债券久期的基本概念案例
债券-久期及其应用
![债券-久期及其应用](https://img.taocdn.com/s3/m/cb8f171f4431b90d6c85c7a1.png)
以各期现金流占债券价格的比重为权重的加 权平均到期时间。
D
久期的作用
久期不仅仅是一个时间概念,其真正价值 在于它能反映债券价格对利率变动的敏感 性,是度量利率风险的一个重要工具。
特性
二、久期在债券管理中的作用
久期在债券管理中的策略利率的免疫策略 目标:消除组合的利率风险 途径:使组合中资产久期等于负债久期
案例分析
某银行有7年期的负债,年贴现率为7=3*w+(1-w)(1+1/10%) w=50%
什么是久期?
久期的最初定义源于1938年的Frederic Macaulay,他用贴现的方法计算证券投资的平均 回收时间的时候提出的这个概念,这个概念最初 是一个时间概念。例如银行一笔11年期按揭贷款 的久期是8.254年,意味着银行在前面8.254年的 时间是在收回本金,其后才是银行赚取的利润。
麦考利久期与应用
1、久期定义
回顾: 票面利率较高债券的价格变动要大于票面利率较低债券的 价格变动; 较长期限债券的价格变动要大于较短期限债券的价格变动。 久期将债券的票面利率、利率支付次数、到期期限以及到 期收益率综合在一起形成了一个以时间单位命名的概括性 衡量标准,从而大大提高了债券评价的准确性。
债券久期计算范文
![债券久期计算范文](https://img.taocdn.com/s3/m/43799c8559f5f61fb7360b4c2e3f5727a5e92484.png)
债券久期计算范文债券久期是债券的一个重要指标,用于衡量债券价格对利率变动的敏感度。
在债券投资中,了解债券久期的计算方法和影响因素对于投资者做出明智的投资决策至关重要。
首先,我们需要了解什么是债券久期。
债券久期是一个衡量债券价格对利率变动的敏感度指标。
它告诉投资者,在债券持有到期之前,每一次1%的利率变动对债券的价格有多大的影响。
债券久期越长,利率变动对债券价格的影响越大,债券的价格波动性越高。
债券久期的计算方法有多种方式,其中最常见的是修正久期。
修正久期考虑了债券的剩余期限、每期现金流量和债券价格。
以一个简单的固定利率债券为例,债券期限为N年,票息率为C,面值为F,债券的价格为P。
首先,我们需要计算债券的现金流量,即每年的票息支付和到期时的回本支付。
然后,乘以各期现金流量的加权比例,得到修正久期。
修正久期的计算公式如下:修正久期=∑[t*CFt/(1+r)^t]/P其中,t代表现金流发生的时间点,CFt表示现金流,r表示久期的折现率,P表示债券的价格。
在计算修正久期时,需要注意的是,债券价格和利率有着相反的变动关系,即债券价格上升,利率下降;债券价格下降,利率上升。
因此,在计算修正久期时,利率应该取负值。
为了更好地理解债券久期的概念和计算方法,我们来看一个具体的例子。
假设一只债券面值为1000元,期限为5年,票息率为5%,即每年支付50元的票息。
当前市场利率为6%。
根据这些信息,我们可以计算出该债券的修正久期。
首先,我们需要计算每一年的现金流。
在第1年、第2年、第3年、第4年,债券发行人分别支付50元的票息,第5年支付50元的票息和面值1000元的本金回收。
其次,我们需要计算每一年现金流的加权比例。
由于每一年现金流的发生时间点相等,所以加权比例为1/5=0.2然后,我们需要将现金流按照久期的折现率折现,即除以(1+r)^t。
在这个例子中,折现率r等于市场利率-利息率,即6%-5%=1%。
现金流折现后,我们可以得到如下结果:第1年现金流:50/(1+1%)^1=49.5第2年现金流:50/(1+1%)^2=48.5第3年现金流:50/(1+1%)^3=47.5第4年现金流:50/(1+1%)^4=46.6第5年现金流:(50+1000)/(1+1%)^5=1053.1最后,我们将每一年的现金流乘以加权比例,并将结果相加,即可得到修正久期的计算结果:修正久期=[1*(49.5)+2*(48.5)+3*(47.5)+4*(46.6)+5*(1053.1)]/(1000)=4.23年根据修正久期的计算结果,我们可以得出以下几点分析:1.该债券的修正久期为4.23年,表示在当前市场利率下,每次1%的利率变动将导致债券价格的大约4.23%的变动。
第九章_债券久期的基本概念案例
![第九章_债券久期的基本概念案例](https://img.taocdn.com/s3/m/2e039aa818e8b8f67c1cfad6195f312b3169eb99.png)
第九章_债券久期的基本概念案例债券久期是描述债券价格对利率变化的敏感性指标,它能够帮助投资者理解债券投资的风险和回报。
在这个案例中,我们将介绍久期的基本概念,并通过一个具体的案例来说明如何计算债券久期以及如何使用久期来评估债券的价格变动。
久期的基本概念:债券久期是一个衡量债券价格对利率变化的敏感性的指标。
久期越长,债券价格对利率变化的敏感性越高,反之则越低。
久期可以帮助投资者了解债券价格的波动性,并在投资决策中提供参考。
久期的计算:债券久期的计算需要用到债券的现金流量和到期时间。
具体来说,久期可以通过以下公式计算:久期=Σ(现金流量×时间×期限权重)/债券价格在这个公式中,现金流量是指债券每个支付期的现金流入或流出,时间是指每个支付期的距离,期限权重是指每个支付期的现金流量在所有现金流量中所占的比例。
