5.简单回归分析

合集下载

回归分析方法

回归分析方法

回归分析方法
回归分析是统计学中一种重要的数据分析方法,它用于研究自
变量和因变量之间的关系。

回归分析方法可以帮助我们预测和解释
变量之间的关系,从而更好地理解数据的特征和趋势。

在本文中,
我们将介绍回归分析的基本概念、常见的回归模型以及如何进行回
归分析。

首先,回归分析的基本概念包括自变量和因变量。

自变量是研
究者可以控制或观察到的变量,而因变量是研究者希望预测或解释
的变量。

回归分析旨在通过自变量的变化来预测或解释因变量的变化,从而揭示它们之间的关系。

常见的回归模型包括线性回归、多元线性回归、逻辑回归等。

线性回归是最简单的回归模型之一,它假设自变量和因变量之间的
关系是线性的。

多元线性回归则允许多个自变量对因变量产生影响,逻辑回归则用于因变量是二元变量的情况,例如成功与失败、生存
与死亡等。

进行回归分析时,我们需要收集数据、建立模型、进行拟合和
检验模型的拟合优度。

在收集数据时,我们需要确保数据的质量和
完整性,避免因为数据缺失或异常值而影响分析结果。

建立模型时,我们需要选择合适的自变量和因变量,并根据实际情况选择合适的
回归模型。

进行拟合和检验模型的拟合优度时,我们需要根据实际
情况选择合适的统计指标和方法,例如残差分析、R方值等。

总之,回归分析方法是一种重要的数据分析方法,它可以帮助
我们预测和解释变量之间的关系。

通过本文的介绍,相信读者对回
归分析有了更深入的了解,希望能够在实际工作中灵活运用回归分
析方法,为决策提供更可靠的依据。

简单回归分析与相关分析.

简单回归分析与相关分析.

相關分析的意義
相關分析(correlation analysis)是分析變數間關係的方向與 程度大小的統計方法。
3
圖1 變數間的線性關係
Y
* * * * * * * * * * * * * * * * * * * *
X
4
圖2 變數間的非線性關係
Y
*
* * * * * * * * * * * * *
2
40
圖31 可解釋之差異與不可解釋之差異
16000
Y
14000
Y Y
Y 12,300
12000
Y Y
Y Y
10000
8000 0 200 400 600 800 1000 1200 1400
X
41
圖32
Y
R2=1
Y i Yi
X
42
圖33
R2=0.8
Y

Y
〗 〗
〗 〗 〗 〗
2 2 2 2 2
ˆ 均為最小變異線性不偏估計式(best linear unbiased ˆ、 ˆ 是所有線性不偏估計式中變異 estimator BLUE),亦即 ˆ 、
數最小的估計式,我們簡稱為BLUE。
25
ˆ 的抽樣分配 圖16
ˆ) f (
ˆ) E (
ˆ
26
X Y i i
ˆ 分別為 、 的 ˆ 為 E (Y ) 的估計式, ˆ 、 式中, Y i i 估計式。
觀察值與估計值之差的平方和
ˆX ) 2 ˆ SSE (Yi i
i 1 n
標準方程式
ˆX ˆ Y n
19
ˆX2 ˆ X XY

数据分析中的回归分析技巧

数据分析中的回归分析技巧

数据分析中的回归分析技巧在数据分析领域,回归分析是一种常用的统计方法,用于研究自变量与因变量之间的关系。

通过回归分析,我们可以预测因变量的值,并了解自变量对因变量的影响程度。

本文将介绍一些回归分析的技巧和应用案例。

1. 简单线性回归分析简单线性回归分析是回归分析的最基本形式,用于研究一个自变量与一个因变量之间的关系。

在简单线性回归中,我们假设自变量和因变量之间存在线性关系,通过拟合一条直线来描述这种关系。

例如,我们可以使用简单线性回归来研究广告投入与销售额之间的关系。

通过分析历史数据,我们可以得到一个回归方程,从而预测未来的销售额。

2. 多元线性回归分析多元线性回归分析是在简单线性回归的基础上发展起来的一种方法,用于研究多个自变量与一个因变量之间的关系。

在多元线性回归中,我们可以考虑更多的因素对因变量的影响。

例如,我们可以使用多元线性回归来研究房屋价格与房屋面积、地理位置和房龄等因素之间的关系。

通过分析这些因素,我们可以建立一个回归模型,从而预测房屋价格。

3. 逐步回归分析逐步回归分析是一种逐步选择自变量的方法,用于确定最佳的回归模型。

在逐步回归中,我们从一个包含所有可能的自变量的模型开始,然后逐步剔除对因变量的解释程度较低的自变量,直到得到一个最佳的回归模型。

逐步回归分析可以帮助我们减少模型的复杂性,并提高预测的准确性。

4. 非线性回归分析在某些情况下,自变量和因变量之间的关系可能不是线性的,而是呈现出曲线或其他形式。

这时,我们可以使用非线性回归分析来研究这种关系。

非线性回归可以通过拟合曲线或其他非线性函数来描述自变量和因变量之间的关系。

例如,我们可以使用非线性回归来研究温度与化学反应速率之间的关系。

通过分析实验数据,我们可以找到一个最佳的非线性模型,从而预测不同温度下的反应速率。

5. 回归诊断在进行回归分析时,我们需要对回归模型进行诊断,以评估模型的拟合程度和预测的准确性。

回归诊断可以帮助我们检查模型的假设是否成立,以及是否存在异常值或离群点。

回归分析方法总结全面

回归分析方法总结全面

回归分析方法总结全面回归分析是一种常用的统计分析方法,用于建立一个或多个自变量与因变量之间的关系模型,并进行预测和解释。

在许多研究领域和实际应用中,回归分析被广泛使用。

下面是对回归分析方法的全面总结。

1.简单线性回归分析:简单线性回归分析是最基本的回归分析方法之一,用于建立一个自变量和一个因变量之间的线性关系模型。

它的方程为Y=a+bX,其中Y是因变量,X是自变量,a是截距,b是斜率。

通过最小二乘法估计参数a和b,可以用于预测因变量的值。

2. 多元线性回归分析:多元线性回归分析是在简单线性回归的基础上扩展的方法,用于建立多个自变量和一个因变量之间的线性关系模型。

它的方程为Y = a + b1X1 + b2X2 + ... + bnXn,其中n是自变量的个数。

通过最小二乘法估计参数a和bi,可以用于预测因变量的值。

3.对数线性回归分析:对数线性回归分析是在简单线性回归或多元线性回归的基础上,将自变量或因变量取对数后建立的模型。

这种方法适用于因变量和自变量之间呈现指数关系的情况。

对数线性回归分析可以通过最小二乘法进行参数估计,并用于预测因变量的对数。

4.多项式回归分析:多项式回归分析是在多元线性回归的基础上,将自变量进行多项式变换后建立的模型。

它可以用于捕捉自变量和因变量之间的非线性关系。

多项式回归分析可以通过最小二乘法估计参数,并进行预测。

5.非线性回归分析:非线性回归分析是一种更一般的回归分析方法,用于建立自变量和因变量之间的非线性关系模型。

这种方法可以适用于任意形式的非线性关系。

非线性回归分析可以通过最小二乘法或其他拟合方法进行参数估计,用于预测因变量的值。

6.逐步回归分析:逐步回归分析是一种变量选择方法,用于确定最重要的自变量对因变量的解释程度。

它可以帮助选择最佳的自变量组合,建立最合适的回归模型。

逐步回归分析可以根据其中一种准则(如逐步回归F检验、最大似然比等)逐步添加或删除自变量,直到最佳模型被找到为止。

专题05 回归分析(解析版)

