的基本公式
已知一点的应力为:
x xy xz ij yx y yz zx zy z
3.2.1 一点的应力状态
x xy xz ij yx y yz zy z zx
l x x l x xy l y xz l z l y yx l x y l y yz l z l z zx l x zy l y z l z
分别将 1 , 2 , 3 代入:
1 l x x l x xy l y 13 l z 1 l y yx l x y l y yz l z 1 l z zx l x zy l y z l z
弹塑性力学第三章
(1)11=k(x12+x22) x3 , 22=kx22x3 , 33=0
12=2k x1 x2 x3, 23= 13=0
2020/1/23
32
作业:
(2) 11=k(x12+x22) , 22=kx22 , 33=0, 12=2kx1x2, 23= 13=0
2x32222x22332x222x33
22
u2 x2
33
u3 x3
23
1(u3 2 x2
u2 x3
)
2020/1/23
24
§3-5 变形协调条件(相容条件)
2x12332x32112x233x11
33
u3 x3
2020/1/23
17
§3-3 应变张量和转动张量的坐 标变换式
在 xk 坐标系中,已知变形体内任一点应ij和 ’ij 均可以通
过二阶张量的坐标转换式求出它们。
即:
' ij
Qi'kQ
j'l
kl
i'j Qi'kQ j'l kl
2020/1/23
4
§3-1 位移和(工程)应变
工程应变共有六个分量:
三个正应变,正应变以伸长为正,
三个剪应变,剪应变以使直角变小为正。
x3
dx1
dx2
x3
dx3 P
x1
2020/1/23
x2
22dx2
P x1
x2
23
5
§3-2 应变张量和转动张量
应变张量和转动张量是描述一点变形 和刚体转动的两个非常重要的物理量,本 节将讨论一下它们与位移之间关系,在讨 论之前,先介绍一下相对位移矢量和张量.
弹塑性力学第三章 应力与应变讲解
式中:n和s分别为微分面的法线和切线方向的单位 矢量。全应力和应力分量之间有
n pn n
n pn s
pn2
2 n
(3.3)
研究具体问题时,总是在一个可以选定坐标系里进 行。对给定的直角坐标系,全应力还可以沿坐标系 方向进行分解。
p 的单位法向量,它与三个坐标轴之间的夹角余弦为 l1、l2、l3
则该主平面上的应力矢量 n 可表示为
pn n (3.14)
或
px py
l1 l2
(3.15)
pz
l3
式中: 表示主应力
将应力分量表达式(3.7)代入上式,经移项并整理后得
(
x
)l1
设给定的坐标系Oxyz下,某点M的应力张量为
ij yxx
xy y
xz yz
zx zy z
现让该坐标系原点不动,坐标轴任意旋转一个角度而得 到新坐标系Ox’y’z’,新旧坐标关系如下表:
x
y
z
X’ l11 cos(x ', x) l12 cos(x ', y) l13 cos(x ', z)
要使主方向存在,也即要使方程组(3.17)或(3 .18)有 非零解,则其系数行列式必须为零。
x yx zx
xy y
zy
xz yz 0 z
(3.19a)
方程组(3.19)也可以写成
det ij ij 0
(3.19b)
式(3.19)展开后,得
对面)上有9个应力分量。这9个应力分量的整
弹性与塑性力学基础-第三章平衡微分方程及应变协调方程
0 � zdydxd x K � ydxd xz � �
x z � � � xd zd xy � �
程方分微衡平的下系标坐角直维三 4-3§
� � � � y� x� � xy � x x � � � � � xd zd � y d � � z d y d � z d y d x d � � x �� xy � � � � � � �0=XF�程方衡平的矩力出列 �
� yx � � � �
程方分微衡平的下系标坐角直维二 2-3§
态状力应面平 1.2.3
程方调协变应及程方分微衡平 章三第
础 基 学 力 性塑与性弹
�程 方 分 微 的 似 相 个 一 得 可 � 0 � y F � 程 方 衡 平 由 � 样 同
0 � xK �
y�
xy
��
�
x
x�
��
� � yd x � � 0 � 1 � ydxd x K � 1 � xd xy � � 1 � xd � xy � � �
础 基 学 力 性塑与性弹
心中的积体的它在用作�布分匀均是为认以可力应的受所上面各 � 数 函 的 y 和 x标 坐 置 位 是 量 分 力 应 �
图力受板薄 析分力受元微
.度长位单个一为取寸尺的向方z�yd和xd为别分寸尺向方y和x � 体面六行平正的小微个一出取板薄的力受 � 态状力应面平 1.2.3