债券价格是指当前的债券市场价格。
案例介绍:假设有一家公司发行了一种10年期、票面利率为5%的债券。
该债券每年支付一次利息,并在到期时支付一次本金。
现在假设债券的市场价格为1000元。
计算久期:首先,我们需要计算每个支付期的现金流量和时间。
在这个案例中,每年支付一次利息,所以现金流量为50元。
债券到期时间为10年,所以共有10个支付期,即时间为1年至10年。
然后,我们需要计算每个支付期的期限权重。
由于每个支付期的现金流量相同且债券到期时间相等,所以每个支付期的期限权重均为1/10。
现在,我们可以利用上述数据计算久期了。
根据上述公式,久期等于:久期=(50×1×1/10+50×2×1/10+...+50×10×1/10)/1000简化公式后,久期等于:久期=550/1000=0.55根据计算结果,该债券的久期为0.55年。
久期的应用:债券久期可以帮助投资者评估债券价格对利率变化的敏感性。
例如,如果利率上升,债券价格往往会下降;反之,如果利率下降,债券价格会上升。
久期例题
![久期例题](https://img.taocdn.com/s3/m/7979d92e783e0912a2162a9f.png)
例 久期的计算
设有两种债券,面值均为1000元,均还有两年到期: 债券A 的息票率8%,利息支付半年一次,债券B 为零息债券。
年利率为10%,试计算这两种债券的久期。
第4列的权重根据wt=[PV(Ct)]/P 计算
PV (C t ) (4)
权重38.095 0.039536.281 0.037634.553
0.0358855.611 0.8871964.54 1000
T PV(C P
+
+
连续复利是指在期数趋于无限大的极限情况下得到的利率,此时不同期之间的间隔很短,可以看作是无穷小量。
设本金为p 0 ,年利率为r ,当每年含有m 个复利结算周期(若一个月为一个复利结算周期,则m=12,若以一季度为一个复利结算周期,则m=4)时,则n 年后的本利和为:
所以当连续复利本利和公式为:
即:
在连续复利下,久期的表达式可以写成:
1
1
1
1
D i
i
i rt n
n
rt i i i i n rt i i i
t c t e
c t e p c e ---=====∑
∑∑1mn
nr r/m
mn 00r r p =p 1p 1m m ⎛
⎫⎛
⎫+=+ ⎪
⎪
⎝⎭
⎝⎭
1/000r r lim 1lim 1m m nr
mn
r m
nr n m m p p p p e →∞→∞⎡
⎤
⎛
⎫⎛⎫⎢⎥=+=+= ⎪
⎪
⎢⎥⎝⎭
⎝⎭
⎣
⎦
00nr n nr
n p p e p p e -==。
债券久期计算-计算债券久期例题
![债券久期计算-计算债券久期例题](https://img.taocdn.com/s3/m/c6c78b63f11dc281e53a580216fc700abb685201.png)
债券久期计算-计算债券久期例题例:假设债券A刚发行,其面值为1000元,市场利率(贴现率8%),票面利率为8%,期限为十年。
债券B是5年前发行的,其面值为1000元,票面利率12%,期限为15年,还有10年到期。
计算:1债券A与债券B的价格2计算债券A和B的久期三种方法1)运用久期的定义:久期作为现金流支付时间的加权平均(2)将久期看作债券价格对贴现率的弹性3)运用久期函数3计算债券A,B的修正久期4如果市场利率上升10%,即从8%上升到8.8%,求债券A与债券B的价格的变化久期(n)一、久期(n)的概念久期的概念最早是XXX(Macaulay)在1938年提出来的,所以又称马考勒久期(简记为D)。
马考勒久期是使用加权平均数的形式计算债券的平均到期时间。
它是债券在未来产生现金流的时间的加权平均,其权重是各期现金值在债券价格中所占的比重。
具体的计算将每次债券现金流的现值除以债券价格得到每一期现金支付的权重,并将每一次现金流的时间同对应的权重相乘,最终合计出整个债券的久期。
XXX、XXX和XXX在随后的若干年独立地发现了久期这一理论范畴,特别是XXX和XXX将久期用于衡量资产/负债的利率敏感性的研究,使得久期具有了第二种含义,即:资产针对利率变化的价格变化率。
久期--的第二个含义是债券投资管理中的一个极其重要的战略----“免疫战略”的理论基础,根据该战略,当交易主体债券组合的久期与债务的持有期相等的时候,该交易主体短期内就实现了“免疫”的目标,即短期内的总财产不受利率波动的影响。
但是应用这一战略的前提则是,现有久期观点能否正确地衡量未来任何利率变动情形下债券代价的变动情况。
二、马考勒久期的计算公式公式1)其中,D是马考勒久期,B是债券当前的市场价格,PV (Ct)是债券未来第t期可现金流(利息或资本)的现值,T是债券的到期时间。
需要指出的是在债券发行时以及发行后,都可以计算马考勒久期。
计算发行时的马考勒久期,T(到期时间)等于债券的期限;计算发行后的马考勒久期,T(到期时间)小于债券的期限。
投资学 实验六 债券久期的计算
![投资学 实验六 债券久期的计算](https://img.taocdn.com/s3/m/3c3bc4dfad51f01dc281f161.png)
实验六:债券久期的计算一、实验目的通过运用Excel软件,掌握债券久期、修正久期和凸度的计算,根据计算结果分析债券久期的影响因素,并且能够根据数据建立动态计算的债券久期模型,预测债券价格。