专题05 回归分析(解析版)

专题5 回归分析例1.已知回归方程y=5x+1,则该方程在样本(1,4)处的残差为()A.﹣2B.1C.2D.5【解析】解:当x=1时,y=5x+1=6,∴方程在样本(1,4)处的残差是4﹣6=﹣2.故选:A.例2.研究变量x,y得到一组样本数据,进行回归分析,有以下结论①残差平方和越小的模型,拟合的效果越好;②用相关指数R2来刻画回归效果,R2越小说明拟合效果越好;③在回归直线方程y=−0.2x+0.8中,当解释变量x每增加1个单位时,预报变量y平均减少0.2个单位;④若变量y和x之间的相关系数为r=﹣0.9462,则变量y和x之间的负相关很强.以上正确说法的是①③④.【解析】解:①可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故①正确;②用相关指数R2来刻画回归效果,R2越大说明拟合效果越好,故②错误;③在回归直线方程y=−0.2x+0.8中中,当解释变量x每增加1个单位时,预报变量y平均减少0.2个单位,故③正确;④若变量y和x之间的相关系数为r=﹣0.9462,r的绝对值趋向于1,则变量y和x之间的负相关很强,故④正确.故答案为:①③④.例3.下列命题中,正确的命题有②③.①回归直线y=b x+a恒过样本点中心(x,y),且至少过一个样本点;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适;④两个模型中残差平方和越大的模型的拟合效果越好.【解析】解:①回归直线y=b x+a恒过样本点中心(x,y),不一定过样本点,故①正确;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好,正确;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适,正确;④两个模型中残差平方和越大的模型的拟合效果越差.故④错误,故正确的是②③,故答案为:②③例4.下列命题:①相关指数R2越小,则残差平方和越大,模型的拟合效果越好.②对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越大.③残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越高.④两个随机变量相关性越强,则相关系数的绝对值越接近0.其中错误命题的个数为4.【解析】解:对于①,相关指数R2越小,则残差平方和越大,此时模型的拟合效果越差,所以①错误;对于②,对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越小,所以②错误;对于③,残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越低,所以③错误;对于④,两个随机变量相关性越强,则相关系数的绝对值越接近1,所以④错误.综上知,错误命题的序号是①②③④,共4个.故答案为:4.例5.垃圾是人类日常生活和生产中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,所以需要无害化、减量化处理.某市为调査产生的垃圾数量,采用简单随机抽样的方法抽取20个县城进行了分析,得到样本数据(x i,y i)(i=1,2,……,20),其中x i和y i分别表示第i个县城的人口(单位:万人)和该县年垃圾产生总量(单位:吨),并计算得∑20i=1x i=80,∑20i=1y i=4000,∑20i=1(x i−x)2=80,∑20i=1(y i−y)2=8000,∑20i=1(x i−x)(y i−y)=7000.(1)请用相关系数说明该组数据中y与x之间的关系可用线性回归模型进行拟合;(2)求y关于x的线性回归方程;(3)某科研机构研发了两款垃圾处理机器,如表是以往两款垃圾处理机器的使用年限(整年)统计表:1年2年3年4年5年使用年限台数款式甲款520151050乙款152010550某环保机构若考虑购买其中一款垃圾处理器,以使用年限的频率估计概率.根据以往经验估计,该机构选择购买哪一款垃圾处理机器,才能使用更长久?参考公式:相关系数r=∑n i=1i−x)(y i−y)√∑i=1(x i−x)∑i=1(y i−y)2.对于一组具有线性相关关系的数据(x i,y i)(i=1,2,……,n),其回归直线y=b x+a的斜率和截距的最小二乘估计分别为:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2,a=y−b x.【解析】解:(1)由题意知相关系数r=∑20i=1i−x)(y i−y)√∑i=1(x i−x)2∑i=1(y i−y)2=√80×8000=78=0.875,因为y与x的相关系数接近1,所以y与x之间具有较强的线性相关关系,可用线性回归模型进行拟合.(2)由题意可得,b=∑20i=1(x i−x)(y i−y)∑20i=1(x i−x)2=70080=8.75,a=y−b x=400020−8.75×8020=200−8.75×4=165,所以y=8.75x+165.(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X(单位:万元)的分布列为X﹣50050100P0.10.40.30.2E(X)=﹣50×0.1+0×0.4+50×0.3+100×0.2=30(万元)购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y(单位:万元)的分布列为:Y﹣302070120P0.30.40.20.1E(Y)=﹣30×0.3+20×0.4+70×0.2+120×0.1=25(万元)因为E(X)>E(Y),所以该县城选择购买一台甲款垃圾处理机器更划算.例6.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.据统计该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,请计算相关系数r(精确到0.01),并以此判定是否可用线性回归模型拟合y 与x的关系?若是请求出回归直线方程,若不是请说明理由;(2)过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:周光照量X(单位:小时)30<X<5050≤X≤70n≥2光照控制仪最多可运行台数542若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了5台光照控制仪,求商家在过去50周每周利润的平均值.附:对于一组数据(x1,y1),(x2,y2),……,(x n,y n),其相关系数公式r=∑n i=1i−x)(y i−y)√∑i=1i−x)2∑i=1i−y)2,回归直线y=b x+a的斜率和截距的最小二乘估计分别为:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nxy∑n i=1(x i−x)2,a=y−b x,参考数据√0.3≈0.55,√0.9≈0.95.【解析】解:(1)由已知数据可得x=2+4+5+6+85=5,y=3+4+4+4+55=4,因为∑5i=1(x i−x)(y i−y)=(−3)×(−1)+0+0+0+3×1=6,√∑5i=1(x i−x)2=√(−3)2+(−1)2+02+12+32=2√5,√∑5i=1(y i−y)2=√(−1)2+02+02+02+12=√2.所以相关系数r=∑n i=1i−x)(y i−y)√∑i=1i −x)2√∑i=1i−y)2=2√5⋅√2=√910≈0.95,因为r>0.75,所以可用线性回归模型拟合y与x的关系,因为b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=620=0.3,a=y−b x=2.5,所以回归直线方程y=0.3x+2.5.(2)记商家周总利润为Y元,由条件可得在过去50周里:X>70时,共有10周,只有2台光照控制仪运行,周总利润Y=2×3000﹣3×1000=3000元,当50≤X≤70时,共有35周,有4台光照控制仪运行,周总利润Y=4×3000﹣1×1000=11000元,当X<50时,共有5周,5台光照控制仪都运行,周总利润Y=5×3000=15000元,所以过去50周每周利润的平均值Y=3000×10+11000×35+15000×550=9800元,所以商家在过去50周每周利润的平均值为9800元.例7.湖南省从2021年开始将全面推行“3+1+2”的新高考模式,新高考对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.某校的一次年级统考中,政治、生物两选考科目的原始分分布如表:等级A B C D E比例约15%约35%约35%约13%约2%政治学科各等级对应的原始分区间[81,98][72,80][66,71][63,65][60,62]生物学科各等级对应的原始分区间[90,100][77,89][69,76][66,68][63,65]现从政治、生物两学科中分别随机抽取了20个原始分成绩数据,作出茎叶图:(1)根据茎叶图,分别求出政治成绩的中位数和生物成绩的众数;(2)该校的甲同学选考政治学科,其原始分为82分,乙同学选考生物学科,其原始分为91分,根据赋分转换公式,分别求出这两位同学的转化分;(3)根据生物成绩在等级B的6个原始分和对应的6个转化分,得到样本数据(Y i,T i),请计算生物原始分Y i与生物转换分T i之间的相关系数,并根据这两个变量的相关系数谈谈你对新高考这种“等级转换赋分法”的看法.附1:等级转换的等级人数占比与各等级的转换分赋分区间等级A B C D E原始分从高到低排序的等级人数占比约15% 约35% 约35% 约13% 约2%转换分T 的赋分区间[86,100] [71,85][56,70] [41,55] [30,40]附2:计算转换分T 的等比例转换赋分公式:Y 2−Y Y−Y 1=T 2−T T−T 1.(其中:Y 1,Y 2别表示原始分Y 对应等级的原始分区间下限和上限;T 1,T 2分别表示原始分对应等级的转换分赋分区间下限和上限.T 的计算结果按四舍五入取整).附3:∑ 6i=1(Y i −Y )(T i −T )=74,√∑ 6i=1(Yi −Y)2∑ 6i=1(T i −T)2=√5494≈74.12,r =∑n i=1i −Y)(T i −T)√∑i=1i −Y)2∑i=1i −T)2.