2018级硕士研究生矩阵分析试题-A卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、 证明:线性变换在不同的基下所对应的矩阵相似。
三、假设V = R[x]2 表示实数域上次数不超过 2 的多项式和零多项式构成的线性空间。在V 中
∫ 定义内积:
( f (x), g(x)) =
1
f (x)g(x)dx 。
−1
(1). 求基 x2 , x,1 的度量矩阵;
(2). 将基 x2 , x,1 转化为标准正交基;
ix1 x3
+
2 x2
x2
3;
1 2
x3
x3
(1). 写出 Hermite 二次型对应的矩阵; (2). 求酉矩阵 U ,使得二次型变为标准二次型。
2
六、已知
A
=
0
0
i
0
,求
A
的奇异值分解。
0
2 1 0
七、 已知=A
1
−1
0
,求
A、 ∞
A、 1
A 、A 。
2
F
0 0 1
2018工程数学(矩阵分析)试题-A卷
一.设 R3 中向量α = ( x1, x2 , x3 ) ,对 ∀x ∈ R3 定义变换 f : f ( x) =(−2 x1 + x2 + x3 , x1 − 2 x2 + x3 , x1 + x2 − 2 x3 ) (1). 证明: f 是线性变换; (2). 求 f= 在基 e1 (1= , 0, 0);e2 (= 0,1, 0);e3 (0, 0,1) ,下的矩阵 A ; (3). 求 f 的值域 R( f ) 及核子空间 N ( f ) 的基及它们的维数。
(3). 求η = x2 在子空间W = L(1, x) 中的正投影η0 ,使得 η −η0=
min η − ξ
ξ ∈W

3 0 1
四、 已 知 A=
−1
2
1
,
求 A 的 Jordan 标准形 J ,并求相似变换矩阵 P 使得 A = PJP −1 。
1 0 3
五、
f
=
1 2
x1 x1
+
3 2
相关文档
最新文档