二、实验内容运用Excel软件,根据确定的数据,通过在Excel软件中输入有关债券久期、修正久期和凸度等公式计算相关的数值,通过对数值的观察,建立动态的久期分析模型。
最以后根据以上的实验结果来精确地预测出债券的未来价格。
三、实验步骤(一)基本久期的计算假设有两个债券,债券A刚刚发行,起面值1000元,票面利率与市场利率相同,均为7%,期限为10年。
债券B是五年前发行的,其面值为1000元,票面利率为11%,期限为15年,还有10年到期。
计算债券A与债券B的久期。
计算步骤:1、建立工作表,输入数据。
在B2、E2、A5:B14和E5:E14单元格中输入相应的数据。
2、计算债券A和B的价格。
分别在B16和E16单元格中输入NPV函数,选择计算区域,按确定,计算债券A和B的价格(如图)。
3、债券A、B的久期计算。
分别在C5和E5单元格输入公式=A5*B5/($B$16*(1+$B$2)^A5)、=A5*E5/($E$16*(1+$B$2)^A5),通过自动填充单元格命令格式求出C5和F5单元区域的数据(如图)。
分别在C16和F16单元格输公式=SUM(C5:C14)和=SUM(F5:F14),按回车键,分别算出债券A和B的久期(如图)。
从计算结果来看,虽然债券A与债券B的到期期限都是10年,但债券A的久期大于债券B的久期。
(二)久期作为债券价格相对利率的弹性的计算。
已知债券A刚刚发行,其面值为1000元,票面利率为7%,期限为10年;债券B是5年前发行的,其面值为1000元,票面利率为11%,期限为15年,还有10年到期。
假设市场利率(贴现率)从当前的7%增加到7.02%。
请计算:(1)计算债券A与债券B的市场价格变化率;(2)作为债券价格相对市场利率的弹性来估计债券A、B的久期。
债券的久期是什么
![债券的久期是什么](https://img.taocdn.com/s3/m/16a1961cbfd5b9f3f90f76c66137ee06eff94e86.png)
债券的久期是什么最近,债券市场出现了一些波动,投资者对于债券市场也有了更多的关注,在很多关于债券的分析文章或者投资建议中,常常出现“久期”这个词。
那么久期是什么意思呢?下面就让店铺带着大家一起去了解一下什么是债券的久期吧。
债券久期的概念由于决定债券价格利率风险大小的因素主要包括偿还期和息票利率,因此需要找到某种简单的方法,准确直观地反映出债券价格的利率风险程度。
经过长期研究,人们提出“久期”(Duration)的概念,把所有影响利率风险的因素全部考虑进去。
这一概念最早是由经济学家麦考雷(F.R.Macaulay)于1938年提出的。
他在研究债券与利率之间的关系时发现,在到期期限(或剩余期限) 并不是影响利率风险的唯一因素,事实上票面利率、利息支付方式、市场利率等因素都会影响利率风险。
基于这样的考虑,麦考雷提出了一个综合了以上四个因素的利率风险衡量指标,并称其为久期。
久期表示了债券或债券组合的平均还款期限,它是每次支付现金所用时间的加权平均值,权重为每次支付的现金流的现值占现金流现值总和的比率。
久期用D表示。
久期越短,债券对利率的敏感性越低,风险越低;反之,久期越长,债券对利率的敏感性越高,风险越高。
债券久期在债券投资中的重要意义举例来说,对于久期为4.5年的债券,当收益率下降1%,则债券价格上涨约4.5%,而对于久期为10年的债券,当收益率下降1%,则债券价格上涨10%。
而在实际的投资过程中,我们也可以通过调整债券组合的久期,从而实现控制组合的风险的目的。
一个例子是利率免疫。
在债券投资过程中,利率的变动常常使投资者承担一些风险,比如投资者持有的债券到期时间小于投资期限时,当利率出现下跌的时候,投资者在投资期间获得的利息收入只能以较低的水平进行再投资,从而难以实现预期的收益水平;而当投资者投资的债券到期时间大于其投资期限时,如果出现利率上升,其只能以相对较低的市场价格将持有的债券进行变现,从而对于投资者的收益带来一定损失。
久期的概念
![久期的概念](https://img.taocdn.com/s3/m/8d774c265901020207409cbd.png)
久期的概念久期的概念最早是Macaulay在1938年提出来的,所以又称Macaulay久期(简记为D)。
Macaulay久期是使用加权平均数的形式计算债券的平均到期时间。
它是债券在未来产生现金流的时间的加权平均,其权重是各期现金值在债券价格中所占的比重。
在理解久期概念时,我认为有这么几点需要把握:1.久期是一个时间概念,也就是说我们说久期久期是指一段时间,比如某债券的久期是多少天(一般是年吧?待求证);2.久期是一个债券的特征,和债券的息票率、付息周期、期限是一样的,都是债券的一项属性;3.那么久期这项债券的属性是用来描述什么的呢?在A的学习中,相信大家都记得债券的价值与市场利率是成反比的(因为折现率在分母。
),但是这个反向的关系是怎么体现的?比如市场利率提高1%,债券的价值会下跌多少?久期就是用来描述这个债券价值与市场利率变化的敏感性的,如果这个债券的久期是5,那么当市场利率提高1%的时候,债券的价值就会近似下跌5%。
4.引用如下希望对大家理解概念有所帮助:久期是指债券或者一笔贷款的实际期限。
比如说一笔10亿的贷款,名义期限为5年。
但是借方会在这5年期间按期偿还利息等,因此这10亿并没有完完整整地占用5年,而是少于5年。
久期衡量的就是这笔贷款的实际期限。
它是各期还款现值以时间为权重的加权平均。