【解析】解:(1)根据茎叶图知,政治成绩的中位数为72,生物成绩的众数为73; (2)甲同学选考政治学科的等级为A ,由转换赋分公式:98−8282−81=100−T T−86,解得T =87;乙同学选考生物学科的等级为A ,由赋分转换公式:100−9191−90=100−T T−86,解得T =87;所以甲、乙两位同学的转换分都是87分. (3)由题意知,r =∑n i=1i −Y)(T i −T)√∑ i=1(Y i −Y)2∑ i=1(T i −T)2=7474.12≈0.998, 说法1:等级转换赋分公平,因为相关系数十分接近1,接近函数关系,因此高考这种“等级转换赋分”具有公平性与合理性.说法2:等级转换赋分法不公平,在同一等级内,原始分与转化分是确定的函数关系,理论上原始分与转化分的相关系数为1,在实际赋分过程中由于数据的四舍五入,使得实际的转化分与应得的转化分有一定的误差,极小部分同学赋分后会出现偏高或偏低的现象. (只要说法有道理,都可以得分).例8.某市房管局为了了解该市市民2018年1月至2019年1月期间买二手房情况,首先随机抽样其中200名购房者,并对其购房面积m (单位:平方米,60≤m ≤130)进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年1月至2019年1月期间当月在售二手房均价y (单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1﹣13分别对应2018年1月至2019年1月).(Ⅰ)试估计该市市民的购房面积的中位数m0;(Ⅱ)现采用分层抽样的方法从购房面积位于[110,130]的40位市民中随机抽取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在[120,130]的概率;(Ⅲ)根据散点图选择y=a+b√x和y=c+d lnx两个模型进行拟合,经过数据处理得到两个回归方程,分别为y=0.9369+0.0285√x和y=0.9554+0.0306lnx,并得到一些统计量的值如表所示:y=0.9369+0.0285√x y=0.9554+0.0306lnx ∑13i=1(y i−y i)20.0005910.000164∑13i=1(y i−y)20.006050请利用相关指数R2判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出2019年12月份的二手房购房均价(精确到0.001).【参考数据】ln2≈0.69,ln3≈1.10,ln23≈3.14,ln25≈3.22,√2≈141,√3≈1.73,√23≈4.80.【参考公式】R2=1−∑ni=1(y i−y i)2∑n i=1(y i−y)2.【解析】解:(I)由频率分布直方图,可得,前三组频率和为0.05+0.1+0.2=0.35,前四组频率和为0.05+0.1+0.2+025=0.6,故中位数出现在第四组,且m0=90+10×0.150.25=96.(Ⅱ)设从位于[110,120)的市民中抽取x人,从位于[120,130]的市民中抽取y人,由分层抽样可知:440=x30=y10,则x=3,y=1,在抽取的4人中,记3名位于[11,120)的市民为A1,A2,A3,位于[120,130]的市民为B则所有抽样情况为:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B)共6种.而其中恰有一人在位于购房面积[120,130]的情况共有3种,故所求概率P=36=12,(III)设模型y=0.9369+0.0285√x和y=0.955+0.0306lnx的相关指数分别为R12,R22,则R12=1−0.0005910.006050,R22=1−0.0001640.006050,显然R12<R22,故模型y=0.9554+0.0306lnx的拟合效果更好.由2019年12月份对应的代码为24,则y=0.9554+0.0306ln24=0.9554+0.0306(3ln2+ln3)≈1.052万元/平方米.例9.某汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x(亿元)与科技改造直接收益y(亿元)的数据统计如表:x2346810132122232425y1322314250565868.56867.56666当0<x≤16时,建立了y与x的两个回归模型:模型①:y=4.1x+11.8;模型②:y=21.3√x−14.4;当x>16时,确定y与x满足的线性回归方程为:y=−0.7x+a.(Ⅰ)根据下列表格中的数据,比较当0<x≤16时模型①、②的相关指数R2,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为16亿元时的直接收益.回归模型模型①模型②回归方程y=4.1x+11.8y=21.3√x−14.4∑7i=1(y i−y i)2182.479.2(附:刻画回归效果的相关指数R2=1−∑n i=1(y i−y i)2∑n i=1(y i−y)2.)(Ⅱ)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入16元与20亿元时公司实际收益的大小;(附:用最小二乘法求线性回归方程y=b x+a的系数公式b=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2;a=y−b x)(Ⅲ)科技改造后,“东方红”款汽车发动机的热效率X大幅提高,X服从正态分布N(0.52,0.012),公司对科技改造团队的奖励方案如下:若发动机的热效率不超过50%但不超过53%,不予奖励;若发动机的热效率超过50%但不超过53%,每台发动机奖励2万元;若发动机的热效率超过53%,每台发动机奖励4万元.求每台发动机获得奖励的数学期望.(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6827,P(μ﹣2σ<ξ<μ+2σ)=0.9545.)【解析】解:(Ⅰ)由表格中的数据,有182.4>79.2,即182.4∑7i=1(y i−y)2>79.2∑7i=1(y i−y)2,∴模型①的R2小于模型②的R2,说明模型②的刻画效果更好.∴当x=16亿元时,科技改造直接收益的预测值为y=21.3×√16−14.4=70.8(亿元);(Ⅱ)由已知可得,x−20=0.5+2+3.5+4+55=3,则x=23,y−60=8.5+8+7.5+6+65=7.2,则y=67.2,∴a=y−0.7x=67.2+0.7×23=83.3,∴当x>16亿元时,y与x满足线性回归方程y=−0.7x+83.3,当x=20亿元时,科技改造直接收益的预测值为y=−0.7×20+83.3=69.3.∴当x=20亿元时,实际收益的预测值为69.3+10=79.3亿元>70.8亿元.∴科技改造投入20亿元时,公司的实际收益更大;(Ⅲ)∵P(0.52﹣0.02<X<0.52+0.02)=0.9545,∴P(X>0.50)=1+0.95452=0.97725,P(X≤0.50)=1−0.95452=0.02275,∵P(0.52﹣0.01<X<0.52+0.01)=0.6827,∴P(X>0.53)=1−0.68272=0.15865,∴P(0.50<X≤0.53)=0.97725﹣0.15865=0.8186.设每台发动机获得的奖励为Y(万元),则Y的分布列为:Y024P0.022750.81860.15865∴每台发动机获得的奖励的数学期望为:E(Y)=0×0.02275+2×0.8186+4×0.15865=2.2718(万元).例10.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的 频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2 +77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为 r =0.99→1,线性相关很强,故可以用线性回归直线来 刻画中学生身高与体重的相关, x =145+155+165+175+1855=165,y =45+75+60+53.6+66.45=60,b =∑ 8i=1x i y i −8x⋅y ∑ 8i=1x i 2−8x2=38608+175×66.4−5×165×601000=0.728, a =y −b x =60−0.728×165=−60.12, 所以回归直线方程为:y =0.728x −60.12,(3)残差平方和越小或相关指数 R 2 越接近于1,线性回归模型拟合效果越好.例11.2019年的“金九银十”变成“铜九铁十”,国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.如图是该地某小区2018年11月至2019年1月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1~13分别对应2018年11月~2019年11月)根据散点图选择y =a +b √x 和y =c +dlnx 两个模型进行拟合,经过数据处理得到两个回归方程分别为y ^=0.9369+0.0285√x和y^=0.9554+0.0306lnx,并得到以下一些统计量的值:y^=0.9369+0.0285√x y^=0.9554+0.0306lnx ∑13i=1(y i−y^i)20.0005910.000164∑13i=1(y i−y)20.006050(1)请利用相关指数R2判断哪个模型的拟合效果更好;(2)某位购房者拟于2020年4月购买这个小区m(70≤m≤160)平方米的二手房(欲购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2但未满5年,请你利用(1)中拟合效果更好的模型解决以下问题:(i)估算该购房者应支付的购房金额;(购房金额=房款+税费,房屋均价精确到0.001万元/平方米)(ii)若该购房者拟用不超过100万元的资金购买该小区一套二手房,试估算其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格(计税价格=房款)进行征收的.房产证满2年但未满5年的征收方式如下:首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且140平方米以内(含140平方米)1.5%;首套面积140平方米以上或非首套为3%.参考数据:ln2≈0.69,ln3≈1.10,ln17≈2.83,ln19≈2.94,√2≈1.41,√3≈1.73,√17≈4.12,√19≈4.36.