��
)式 形 化 简 中 题 问 面 平 程 方 叶 维 纳 或 ( 程 方 分 微 衡 平 的 中 题 问 面 平 � 式系关的间之量分力体与量分力应题问面平 � 态状力应面平 1.2.3
程方分微衡平的下系标坐角直维二 2-3§
弹塑性力学第三章
(9)
将(9)式代回(2)式第二项得八面体剪应变 2 γ xz = γ 8 = ± (ε1 − ε 2 ) 2 + (ε 2 − ε3 ) 2 + (ε3 − ε1 ) 2 3
应变张量
确定物体上一点有应变状态的九个应变分量构成应变张量。 即
εx 1 εij = γ yx 2 1 γzx 2
γ xz 2 =0 2 2 )m + n = 0 (εij − εδij )n j = 0, 且ni ni = 1 2 2 γ zy γ zx l + m + n(ε z − ε) = 0 2 2 ⇒ εij − εδij = 0
γ xy
rlε x
(1)
若取x轴与三个主轴1,2,3成等角,这样的方向共有八个, 以此八个方向为法线的平面在该点组成八面体。 1 八面体上有 l1 = m1 = n1 =
3
1 ε x = ε8 = (ε1 + ε 2 + ε3 ) 3 2 这时γ xy = (ε1l2 + ε 2 m2 + ε 3 n2 ) 3 (2) 2 同理γ xz = (ε1l3 + ε 2 m3 + ε 3n3 ) 3 其中 ε8 为八面体正应变,即在矢量x方向上单 位长度的长度变化。 而 γ 8为八面体剪应变,即矢量x和八面体平面 之间原来所夹直角的变化。当以x轴为轴旋转xyz 坐标系时,yz轴即在八面体上变动, γ xy , γ xz也将随 之变动,当其中一个为零时,另一个就是要求的 八面体剪应变。
几何方程
刚体位移
六个应变为零时的位移为刚体位移,即:
ε x = ε y = ε z = γ xy = γ yz = γ zx = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
y
b
x
图 3-1b
§ 3-1
多项式解答
♦ 同理,应力函数
cy 2
c 0
O
能解决矩形板在 x 方向受 均布拉力(设 c> 0 )或均 布压力 (设 c < 0 ) 的问 题,图3-1c 。
2
2 2Φ 12kxy Φ x 2 3 y 2 0 y h x 2Φ 6ky 2 3k 3 xy xy h 2h
O l y
h x
(2)边界条件:
上下边界
y y h 2
0
2
xy y h 2
h 6k 3k 2 0 3 h 2h
y
图 3-1 a
§ 3-1
多项式解答
可见,应力函数 ax 能
2
2a
O
解决矩形板在y方向受均布 拉力(设a > 0)或均布压 力(设a < 0)的问题。
2a
y 图 3-1a
x
§ 3-1
多项式解答
(2) bxy
b 0
b b
O
x 0, y 0, xy yx b
12 M x 3 y, y 0, xy yx 0 代入式(a),得: h
M x y, y 0, xy yx 0 I 结果与材料力学中完全相同。 对于长度l 远大于深度h 的梁,上面答案 是有实用价值的;对于长度l与深度h 同等大 小的所谓深梁,这个解答是不准确的。
右边界(次要边界) x l :
h 2 h 2
x dy
h 2 h 2
12kly dy 0 3 h
2
k O
l
h
kl k x
y
h 3 2 h 2
h 2 h 2
x ydy
h 2 h 2
12kly 12kly dy 3 3h 3 h
kl
2Φ 12kxy x 2 3 y h
第三章 平面问题的直角坐标解答
§3-1 多项式解答 §3-2 位移分量的求出 §3-3 简支梁受均布荷载 §3-4 楔形体受重力和液体压力 §3-5 级数式解答 §3-6 简支梁受任意横向荷载
§ 3-1 多项式解答
逆解法在求出几个简单平面问题的多项式解答。假 定体力可以不计,也就是 fx=fy=0。 一、一次式
§ 3-1
多项式解答
二、二次式
ax 2 bxy cy 2
相容方程(2-27)总能满足。
2a
O
(1) ax 2
a 0
y 2a, xy yx 0
2a
x 0,
x
左右两边: f x 0, f y 0 下上两边: f x 0, f y 2a
2
k O l y
kl h k x
结论:可解决悬臂梁左端受集中力问题。
k
矩形梁的纯弯曲
M
h
M
2 2
x 图
x
y
y
l
h
x
1
h
Φ ay
3
图3-3
如图,设有矩形截面的长梁(l 远大于h),取 单位厚度的梁来考察。并命每单位厚度上的力 偶矩为M 。 这里M 的量纲是[力][长度]/[长 度],即[力]。
df 1 ( y ) df 2 ( x ) M x dy dx EI