举个形象的说法:一个跷跷板,一端按照离中点的远近放着各期还款的现值,我们在另一端找一点使跷跷板平衡,这个点就是久期。
Macaulay久期与债券价格的关系对于给定的收益率变动幅度,Macaulay久期越大,债券价格的波动幅度越大:...............................我是无敌的(1)式在这个公式里我认为要注意这么几点:1.这里的约等号就为什么上面要用“近似”的原因,随着后面的学习我们会知道这个式子为什么要用等号而不是约等;2.这里就提到修正久期,这个概念就是定义了一个D*(2)式,代到上面的(1)式里去,得到式(3),样子是线性的关系(把D*看成是个常数,恩恩)。
投资学实验六债券久期的计算
![投资学实验六债券久期的计算](https://img.taocdn.com/s3/m/4ed86c536d175f0e7cd184254b35eefdc8d315c9.png)
投资学实验六债券久期的计算债券久期是衡量债券价格对利率变动的敏感度的一个重要指标。
在投资学中,债券久期是投资者评估债券投资风险和回报的重要工具之一、本实验将介绍债券久期的计算方法,并通过一个实例进行实际操作。
一、债券久期的概念债券久期是衡量债券价格对利率变动的敏感度的指标。
它描述了债券在未来现金流到期日之间的等待时间,可以理解为债券的平均生命周期。
久期越长,债券的价格对利率变动的敏感度越高;久期越短,债券的价格对利率变动的敏感度越低。
二、债券久期的计算方法1. 基本久期(Macaulay久期):基本久期是久期计算中最常用的指标,计算公式如下:基本久期=(每期现金流×对应的现值乘积)之和/债券现值其中,每期现金流指的是债券每期支付的利息或本金,对应的现值乘积是每期现值乘以对应的现金流,债券现值是债券当前的市场价格。
2. 修正久期(Modified久期):修正久期是基本久期的一种改进,它考虑了债券到期日和利息收益再投资的时间价值,计算公式如下:修正久期=基本久期/(1+YTM)其中,YTM(yield to maturity)是债券的到期收益率,表示投资者在债券到期时能得到的平均年化收益率。
三、债券久期的实际操作为了更好地理解债券久期的计算方法,我们以一个实例进行说明。
假设有一张面值为1000元,到期时间为3年的零息债券,当前市场价格为900元。
首先,我们需要计算每年的现金流和对应的现值乘积。
第一年的现金流为1000元,对应的现值乘积为1000/(1+r)^1,其中r是债券的到期收益率;第二年的现金流为1000元,对应的现值乘积为1000/(1+r)^2;第三年的现金流为1000元,对应的现值乘积为1000/(1+r)^3然后,将每年的现金流和对应的现值乘积相加,得到总和。
总和=1000/(1+r)^1+1000/(1+r)^2+1000/(1+r)^3最后,将总和除以债券的现值,即可得到基本久期。
商业银行管理--久期分析
![商业银行管理--久期分析](https://img.taocdn.com/s3/m/2e139ad718e8b8f67c1cfad6195f312b3169eb80.png)
商业银行管理--久期分析商业银行管理--久期分析1.介绍本章节将对商业银行的久期分析进行详细介绍。
久期是一种度量债券价格对利率变动的敏感性的指标,它可以帮助银行管理固定收益投资组合的风险。
2.久期的概念本节将解释什么是久期,并介绍久期的计算公式。
久期是衡量债券期限的平均值,它考虑到债券的现金流量和到期日之间的时间间隔。
久期越长,债券价格对利率变动的敏感性就越大。
3.久期的作用本节将说明久期在商业银行管理中的作用。
久期可以帮助银行管理债券投资组合的利率风险,通过对久期的测算,银行可以预测债券价格在利率变动情况下的变化,并做出相应的投资决策。
4.久期的计算本节将介绍如何计算久期。
久期的计算需要考虑债券的现金流量和到期日之间的时间间隔,具体计算方法可以根据不同类型的债券和债券组合进行适当调整。
5.久期的风险管理本节将说明如何利用久期来进行风险管理。
久期可以帮助银行预测债券价格在利率变动情况下的变化,从而帮助银行合理配置投资组合,降低风险,优化收益。
6.久期分析的案例研究本节将通过具体的案例研究,展示久期分析在商业银行管理中的应用。
案例研究将详细介绍银行如何根据久期分析结果调整债券投资组合,以应对利率波动对债券价格的影响。
7.久期管理的挑战与应对措施本节将讨论久期管理中可能遇到的挑战,并提出相应的应对措施。
久期管理需要考虑各种不确定性因素,如利率变动、市场风险等,银行需要制定有效的风险管理策略。
8.总结本节对全文进行总结,强调久期分析在商业银行管理中的重要性和应用价值。
附件:本文档涉及的附件包括久期计算表格、案例研究数据表格等。
法律名词及注释:1.久期:久期是衡量债券期限的平均值,它考虑到债券的现金流量和到期日之间的时间间隔。
2.利率变动:指市场上利率的波动和变化。
利率变动对债券的价格有显著影响。
久期
![久期](https://img.taocdn.com/s3/m/ed3f4d25cfc789eb172dc84a.png)
【概念】按照定义,久期是对债券的每次息票利息或本金支付时间的加权平均,每次支付时间的权重是该支付现值在债券总价值(债券价格)中所占的比例。
这样的定义可以乍一听上去很难理解,通俗点来说,久期可以近似理解为债券收回未来利息和本金的平均时间。
我们举例来说明一下。
假设现在有一只债券,息票利率5%,每年付息一次,面值100元,剩余期限2年。