参考公式:相关指数R2=1−∑ni=1(y i−y^i)2∑n i=1(y i−y)2.【解析】解:(1)模型一中,y=0.9369+0.0285√x的残差平方和为0.000591,相关指数为R21−0.0005910.006050≈0.923,模型二中,y=0.9554+0.0306lnx的残差平方和为0.000164,相关指数为 R 21−0.0001640.006050≈0.973,∴ 相关指数较大的模型二拟合效果好些. (2)通过散点图确定2020年4月对应的 x =18, 代入(1)中拟合效果更好的模型二,代入计算 y =0.9554+0.0306ln18 =0.9554+0.0306×(ln 2+2ln 3) =0.9554+0.0306×(0.69+2×1.10) ≈1.044 (万元/平方米),则2020年4月份二手房均价的预测值为1.044(万元/平方米).(i )设该购房者应支付的购房金额 h 万元,因为税费中淵方只需缴纳契税, ①当70⩽m ⩽90 时,契税为计税价格的 1%, 故h =m ×1.044×(1%+1)=1.05444m ; ②当90<m ⩽144 时,契税为计税价格的 1.5%, 故h =m ×1.044×(1.5%+1)=1.05966m ; ③当144<m ⩽160 时,契税为计税价格的 3%, 故h =m ×1.044×(3%+1)=1.07532m ;∴ℎ={1.05444m ,70⩽m ⩽901.05966m ,90<m ⩽1441.07532m ,144<m ⩽160;∴ 当 70⩽m ⩽90 时购房金额为 1.05444m 万元, 当 90<m ⩽144 时购房金额为 1.05966m 万元, 当 144<m ⩽160 时购房金额为 1.07532m 万元.(ii )设该购房者可购买该小区二手房的最大面积为 t 平方米,由(i ) 知,当70⩽m ⩽90时,应支付的购房金额为 1.05444t ,又1.05444t ⩽1.05444×90<100, 又因为房屋均价约为1.044万元/平方米,所以 t <100,所以90⩽t <100, 由1.05966t ⩽100,解得 t ⩽1001.05966,且1001.05966≈94.4,所以该购房者可购买该小区二手房的最大面积为94平方米.例12.某新兴科技公司为了确定新研发的产品下一季度的营销计划,需了解月宣传费x (单位:万元)对月销售量y(单位:千件)的影响,收集了2020年3月至2020年8月共6个月的月宣传费x和月销售量y的数据如表:月份345678宣传费x5678910月销售量y0.4 3.5 5.27.08.610.7现分别用模型①y=b x+a和模型②y=e m x+n对以上数据进行拟合,得到回归模型,并计算出模型的残差如表:(模型①和模型②的残差分别为e1和e2,残差=实际值﹣预报值)x5678910y0.4 3.5 5.37.08.610.7e1﹣0.60.540.280.12﹣0.24﹣0.1e2﹣0.63 1.71 2.10 1.63﹣0.7﹣5.42(1)根据上表的残差数据,应选择哪个模型来拟合月宣传费x与月销售量y的关系较为合适,简要说明理由;(2)为了优化模型,将(1)中选择的模型残差绝对值最大所对应的一组数据(x,y)剔除,根据剩余的5组数据,求该模型的回归方程,并预测月宣传费为12万元时,该公司的月销售量.(剔除数据前的参考数据:x=7.5,y=5.9,∑6i=1x i y i=299.8,∑6i=1x i2=355,z=lny.z≈−1.41,∑6i=1x i y i=−73.10,ln10.7≈2.37,e4.034≈56.49.)参考公式:b=∑ni=1x i y i−nxy∑n i=1x i2−nx2,a=y−b x.【解析】解:(1)应选择模型①,因为模型①每组数据对应的残差绝对值都比模型②的小,残差波动小,残差点比较均匀地落在水平的带状区域内,说明拟合精度高.(2)由(1)知,需剔除第一组数据,则剔除后的x=7.5×6−55=8,y=5.9×6−0.45=7,5xy=280,5x2=320,∑5i=1x i y i=299.8−5×0.4=297.8,∑5i=1x i2=355−25=330.∴b=∑5i=1x i y i−5xy∑5i=1x i2−5x2=297.8−280330−320=1.78,a=y−b x=7−1.78×8=−7.24.得①的回归方程为y=1.78x−7.24,则当x=12时,y=1.78×12−7.24=14.12.故月宣传费为12万元时,该公司的月销售量为14.12千件.例13.新型冠状病毒肺炎COVID﹣19疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.如表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.日期代码x12345678累计确诊人数y481632517197122为了分析该国累计感染人数的变化趋势,小王同学分别用两种模型:①y=bx2+a,②y=dx+c对变量x和y的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差e î=y i−y î):经过计算得它∑8i=1(x i−x)(y i−y)=728,∑8i=1(x i−x)2=42,∑8i=1(z i−z)(y i−y)=6868,∑8i=1(z i−z)2=3570,其中z i=x i2,z=18∑8i=1z i.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;(2)根据(1)问选定的模型求出相应的回归方程(系数均保留两位小数);(3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数做出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少?附:回归直线的斜率和截距的最小二乘估计公式分别为:b=∑8i=1(x i−x)(y i−y)∑8i=1(x i−x)2,a=y−b x.【解析】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①的估计值和真实值相对比较接近,模型②的残差相对比较大,所以模型①的拟合效果相对较好;(2)由(1)可知y关于x的回归方程为y=bx2+a,令z=x2,则y=bz+a,由所给的数据可得:z=18(1+4+9+16+25+36+49+64)=25.5,y=18(4+8+16+31+51+71+97+122)=50,b=∑8i=1(z i−z)(y i−y)∑8i=1(z i−z)2=68683570≈1.92,则a=y−b z≈50﹣1.92×25.5=1.04,所以y关于x的回归方程为y=1.92x2+1.04;(3)将x=9代入回归方程,可得y=1.92×92+1.04=156.56≈157(人),所以预测该地区第9天新型冠状病毒感染确诊的累计人数约为157人.例14.H市某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(吨)与相应的生产总成本y(万元)的五组对照数据.产量x(件)12345生产总成本y(万元)3781012(Ⅰ)根据上达数据,若用最小二乘法进行线性模拟,试求y关于x的线性回归方程y=b x+a;参考公式:b=∑ni=1x i y i−nxy∑n i=1x i2−nx2,a=y−b x.(Ⅱ)记第(Ⅰ)问中所求y与x的线性回归方程y=b x+a为模型①,同时该企业科研人员利用计算机根据数据又建立了y与x的回归模型②:y=12x2+1.其中模型②的残差图(残差=实际值﹣预报值)如图所示:请完成模型①的残差表与残差图,并根据残差图,判断哪一个模型更适宜作为y关于x的回归方程?并说明理由;(Ⅲ)根据模型①中y与x的线性回归方程,预测产量为6吨时生产总成本为多少万元?【解析】解:(Ⅰ)计算x=15(1+2+3+4+5)=3,y=15(3+7+8+10+12)=8,∑5i=1x i2=12+22+32+42+52=55,∑5i=1x i y i=1⋅3+2⋅7+3⋅8+4⋅10+5⋅12=141,b=∑5i=1x i y i−nxy∑5i=1x i2−nx2=141−5×3×855−5×9=2.1,a=y−b x=8−2.1×3=1.7,因此,回归直线方程为y=2.1x+1.7.(Ⅱ)模型①的残差表为:x12345y3781012 y 3.8 5.9810.112.2 e﹣0.8 1.10﹣0.1﹣0.2画出残差图,如图所示;结论:模型①更适宜作为y关于x的回归方程,因为:理由1:模型①的4个样本点的残差点落在的带状区域比模型②的带状区域更窄;理由2:模型①的4个样本点的残差点比模型②的残差点更贴近进x轴..(不列残差表不扣分,写出一个理由即可得分.)(Ⅲ)根据模型①中y与x的回归直线方程,计算x=6时,y=2.1×6+1.7=14.3,所以预测产量为6吨时生产总成本为14.3万元.例15.为了解某企业生产的某产品的年利润与年广告投入的关系,该企业对最近一些相关数据进行了调查统计,得出相关数据见表:23456年广告投入x(万元)346811年利润y(十万元)根据以上数据,研究人员分别借助甲.乙两种不同的回归模型,得到两个回归方程,方程甲:方程甲:y(1)=b(x﹣1)2+2.75,方程乙:y(2)=c x﹣1.6.(1)求b(结果精确到0.01)与c的值.(2)为了评价两种模型的拟合效果,完成以下任务.①完成下表(备注:e î=y i−y î,e î称为相应于点(x i,y i)的残差;年广告投入x(万元)23456年利润y(十万元)346811模型甲估计值y î(1)残差e î(1)模型乙估计值y î(2)残差e î(2)②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.【解析】解:(1)设t=(x﹣1)2,则t=15(1+4+9+16+25)=11.∵y=6.4,∴6.4=b×11+2.75,解得b≈0.33.又x=4,∴6.4=c×4−1.6,即c=2.(2)①经计算,可得下表:年广告投入x(万元)23456年利润y(十万元)346811模型甲估计值y î(1) 3.08 4.07 5.728.0311残差e î(1)﹣0.08﹣0.070.28﹣0.030模型乙估计值y î(2) 2.4 4.4 6.48.410.4残差e î(2)0.6﹣0.4﹣0.4﹣0.40.6②Q1=(−0.08)2+(−0.07)2+0.282+(−0.03)2=0.0906.Q2=0.62×2+(−0.4)2×3=1.2.∵Q1<Q2,∴模型甲的拟合效果更好.。