df1 ( y ) , dy df 2 ( x) M x dx EI
f1 ( y ) y u 0 M f2 ( x) x 2 x v0 2 EI
§3-2 位移分量的求出
§ 3-1
多项式解答
小结 逆解法的步骤: 先设定各种形式的、满足相容方程的应力函数,求 出应力分量,然后根据应力边界条件来考察,在各 种形状的弹性体上,这些应力分量对应于什么样的 面力,从而得知所设定的应力函数可以解决什么问 题。
§3-2 位移分量的求出
平面应力状态的纯弯曲梁
M M x y, y y, xy 0 EI EI
y0
u0 0 ,
v0 0 ,
Ml l v0 0 2 EI
2
§3-2 位移分量的求出
M l u x y EI 2 M M 2 v y (l x) x 2 EI 2 EI
梁的挠度方程是
3 3
v y 0
§ 3-1
多项式解答
a 3 b 2 例题1 试检验函数 y y 6 2
能否作为
应力函数?若能,求出应力分量(不计体 力),并画出如图 ( a ) 所示杆件的面力,指 出该应力函数所能解的问题。
O
x
l
y l
h
1
2
2
§ 3-1
多项式解答
解:满足双调和方程,能作为应力函数
y xy 0, x ay b
M
h
M
2 2
x 图
x
y
y
l
h
x
1
h
Φ ay
3
图3-3
在左端或右端,水平面力应当合成为力偶,而 力偶的矩为M ,这就要求:
h 2 h 2
x dy 0, x ydy M
h 2 h 2
h 2 h 2 h 2 h 2
x dy 0 x ydy M
面力如图(b)所示。
b
ah 2
e
ah b 2
N
ah h 2 1 3 M m wz ah 2 6 12 FN N A bh
M ha e FN 12b
2
能解决偏心距为e的轴向拉伸问题。
例:图示矩形板,长为 l ,高为 h ,体力不计, 厚度取1个单位。试证以下函数是应力函数,并 指出能解决什么问题。式中k为常数。
取单位宽度的梁来考察,命每单位宽度上力偶 的矩为 M ,则
h 2 h 2 h 2 h 2Βιβλιοθήκη x dy 0,
x ydy M
h 2 h 2 2
6a ydy 0,
h 2 h 2
6a y dy M
12 M M x 3 y y, y 0, xy yx 0 h I
u M v M u v y, y, 0 EI x EI y x y
M u EI xy f1 ( y ) M 2 v y f 2 ( x) 2 EI
(a)
(b)
(c )
§3-2 位移分量的求出
df 2 ( x ) M df1 ( y ) x 0 dx EI dy
2Φ y 2 0 x
h 2 h 2
xy dy
6ky 3k 3 dy 2h h
h 2
2ky 3 3ky k 3 h h 2 h
2
2Φ xy xy 6ky 2 3k 3 h 2h
q q q 3q , D , E . A 3 , C 5h 10h 4 4h
q 3 2 x 3 h 6x2 4 y 2 y h 5 q 3 y 4 y3 y 1 3 2 h h 3 q 4 y2 xy 1 2 x 2 h h
2kxy 3kxy Φ 3 2h h
解: (1)代入相容方程,可得
4 4 4
3
O l y
h x
Φ Φ Φ 2 2 2 4 0 满 足 4 x x y y
(2) 应力分量
Φ 12kxy x 2 3 y h
2 2 2 Φ 6 ky 3k Φ 3 y 2 0 xy xy h 2h x
§3-2 位移分量的求出
代入式(d),得出该悬臂梁的位移分量:
M l x y u EI M 2 M 2 l x y v 2 EI 2 EI
为:
§ 3-1
多项式解答
思考题 如下图所示悬臂梁,承受均布荷载q的 作用。试检验函数
Ay 5 Bx 2 y 2 C y 3 D x 2 Ex 2 y
能否作为应力函数?并求出各系数及应力分量。
y q
h
O l
x
1
§ 3-1
多项式解答
解:
当 B 5 A 时可作为应力函数。
2M a 3 h
b
§ 3-1
多项式解答
♦ 应当指出,组成梁端力偶的面力必须按直线分 布,解答(3-1)才是完全正确的。如果梁端的面力 按其他方式分布,解答(3-1)是有误差的。但是, 按照圣维南原理,只在梁的两端附近有显著的误 差;在离开梁段较远之处,误差是可以不计的。 ♦ 由此可见,对于长度远大于深度的梁,解答(31 )是有实用价值的;对于长度与深度同等大小的 所谓深梁,这个解答是没有什么实用意义的。
§3-2 位移分量的求出
♦ 梁的各纵向纤维的曲率是
2v M 2 x EI 1
(3 2)
这是材料力学里求梁的挠度所用的基本公式。
§3-2 位移分量的求出
例1
M
O
M
x
A
l
y
图3 3 a
(u ) x 0 0 ,
y0
(v ) x 0 0 ,
y0