对于这只债券,它的现金流应该是这样子的。
我们现在来想一个问题,虽说债券的期限还有2年,但我们是不是就能说这只债券回收本利的平均时间就是2年呢?其实你会发现不是这样子的。
因为我们并不是所有的利息和本金都是在2年到期日时才收回,有些利息是在到期日之前就慢慢拿回来了,所以粗略的来看,这只债券本利回收的平均时间是低于2年的,也就是这只债券的久期肯定小于2年。
【久期的计算】而这只债券精确的久期又是多少呢?这就需要我们来进行计算了。
有的同学会说,根据现金流图,这只债券在1年末的时候可以收回5元利息,在2年末的时候可以收回105元的本利和。
那么根据久期的定义,这个本利的回收时间的加权平均=5/(5+105)×1+105/(5+105)×2=1.9545年,正好小于2年。
这样做对不对呢?我们说其实还是有一些问题的。
哪里出的问题呢?问题出在了权重上。
因为按照定义,每次支付时间的权重是该支付现值在债券总价值(债券价格)中所占的比例,并不是支付的现金流占总现金流的比例。
这里着重强调了是现值的比例,也就意味着我们在计算久期时不能直接用5/(5+105)或者105/(5+105)作权重,因为这里都是使用了债券的利息和本金的现金流,而没有进行折现处理,因此最后计算的久期的结果也肯定就出错了。
那么正确的方法应该如何做呢?正确的方法我们应该先将债券的利息和本金进行折现,然后用折现的现金流来取权重。
比如对于1年末收回的利息5元,我们应该先将其折现到现在,假设折现率为6%,那么1年后的5元求现值=5/(1+6%)=4.7170元;对于2年末回收的本利和105元,我们也用同样的方法对其折现,其现值=105/(1+6%)2=93.4496元。
债券久期计算-计算债券久期例题
![债券久期计算-计算债券久期例题](https://img.taocdn.com/s3/m/34e4c40eef06eff9aef8941ea76e58fafab0450a.png)
债券久期计算-计算债券久期例题本文介绍了债券久期的计算方法和概念。
首先,通过一个例子,介绍了如何计算债券的价格和久期。
其次,讲解了久期的两个含义,即加权平均到期时间和资产/负债的利率敏感性。
最后,给出了马考勒久期的计算公式和一般久期公式。
久期是一种衡量债券现金流支付时间的加权平均的方法。
它是债券在未来产生现金流的时间的加权平均,其权重是各期现金值在债券价格中所占的比重。
久期的计算方法有三种,分别是久期的定义、将久期看作债券价格对贴现率的弹性和运用久期函数。
其中,马考勒久期是最早提出的久期计算方法之一,其计算公式为:D = [PV(1) x 1 + PV(2) x 2 +。
+ PV(T) x T] / B。
需要指出的是,在债券发行时以及发行后,都可以计算马考勒久期。
久期的另一个含义是资产/负债的利率敏感性。
___、___和___在随后的若干年独立地发现了久期这一理论范畴,特别是___和___将久期用于衡量资产/负债的利率敏感性的研究。
根据“免疫策略”,当交易主体债券组合的久期与债权的持有期相等的时候,该交易主体短期内就实现了“免疫”的目标,即短期内的总财富不受利率波动的影响。
但是运用这一策略的前提则是,现有久期概念能否正确地衡量未来任何利率变动情景下债券价格的变动情况。
总之,久期是债券投资管理中的一个重要概念,能够帮助投资者衡量债券的价格和利率敏感性。
支付现金流的时间和利率水平密切相关。
久期越长,债券价格对利率变化的敏感性越高,反之亦然。
因此,投资者可以利用久期来评估债券的风险和收益,并根据市场情况进行相应的投资调整。
在债券分析中,久期已经超越了时间的概念,投资者更多地把它用来衡量债券价格变动对利变化的敏感度,并且经过一定的修正,以使其能精确地量化利率变动给债券价格造成的影响。
修正久期越大,债券价格对收益率的变动就越敏感,收益率上升所引起的债券价格下降幅度就越大,而收益率下降所引起的债券价格上升幅度也越大。
久期和凸性
![久期和凸性](https://img.taocdn.com/s3/m/5f913f723169a4517623a322.png)
久期与凸性就是衡量债券利率风险的重要指标,就是衡量债券价格对利率的敏感程度。
久期具有双面性,在利率上升周期,要选择久期小的债券;在利率下降周期,要选择久期大的债券。
凸性具有单面性,就就是凸性越大,债券的风险越小,选择凸性较大的债券,对持有者越有利。
久期描述了价格-收益率(利率)曲线的斜率,斜率大表明了作为Y轴的价格变化较大,而凸性描述了这一曲线的弯曲程度,或者就是由于该曲线的非线性程度较大,使得衡量曲线斜率的这一工具变化较大,无法以统一的数字来判断,因此再次对斜率的变化进行衡量,引入凸性参数。
凸性就就是债券价格对收益率曲线的二阶导数,就就是对债券久期(受利率影响,对利率敏感性)的再度测量。
在利率变化很小的时候,传统的久期(就是以每期现金流现值占总体现值的比)可以近似衡量债券价格与利率之间关系,但就是更为精确的衡量则就是修正久期。
久期(也称持续期,duration)就是1938年由F、R、Macaulay提出的,以衡量债券利率风险最常用的指标,反映市场利率变化引起债券价格变化的幅度。
直观地讲,就就是收益率变化1%所引起的债券全价变化的百分比。
久期=价格的变化幅度/单位收益率的变化它就是债券在未来产生现金流的时间的加权平均,其权重就是各期现金流现值在债券价格中所占的比重。
久期的计算比较麻烦,一般投资者没有必要自己去计算它。