直线相关回归简单回归分析

直线相关回归简单回归分析
41
小结
线性相关系数的特点
1.相关系数r是一个无量纲的数值,且 -1≤r≤l ; 2. r>0为正相关,r<0为负相关; 3.|r| 越 接 近 于 l , 说 明 相 关 性 越 好 , |r|越接近于0,说明相关性越差。
42
么么么么方面
Sds绝对是假的
练习1 根据如下资料,试分析16名男大
表11-2 患儿的血小板和出血症状
编号 血小板数 秩次 出血症状 秩次 pq
1 121 1 +++ 11.5 11.5
2 138 2 ++ 9.0 18
3 165 3 + 7.0 21
4 310 4 - 3.5 14
5 426 5 ++ 9.0 45
6 540 6 ++ 9.0 54
7 740 7 - 3.5 24.5
相关系数(coefficient of correlation)又称积 差相关系数(coefficient of productmoment correlation),以符号r表示。 它是说明具有直线关系的两个变量间相 关密切程度和相关方向的统计指标。
6
线性相关系数
(一)相关系数的意义
r>0:正相关; r<0:负相关; r=0:零相关; |r|=l:完全相关。 相关系数没有单位,其值为-1≤r≤l
2. 相关系数的计算只适用于两个变量 都服从正态分布的资料。
17
进行相关分析时的注意事项
3. 样本相关系数是总体相关系数的一 个估计值,与总体相关系数之间存 在着抽样误差,必须作假设检验。
4. 相关分析是用相关系数来描述两个 变量间相互关系的密切程度和方向, 相关关系不一定是因果关系。
5. 出现异常值时慎用相关。
n