久期取决于债券的三大因素:到期期限,本金与利息支出的现金流,到期收益率。
债券的久期越大,利率的变化对该债券价格的影响也越大,因此,该债券所承担的利率风险也越大。
在降息时,久期大的债券价格上升幅度较大;在升息时,久期大的债券价格下跌的幅度也较大。
由此,投资者在预期未来降息时,可选择久期大的债券;在预期未来升息时,可选择久期小的债券。
案例:某只债券基金的久期就是5年,如果利率下降1个百分点,则该基金的资产净值约增加5个百分点;反之,如果利率上涨1个百分点,则该基金的资产净值要遭受5个百分点的损失。
郑荐亢第二章债券的久期
![郑荐亢第二章债券的久期](https://img.taocdn.com/s3/m/ec328754be1e650e52ea9940.png)
上海财经大学浙江学院
学生实验报告
实验项目名称债券久期
实验室金融实验室(7-415)所属课程名称计算机在金融决策中的应用
实验类型综合型
实验日期2015年10月
班级保险二班
学号13406244
姓名郑荐亢
成绩
是权重为
))
))))
)
))
附件:
实验报告说明
1.实验项目名称:要用最简练的语言反映实验的内容。
2.实验类型:一般需说明是验证型实验还是设计型实验、综合型实验或其他实验。
3.实验目的与要求:目的要明确,要抓住重点。
4.实验原理:简要说明本实验项目所涉及的理论知识。
5.实验环境:实验用的软硬件环境(配置)。
6.实验方案设计(思路、步骤和方法等):这是实验报告极其重要的内容,概括整个实验过程。
对于验证型实验,要写明依据何种原理、何仲操作方法进行实验,并写明需要经过哪几个步骤。
对于设计型和综合型实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。
7.实验过程(实验中涉及的记录、数据、分析):写明具体上述实验方案的具体实施,包括实验过程中的记录、数据和相应的分析。
8.结论(结果):即根据实验过程中所见到的现象和测得的数据,做出结论。
9.小结:对本次实验的心得体会、思考和建议。
10.指导教师评语及成绩:指导教师依据学生的实际报告内容,用简练语言给出本次实验报告的评价和价值。
债券的久期及应用
![债券的久期及应用](https://img.taocdn.com/s3/m/e2bf9caa64ce0508763231126edb6f1aff0071b2.png)
债券的久期及应用债券的久期及应用(转)1 久期的概念久期也称持续期,是1938年由 F.R .Macaulay 提出的。
它是以未来时间发生的现金流,按照目前的收益率折现成现值,再用每笔现值乘以其距离债券到期日的年限求和,然后以这个总和除以债券目前的价格得到的数值。
上面是最科学的解释,看得人眼花缭乱,我通俗的解释一下,近似看成是债券的剩余年限就OK了。
债券的修正久期=久期/(1+YTM),我个人直接忽略之,直接用债券的剩余年限代替。
2 债券新手常常忽视久期有些债券新手常常忽视久期,债券只看YTM(到期年化收益率)甚至只看票面利率。
这是不科学的。
最简单的,债券a,一年期8%。
债券b,十年期10%。
哪支债券好?显然是ytm更低的一年期债券要好得多。
这就是久期的意义。
3 久期在实际中的应用理论上,债券的ytm每上升(下降)1%,债券的价格就会跌(涨)1%*久期这种表述并不准确,但大体是这个意思。
所以,我们在加息通道或者说债券要下跌时,持有久期短的债券。
在减息通道或者说债券要上涨时,持有久期长的债券。
因为,下跌时,久期短的债券,跌幅小。
上涨时,久期长的债券涨债大。
久期短的债券波动小,适合风险承受能力差的客户持有。
4 最受欢迎的是x+y型债券最受欢迎的是x+y型债券,同时具备短久期和长久期的优点。
短端的防御性和长段的攻击力。
5最后提下实际中久期计算5.1 注意回售,就是x+y型债券,部分网站忽略了回售5.2 提前还款的计算,这点儿常被忽视。
如某债券,最后三年0.3+0.3+0.4。
现在它的实际久期要这样计算,现在2012年2月3日,2016年11月16日到期,剩余期限4.79年。
原先,我们认为久期是4.79年。
实际上,应为0.3 * 2.9+0.3*3.79+0.4*4.79=3.92 比原先估算的短吧。
久期与债券价格波动
![久期与债券价格波动](https://img.taocdn.com/s3/m/b2fb3584a0c7aa00b52acfc789eb172ded639981.png)
久期在债券投资组合管理中的应用
免疫策略
通过调整债券投资组合的久期,使得投资组合对利率的变化具有一定的“免疫 ”能力,即无论利率如何变化,都能保持一定的,以减少利率变化对投资组合的影响。例如,持 有不同到期日的债券,当短期利率上升时,长期债券价格下跌幅度相对较小, 可以对冲短期债券的损失。
流动性风险与市场分割
总结词
流动性风险是指债券在交易过程中可能难以 买卖或买卖价格不公允的风险。市场分割则 是指不同市场之间的相互独立性,导致债券 价格在不同市场之间存在差异。
详细描述
久期主要关注债券的到期时间和利率敏感性 ,但忽略了流动性风险和市场的分割性。在 某些市场环境下,债券可能难以买卖,或者 买卖价格出现大幅波动,这会对投资者的收 益产生影响。此外,不同市场之间的相互独 立性可能导致同一债券在不同市场上的价格
零息债券
零息债券的久期等于其剩余到期时间与债券面值的乘积。
02
久期与债券价格波动的关系
利率变动对债券价格的影响
债券价格与利率负相关
当利率下降时,债券价格上涨;当利率上升时,债券价格下 跌。这是因为债券的未来现金流(利息和本金)是按照当前 市场利率进行折现的。
久期长度影响敏感性
久期是衡量债券价格对利率变化敏感性的指标。久期较长的 债券对利率的变化较为敏感,即利率的小幅变动可能会引起 债券价格的较大变动。
总结词
长期国债的久期分析通常关注利率风险和债券的到期期限。
详细描述
对于长期国债,久期分析主要评估其在利率变动下的价格波动。由于国债的信用风险较低,投资者更关注利率风 险,即利率变动对债券价格的影响。在分析中,通常会计算债券的到期时间、债券的年化收益率、债券的票面利 率等因素,以评估债券对利率变动的敏感性。
商业银行管理--久期分析
![商业银行管理--久期分析](https://img.taocdn.com/s3/m/2cb564bd8662caaedd3383c4bb4cf7ec4afeb628.png)
商业银行管理--久期分析商业银行管理--久期分析一、引言久期是商业银行资产负债管理中的重要概念,可以帮助银行有效管理利率风险和评估债券投资的回报和风险。
本文将介绍久期的概念和计算方法,并分析其在商业银行管理中的应用。
二、久期概念1:久期定义久期是指债券的平均久远时间,表示债券的现金流的时间权重,是债券的平均剩余期限。
久期越长,债券价格对利率变动的敏感性就越大。
2:久期计算久期的计算需要考虑债券的剩余期限、每期的现金流量和债券的当前市场价格。
常用的计算方法有修正久期、加权久期和有效久期等。
三、久期分析在商业银行管理中的应用1:风险管理久期分析可以帮助商业银行评估债券投资的敏感性,判断债券投资在不同市场情况下的风险水平。
通过久期分析,银行可以合理配置资产组合,降低利率风险的影响。
2:投资决策商业银行可以通过久期分析来评估债券投资的收益和风险。
久期较长的债券在利率下降时收益较高,但在利率上升时风险也较大;久期较短的债券在利率上升时收益较低,但在利率下降时风险也较小。
银行可以根据自身的风险承受能力和市场预期,选择合适的债券投资策略。
3:资金管理久期分析可以帮助商业银行优化资金的运用效率。
银行可以通过匹配资产和负债久期,降低利率风险和流动性风险,实现资金的稳健运作。
四、附件本文档提供以下附件供参考:1:久期计算表格2:久期分析案例五、法律名词及注释1:久期(Duration):表示债券的平均久远时间,是债券的平均剩余期限。
2:修正久期(Modified Duration):修正久期是指对债券的久期进行修正,使其考虑到债券的本息支付情况,更准确地反映债券价格和利率之间的关系。
3:加权久期(Weighted Duration):加权久期是指按照债券的现金流量和现值进行加权平均,得到的久期。
4:有效久期(Effective Duration):有效久期是指在利率变动时,债券价格变化的久期,考虑了债券的收益率级别。
资产久期计算例题
![资产久期计算例题](https://img.taocdn.com/s3/m/ed8dc3c2e109581b6bd97f19227916888486b9a2.png)
资产久期计算例题
麦考利久期的概念
为了全面反映债券现金流的期限特性,美国学者麦考利(macaulay)于年引入久期(duration)概念。
麦考利久期是使用加权平均数的形式计算债券的平均到期时间。
它是债
券在未来产生现金流的时间的加权平均,其权重是各期现值在债券价格中所占的比重。
对于零息债券,其久期等同于到期期限;对于附息债券,在债券到期之前的每一次还
本付息都会延长加权平均到期时间,因此还本付息时间的提早或者还本付息金额的减少都
会并使债券的久期延长。
麦考利久期的公式
麦考利久期的排序过程就是排序每次缴付金额的现值占到当前债券价格的比率,然后
以此比例为权重,除以每次缴付的期限,获得每次缴付的平均值期限,再将每次的平均值
期限加总,即为获得债券的久期。
其中:p为债券价格;c为每次付息金额;y为每个付息周期应计收益率(半年付息即
为年化收益率的一半);n为付息周期数(半年付息一次时为年数× 2);m为面值。
麦考利久期的例题
1.某2年期债券,每年付息一次,到期还本,面值为元,票面利率为10%,市场利率
为10%,则该债券的麦考利久期为()年。
a.1.35
b.1.73
c.1.91
d.2.56
参考答案:c
参考解析:市场利率=票面利率,则该债券的现值=面值=(元),第一年现金流现值
=×10%/(1+10%)≈9.09(元),第二年现金流现值=(×10%+)/(1+10%)2≈90.91(元),因此,麦考利久期d=1×9.09/+2×90.91/=1.91(年)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个常用术语:
PB---债券的现行价格,Δ PB---债券的价格变动 D---债券的久期; Δ i----预期利率的变动
D* DM
(1)
1 i
D*称为修正久期
D**(美元久期)= D*(修正久期)×PB
(2)
PB D*PBi D**i (3) 8
金融工程课程
PB D*PBi 的推导
因为,
PB
PB PB
D i
1 2
C
B
(i)
2
令CB表示凸度
CB
1 PB
d 2 PB di 2
1 PB (1 i)2
T
t(t 1)Ct (1 i)t
14
五、 凸度
金融工程课程
例9-3: 一种债券的面值为100元。票息额为每年9元。债券的到期期限为6年。 计算在不同市场利率情况下以及市场利率增加0.5%,该债券的久期和凸度以及 债券市场价格的估计变化。