第5章回归分析

第5章回归分析
表 商品价格与消费量的关系
价格X 5.0 5.2 5.8 6.4 7.0 7.0 8.0 8.3 8.7 9.0 10.0 11 消费量Y 4.0 5.0 3.6 3.8 3.0 3.5 2.9 3.1 2.9 2.2 2.5 2.6
5.2 一元线性回归
15
一元线性回归实例
例: 某种商品与家庭平均消费量的关系(续) 在坐标轴上做出价格与消费量的相关关系。
• 子女的身高与父亲及母亲的身高之间的关系。
• 农田粮食的产量与施肥量之间的关系。 • 商品的销售量与广告费之间的关系。
5.1 回归分析的基本概念
8
回归分析的步骤 • 确定变量。寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响 因素。 • 建立预测模型。依据自变量和因变量的历史统计资料进行计算,在此基础上建立 回归分析预测模型。 • 进行相关分析。作为自变量的因素与作为因变量的预测对象是否有关,相关程度 如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的 问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和 因变量的相关程度。 • 计算预测误差。回归预测模型是否可用于实际预测,取决于对回归预测模型的检 验和对预测误差的计算。 • 确定预测值。利用回归预测模型计算预测值,并对预测值进行综合分析,确定最 后的预测值。
最小二乘法的原理就是,找到一组 aˆ ,bˆ 。使所有点的实际测量值 yi 与预测值 yˆi 的偏差的平方和最小。
残差平方和(Residual Sum of Squares,RSS):
n
n
Q(aˆ,bˆ) (yi -yˆi )2 ( yi - aˆ - bˆxi )2
i=1
i=1
即,找到一组 aˆ ,bˆ 使RSS的值最小。

实验五 回归分析

实验五 回归分析

实验五回归分析一.实验目的和要求回归分析是研究自变量与因变量之间的关系形式的研究方法,其目的在于根据已知自变量来估计和预测因变量的总平均值。

本次实验根据已有的银行业务数据信息进行回归分析,找出影响不良贷款的因素,进而控制并减少不良贷款,降低银行进一步的损失。

二.实验内容1.实验数据2010年该银行所属的25家分行的有关业务数据如下表所示。

某商业银行2010年的制药业务数据表分行编号不良贷款(亿元)y各项贷款余额(亿元)x1本年累计应收贷款(亿元)x2贷款项目个数(个)x3本年固定资产投资额(亿元)x41 1.2 70.6 7.7 6 54.72 1.4 114.6 20.7 17 93.83 5.1 176.3 8.6 18 76.64 3.5 83.9 8.1 11 18.55 8.2 202.8 17.5 20 66.36 2.9 19.5 3.4 2 4.97 1.9 110.7 11.7 17 23.68 12.7 188.9 27.9 18 46.99 1.3 99.6 2.6 11 56.110 2.9 76.1 10.1 16 67.611 0.6 67.8 3.1 12 45.912 4.3 135.6 12.1 25 79.813 1.1 67.7 6.9 16 25.914 3.8 177.9 13.6 27 120.115 10.5 266.6 16.5 35 149.916 3.3 82.6 9.8 16 32.717 0.5 17.9 1.5 4 45.618 0.7 76.7 6.8 13 28.619 1.3 27.8 5.9 6 16.820 7.1 143.1 8.1 29 67.821 11.9 371.6 17.7 34 167.222 1.9 99.2 4.7 12 47.823 1.5 112.9 11.2 16 70.224 7.5 199.8 16.7 18 43.125 3.6 105.7 12.9 12 100.22.实验过程分别绘制不良贷款与贷款余额、应收贷款、贷款项目数、固定资产投资额之间的散点图。