t
Ct (1 i)t
dPB t
di
tCt (1 i)t1
1 (1 i)
t
tCt (1 i)t
t
( dPB
tCt (1 i)t
)
di
DM
di
PB
(1 i)PB
(1 i)
9
金融工程课程
因为,
dPB DM di
PB
(1 i)
dPB D*PB di
PB D*PB i D**i
金融工程课程
第九章 债券久期的基本概念
【本章学习要点】 久期是债券投资及其风险管理的重要概念。本章
涉及的其他重要概念有: 麦考利久期、修正久期、美元久期、凸度及风 险免疫等。要求掌握和理解久期的计算及其数学解释、久期与债券到期 期限、票息率、及市场利率之间的关系等;对将久期概念应用到债券组 合资产的风险免疫有一定的理解和认识。
PB
i
D* dPB di
PB
PB D* PB i
债券的价格的变化等于债券的修正久期乘以债券的价格再乘以市场利
率的变化
12
五、 凸度
久期实际描述的是债券价格对市场利率的一阶导数关系; 债券价格对市场利率的二阶导数关系即为凸度
PB b
c
a
D E
B G
A
F a’
C b’
i0 c’
-△i
△i
0.86
7.72
0.79
7.14
0.74
6.62
0.68
6.13
0.63
5.67
0.63
63.02
8.33 15.43 21.43 26.46 30.63 34.03 378.10
加总
104.62
514.42
DM =(514.42/104.62)=4.92(年)
表 9-1 例题9-1久期的计算
7
金融工程课程
解: i=8%
Ct =9元 M =6
时间 t
1.00 2.00 3.00 4.00 5.00 6.00 /(1+i)t
折现值 Ct/(1+i)t
时间的加权值 t×Ct/(1+i)t
9.00 9.00 9.00 9.00 9.00 9.00 100.00
0.93
8.33
10
金融工程课程
例题9-2:已知某种债券当前的市场价格为125美元,当前的市场年利率为5%, 债券的久期为4.6年, 求:如果市场利率上升40个基点,债券的市场价格将发生 怎样的市场变化?
i 解 : PB =125美元
=5%
DM=4.6年
i =+0.004
PB DM PBi 4.6 125 0.004 2.3美元
市场 利率%
债券的 价格
PB
修正久期 D*
近考虑久期 的价格变化
△PB
凸度
CB
近考虑久期 两种债券价格变 与凸度的价 化估计的差距 格变化
△PB
3.00 132.50 5.00 120.30 8.00 104.62 10.00 95.64
总现值
M
tPt
= t 1 M Pt t 1
5
金融工程课程
M
M
tCt /(1 i)t
tCt /(1 i)t M
DM
t 1 M
t1
Ct /(1 i)t
PB
tWt t 1
t 1
Wt
Ct /(1 i)t
M
Ct /(1 i)t
Pt
M
Pt
Pt PB
t 1
t 1
6
金融工程课程
例题9-1: 一种债券的面值为100元。票息额为每年9元。市场利率为8%。债 券的到期期限为6年。计算该债券的久期。
更加精确的计算结果为:
PB
DM PB (1 i)
i
4.6 125 0.004 1.05
2.19美元
11
四、 久期的数学解释
金融工程课程
市场利率的波动是债券价格变动的主要原因。如果将债券的价格看成是市场利率 的函数,记为,
PB PB (i)
PB
dPB di
i
PB dPB PB di
1
金融工程课程
第一节 麦考利久期 一、债券价格与市场利率的关系 二、麦考利久期(Macaulay Duration)的计算 三、修正久期、美元久期及债券价格变化估计 四、久期的数学解释 五、凸度 第二节 久期与债券到期期限、票息率、及市场利率之间的关系 一、 久期与债券到期期限的关系 二、 久期与市场利率之间的关系 三、 久期与债券票息率之间的关系 第三节 债券的风险免疫 一、 久期与债券的风险免疫 二、 债券组合的久期与免疫资产的组合 三、 免疫债券组合的免疫分析 四、 实践中存在的问题
2
第一节 麦考利久期
金融工程课程
一、债券价格与市场利率的关系
(1)较长期限的债券价格变动幅度大于较短期限的债券价格变动幅度。 (2)息票额较大的债券的变动幅度小于息票额较低的债券的变动幅度。
对于各种不同期限、不同票息额的债券,能否找到一种共同具备的特征量 ,由该特征量就可以简单比较出不同债券的价格变化呢? 答案是存在的,即每一种债券都存在一个叫做“久期”的特征量。“久期”是资 产组合利率敏感性的一个测度,久期相等的资产对于利率波动的敏感性是一致的 。
金融工程课程
i
13
五、 凸度
金融工程课程
久期实际描述的是债券价格对市场利率的一阶导数关系;
凸性描述的债券价格对市场利率的二阶导数关系;
PB
dPB di
i
1 2
d 2 PB di2
(i) 2
PB PB
dPB di PB
i
1 2
d 2 PB di2 PB
(i ) 2
d 2 PB
CB
di2 PB
3
久期的定义及其用途
金融工程课程
(1)当利率发生变化时,迅速对债券价格变化或债券资产组合价 值变化作出大致的估计。
(2)风险管理。
4
金融工程课程
二、麦考利久期(Macaulay Duration)的计算
(1)麦考莱久期估算法
将久期表述为债券现金流的时间加权现值之和与现金流的总现值 的比率。
D
时间加权现值