回归分析方法及其应用中的例子

回归分析方法及其应用中的例子

回归分析方法及其应用中的例子回归分析是一种统计分析方法,用于研究自变量与因变量之间的关系。

它可以通过建立一个数学模型来描述自变量与因变量之间的函数关系,并根据已有的数据对模型进行估计、预测和推断。

回归分析可以帮助我们了解变量之间的相关性、预测未来的结果以及找出主要影响因素等。

在实际应用中,回归分析有许多种方法和技术,下面将介绍其中的几种常见方法及其应用的例子。

1.简单线性回归:简单线性回归是一种最基本的回归分析方法,用于研究两个变量之间的关系。

它的数学模型可以表示为y=β0+β1x,其中y是因变量,x是自变量,β0和β1是常数。

简单线性回归可以用于预测一个变量对另一个变量的影响,例如预测销售额对广告投入的影响。

2.多元线性回归:多元线性回归是在简单线性回归的基础上引入多个自变量的模型。

它可以用于分析多个因素对一个因变量的影响,并以此预测因变量的取值。

例如,可以使用多元线性回归分析房屋价格与大小、位置、年龄等因素之间的关系。

3.逻辑回归:逻辑回归是一种用于预测二元结果的回归方法。

它可以将自变量与因变量之间的关系转化为一个概率模型,用于预测一些事件发生的概率。

逻辑回归常常应用于生物医学研究中,如预测疾病的发生概率或患者的生存率等。

4.多项式回归:多项式回归是一种使用多项式函数来拟合数据的方法。

它可以用于解决非线性关系的回归问题,例如拟合二次曲线或曲线拟合。

多项式回归可以应用于多个领域,如工程学中的曲线拟合、经济学中的生产函数拟合等。

5.线性混合效应模型:线性混合效应模型是一种用于分析包含随机效应的回归模型。

它可以同时考虑个体之间和个体内的变异,并在模型中引入随机效应来解释这种变异。

线性混合效应模型常被用于分析面板数据、重复测量数据等,例如研究不同学生在不同学校的学习成绩。

以上只是回归分析的一些常见方法及其应用的例子,实际上回归分析方法和应用还有很多其他的变种和扩展,可以根据具体问题和数据的特点选择适合的回归模型。

如何在Excel中使用Regression进行回归分析

如何在Excel中使用Regression进行回归分析

如何在Excel中使用Regression进行回归分析回归分析是一种用于研究变量之间关系的统计技术。

在Excel中,你可以使用Regression函数进行回归分析,通过拟合数据点的回归线来预测因变量。

本文将详细介绍如何在Excel中使用Regression函数进行简单线性回归和多元线性回归分析。

一、简单线性回归分析简单线性回归分析适用于只有一个自变量和一个因变量的情况。

以下是在Excel中进行简单线性回归分析的步骤:1. 准备数据首先,将需要进行回归分析的数据录入Excel表格中。

通常,自变量应该在A列,而因变量应该在B列。

2. 插入回归分析工具点击Excel菜单栏中的"数据"选项卡,然后点击“数据分析”按钮。

如果在"数据分析"中找不到“回归”选项,请先点击“加载项”按钮,然后勾选“分析工具包”,最后点击“确认”。

3. 选择回归分析工具在“数据分析”对话框中,选择“回归”,然后点击“确定”。

4. 设置输入和输出范围“输入X范围”设置为自变量的数据列。

选择“标签”选框,并选择“输出范围”。

点击“确定”。

5. 分析回归结果在指定的输出范围中,Excel将显示回归分析的结果,包括截距、斜率、相关系数等。

二、多元线性回归分析多元线性回归分析适用于有多个自变量和一个因变量的情况。

以下是在Excel中进行多元线性回归分析的步骤:1. 准备数据同样地,将需要进行回归分析的数据录入Excel表格中。

自变量应该在不同的列,而因变量应该在单独的列中。

2. 插入回归分析工具同样地,点击Excel菜单栏中的"数据"选项卡,然后点击“数据分析”按钮。

确保你已经加载了“分析工具包”。

3. 选择回归分析工具在“数据分析”对话框中,选择“回归”,然后点击“确定”。

4. 设置输入和输出范围“输入X范围”设置为所有自变量的数据列。

选择“标签”选框,并选择“输出范围”。

点击“确定”。

回归分析方法总结全面

回归分析方法总结全面

回归分析方法总结全面回归分析是一种统计分析方法,用于研究自变量与因变量之间的关系。

它可以帮助我们了解自变量对因变量的影响程度,以及预测因变量的值。

回归分析有多种方法和技术,本文将对几种常用的回归分析方法进行总结和介绍。

1. 简单线性回归分析简单线性回归分析是回归分析的最基本形式,用于研究单个自变量与因变量之间的关系。

它假设自变量与因变量之间存在线性关系,并且通过拟合一条直线来描述这种关系。

简单线性回归分析使用最小二乘法来估计直线的参数,最小化观测值与模型预测值之间的差异。

2. 多元线性回归分析多元线性回归分析是回归分析的一种拓展形式,用于研究多个自变量与因变量之间的关系。

它假设各个自变量与因变量之间存在线性关系,并通过拟合一个多元线性模型来描述这种关系。

多元线性回归分析使用最小二乘法来估计模型的参数。

3. 逻辑回归分析逻辑回归分析是回归分析的一种特殊形式,用于研究二分类变量与一系列自变量之间的关系。

它通过拟合一个Logistic函数来描述二分类变量与自变量之间的概率关系。

逻辑回归分析可以用于预测二分类变量的概率或进行分类。

4. 多项式回归分析多项式回归分析是回归分析的一种变体,用于研究自变量与因变量之间的非线性关系。

它通过引入自变量的高次项来拟合一个多项式模型,以描述非线性关系。

多项式回归分析可以帮助我们探索自变量与因变量之间的复杂关系。

5. 非线性回归分析非线性回归分析是回归分析的一种广义形式,用于研究自变量与因变量之间的非线性关系。

它通过拟合一个非线性模型来描述这种关系。

非线性回归分析可以用于分析复杂的现象或数据,但需要更复杂的参数估计方法。

6. 岭回归分析岭回归分析是回归分析的一种正则化方法,用于处理自变量之间存在共线性的情况。

共线性会导致参数估计不稳定或不准确,岭回归通过加入一个正则化项来缩小参数估计的方差。

岭回归分析可以帮助我们在共线性存在的情况下得到更可靠的结果。

7. 主成分回归分析主成分回归分析是回归分析的一种降维方法,用于处理高维数据或自变量之间存在相关性的情况。

你应该要掌握的7种回归分析方法

你应该要掌握的7种回归分析方法

你应该要掌握的7种回归分析方法回归分析是一种常用的数据分析方法,用于研究自变量与因变量之间的关系。

在实际应用中,有许多不同的回归分析方法可供选择。

以下是应该掌握的7种回归分析方法:1. 简单线性回归分析(Simple Linear Regression):简单线性回归是回归分析中最简单的方法之一、它是一种用于研究两个变量之间关系的方法,其中一个变量是自变量,另一个变量是因变量。

简单线性回归可以用来预测因变量的值,基于自变量的值。

2. 多元线性回归分析(Multiple Linear Regression):多元线性回归是在简单线性回归的基础上发展起来的一种方法。

它可以用来研究多个自变量与一个因变量之间的关系。

多元线性回归分析可以帮助我们确定哪些自变量对于因变量的解释最为重要。

3. 逻辑回归(Logistic Regression):逻辑回归是一种用于预测二分类变量的回归分析方法。

逻辑回归可以用来预测一个事件发生的概率。

它的输出是一个介于0和1之间的概率值,可以使用阈值来进行分类。

4. 多项式回归(Polynomial Regression):多项式回归是回归分析的一种扩展方法。

它可以用来研究变量之间的非线性关系。

多项式回归可以将自变量的幂次作为额外的变量添加到回归模型中。

5. 岭回归(Ridge Regression):岭回归是一种用于处理多重共线性问题的回归分析方法。

多重共线性是指自变量之间存在高度相关性的情况。

岭回归通过对回归系数进行惩罚来减少共线性的影响。

6. Lasso回归(Lasso Regression):Lasso回归是另一种可以处理多重共线性问题的回归分析方法。

与岭回归不同的是,Lasso回归通过对回归系数进行惩罚,并使用L1正则化来选择最重要的自变量。

7. Elastic Net回归(Elastic Net Regression):Elastic Net回归是岭回归和Lasso回归的结合方法。

回归分析

回归分析

年份
1998年 年
1999年 2000年 2001年 2002年 2003年 年 年 年 年 年
销售额 (x)
380
460
400
480
520
560
资金需 求量 (y)
200
240
220
250
280
290
年 年份 1998年 x 380
1999 年 460
2000 年 400
2001 年 480
2002 年 520
参数b的经济意义:b 参数b的经济意义:b为回归系数,它 表示当产量每增加1000件时,单位成 表示当产量每增加1000件时,单位成 本平均降低2.45元/件。 本平均降低2.45元/件。 当产量为6000件,即,单位成本为: 当产量为6000件,即,单位成本为: 65.06元。 65.06元。
某企业1998-2003年六年的销售额及资 某企业1998-2003年六年的销售额及资 金需求量如下表所示(单位:万元),该 企业的生产较稳定。若2004年企业计划销 企业的生产较稳定。若2004年企业计划销 售额为500万元,利用回归分析法预测企 售额为500万元,利用回归分析法预测企 业2004年的资金需求量。 2004年的资金需求量。
1870年,为了研究父代与子代身高的关系,高尔 1870年,为了研究父代与子代身高的关系,高尔 顿搜集了1078对父亲及其儿子的身高数据。他发 顿搜集了1078对父亲及其儿子的身高数据。他发 现这些数据的散点图大致呈直线状态,也就是说, 总的趋势是父亲的身高增加时,儿子的身高也倾 向于增加。 但是,高尔顿对试验数据进行了深入的分析,发 现了一个很有趣的现象—回归效应。因为当父亲 现了一个很有趣的现象—回归效应。因为当父亲 高于平均身高时,他们的儿子身高比他更高的概 率要小于比他更矮的概率;父亲矮于平均身高时, 他们的儿子身高比他更矮的概率要小于比他更高 的概率。它反映了一个规律,即当父亲身高很高 时,他的儿子的身高一般不会比父亲身高更高。 同样如果父亲很矮,他的儿子也一般不会比父亲 矮,而会向一般人的均值靠拢。当时这位英国遗 传学家将这种现象称为回归。

回归分析法计算公式

回归分析法计算公式

回归分析法计算公式回归分析是一个统计方法,用于建立变量之间的关系模型,并通过该模型预测一个或多个自变量对应的因变量的值。

回归分析方法通常基于最小二乘法,通过寻找使得预测值和实际值之间的误差平方和最小的参数估计。

以下是回归分析中常用的计算公式及其含义:1.简单线性回归模型:简单线性回归模型可以用来分析一个自变量和一个因变量之间的关系。

它的数学形式如下:Y=β₀+β₁X+ε其中,Y是因变量,X是自变量,β₀和β₁是回归系数,ε是误差项。

2.多元线性回归模型:多元线性回归模型可以用来分析多个自变量和一个因变量之间的关系。

它的数学形式如下:Y=β₀+β₁X₁+β₂X₂+...+βₚXₚ+ε其中,Y是因变量,X₁,X₂,...,Xₚ是自变量,β₀,β₁,β₂,...,βₚ是回归系数,ε是误差项。

3.最小二乘法:最小二乘法是一种常用的参数估计方法,用于确定回归系数的值。

它通过最小化残差平方和来估计回归系数,使得预测值和实际值之间的差异最小。

4.残差:残差是实际观测值与回归模型预测值之间的差异。

在最小二乘法中,残差被用来评估模型的拟合程度,残差越小表示模型与实际值越接近。

5.回归系数的估计:回归系数可以通过最小二乘法估计得到。

简单线性回归模型的回归系数β₀和β₁的估计公式如下:β₁=∑((Xi-Xₚ)(Yi-Ȳ))/∑((Xi-Xₚ)²)β₀=Ȳ-β₁Xₚ其中,Xi和Yi是样本数据的自变量和因变量观测值,Xₚ和Ȳ分别是自变量和因变量的样本均值。

6.R²决定系数:R²决定系数用来衡量回归模型对因变量变异程度的解释能力,它的取值范围在0到1之间。

R²的计算公式如下:R²=1-(SSR/SST)其中,SSR是回归平方和,表示模型对因变量的解释能力;SST是总平方和,表示总体变异程度。

以上是回归分析常用的一些计算公式,通过这些公式可以计算回归系数、残差、决定系数等指标,用于评估回归模型的拟合程度和预测能力。

简单回归分析

简单回归分析
简单回归分析
Simple linear regression analysis
本章内容
第一节 简单线性回归 第二节 线性回归的应用
第一节 简单线性回归
双变量计量资料:每个个体有两个变量值
总体:无限或有限对变量值
样本:从总体随机抽取的n对变量值 (X1,Y1), (X2,Y2), …, (Xn,Yn) 目的:研究X和Y的数量关系 方法:回归与相关
XY
46.02 33.11 27.81 14.88 33.60
232.61 76 23.87 / 8 764 762 / 8 5.8450 0.1392 42
X SX / n 76 / 8 9.5
20.48 Y SY / n 23.87 / 8 2.9838
线性回归的概念及其统计描述
直线回归的概念
目的:研究应变量Y对自变量X的数量依 存关系。 特点:统计关系。 X值和Y的均数的关系, 不同于一般数学上的X 和Y的函数关系
回归
回归描述的是通过自变量的数值反应因变量的平均水 平。因此可以通过可测或易测的变量估计难测或不 可测变量的状态。
例如:通过体重估计体表面积; 通过身高、体重、肺活量估计心室血输出 量、体循环总血量; 本章只涉及一个自变量的回归问题
b
SXY SX SY / n l XY 2 l XX SX 2 SX / n
编号 1 2 3 4 5 6
年龄X 肌酐Y
13 11 9 6 8 10 3.54 3.01 3.09 2.48 2.56 3.36
X2
169 121 81 36 64 100
Y2
12.53 9.06 9.55 6.15 6.55 11.29

初中数学 如何进行数据的回归分析

初中数学  如何进行数据的回归分析

初中数学如何进行数据的回归分析
在初中数学中,进行数据的回归分析通常是通过简单线性回归来进行的。

简单线性回归通常包括以下几个步骤:
1. 收集数据:首先,需要收集一组相关数据,通常是两组数据,一组作为自变量(x),另一组作为因变量(y)。

2. 绘制散点图:将收集到的数据绘制成散点图,以观察数据的分布情况和可能的线性关系。

3. 计算相关系数:计算自变量和因变量之间的相关系数,来衡量两组数据之间的线性关系强弱。

4. 拟合直线:利用最小二乘法,拟合一条直线来表示两组数据之间的线性关系,这条直线称为回归线。

5. 预测数值:利用回归线,可以进行数值的预测,例如根据一个自变量的数值,预测对应的因变量的数值。

这些是初中数学中常见的进行数据回归分析的步骤,希望能帮助你更好地理解。

如果有任何问题,请随时提出。

简单回归分析(1)

简单回归分析(1)
整理课件
❖在上一章中,对14名40~60岁的健康妇女的体重
(X)与基础代谢(Y)数据计算了相关系r数0(.964 ), 定量地描述了变量X与Y间的线性关联性。现在试用 回归分析的方法,从预测的角度来描述基础代谢(Y) 如何依存体重(X)的变化而变化的规律性。
❖(1)如果我们知道了一名健康妇女的基础代谢,能推断出 体重是多少吗?
❖ 特点:统计关系。X和Y的均数的关系,不同 于一般数学上X和Y的函数关系。
整理课件
反应变量(Y)依赖于另一自变量(X)简单线性回归 模型表述为:
Y|X X
Y :为第i个个体的反应变量值
X :为其自变量值
α :为回归直线的截距参数 β :为回归直线的斜率参数
整理课件
由样本数据建立的有关Y依X变化的回归方程:
整理课件
经数学推导可得下式:
( Y Y ) 2 ( Y ˆ Y ) 2 ( Y Y ˆ ) 2
S总 SS回 SS残 S
❖ SS 总为Y的离均差平方和,反映在回归之前,Y
的变异 ;
❖ SS 残为回归之后残差平方和。
❖SS总S正S残是回归的贡献,记为 ,SS称回 为回归平方
和。反映在Y的总变异中由于X与Y的直线关
❖ 解决办法:残差的直方图、正态概率图来考 察这一条件是否成立。
整理课件
方差相等(equal variance)
❖ 指在自变量X取值范围内,不论X取什么值, Y都具有相同的方差。
❖ 如果这一条件不满足,回归参数的估计有偏 性,置信区间估计及检验的结论均无效。
❖ 解决办法:采用散点图或残差的散点图判断 等方差性。
整理课件
❖ (2)此直线是使得误差平方和 yy2 为 最理小论值值的直之y线差,的即平因方变和量取的最实小际值观。察值y与
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在margins指令之後立即接marginsplot才有效
Adjusted Predictions with 95% CIs
20 5 10 15
0
3 6 9 12 15 18 21 RECODE of feduc (v20 請問您父親的教育程度是(不論父親存歿請回答):)
marginsplot 畫出信賴區間 marginsplot, recase(line) recastci(rarea)
複迴歸
• 截距:當父、母親的教育年數=0,年齡=0時,迴 歸模型預測的平均教育程度為14.99年。 • 年齡為0沒有意義,因此不容易解釋。 • 可以套用年齡平均值(45.628)去重新計算截距。 • -0.1185*(45.628)+14.99 = 9.592 • 也可以先將”age” 先加以centered處理之後再重 新估計迴歸模型。 • sum age • gen cage = age – r(mean)
截距:當父、母親的教育年數=0, 年齡=45.6時,迴歸模型預測的平 均教育程度為9.59年。
複迴歸斜率的意義
• 控制母親教育程度與年齡之後,父親的教育程度 每增加一年,子女的教育程度增加0.309年。比 簡單迴歸的斜率 0.5要小,為甚麼?
用margins指令來計算調整後 預測平均值
marginspBiblioteka ot資料分析敘述統計
簡單迴歸
截距intercept的意義
斜率slope的意義
Margins指令
建構預測值的信賴區間
檢定 H0:預測值=0
顯示父親教育在9, 12, 16年時的預測平均 值 margins, at(feducyr= (9 12 16))
numlist的表達方式 0(3)21
marginsplot
Adjusted Predictions with 95% CIs
20 5 10 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 RECODE of feduc (v20 請問您父親的教育程度是(不論父親存歿請回答):)
複迴歸
Predictive Margins with 95% CIs
18 10 12 14 16
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 RECODE of feduc (v20 請問您父親的教育程度是(不論父親存歿請回答):)
相关文档
最新文档