高分子表面活性剂概述

合集下载

表面活性剂的研究进展论文

表面活性剂的研究进展论文

表面活性剂的绿色化研究进展学号:201321132250姓名:王南建表面活性剂绿色化研究进展现在社会,表面活性剂的应用日益广泛,本文对现行的几种表面活性剂及其应用进行了初步的探索。

1. 脂肽生物表面活性剂自从Fleming发现微生物产生青霉素以来,微生物成为生物活性物质的一个重要来源,为天然合成化学品提供了丰富资源。

生物表面活性剂是微生物在一定条件下培养时,在其代谢过程申分泌出来的具有一定表面活性的代谢产物,如糖脂、多糖蛋白脂、脂肪、磷脂利脂肪酸中性类脂衍生物。

它们与一般表面活性剂分子在结构上类似,即在分子中不仅有脂肪烃链构成的非极性憎水基,同时也含有极性的亲水基。

生物表面活性剂的早期研究见于1946年,1965年之后,微生物对烃类乳化机制的研究引起人们的关注。

微生物产生的表面活性剂是微生物提高石油采收率的重要机制之一。

用微生物生产表面活性剂成为生物技术领域中的一个新课题。

1968年,Arima等首次发现枯草芽胞杆菌株(Bacillus subtilis)产生的是脂肽类表面活性剂,呈晶状,商品名为表面活性素(surfactin),这类表面活性剂主要含:伊枯草菌素(Iturilns),杆菌霉素(Bacillomycin),芬荠素(Fengycin)和表面活性(Surfacin)等,其中surfactin的表面活性最强,是迄今报道的效果最好的生物表面活性齐之一。

脂肽分子由亲水的肽键和亲油的脂肪烃链两部分组成,由于其特殊的化学组成和两亲型分子结构,脂肤类生物表面活性剂在医药、微生物采油、环境治理等领域有重要的应用前景。

目前发现的脂肽类生物表面活性剂有数十种。

2. 高分子表面活性剂高分子表面活性剂通常指分子量大于1000、具有表面活性的物质。

减小两相界面张力的大分子物质皆可称为高分子表面活性剂。

高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等能力,毒性小,可用作胶凝剂、减阻剂、增粘剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等。

表面活性剂概述、结构特点、分类

表面活性剂概述、结构特点、分类
02 亲水基团能够与水分子结合,增加表面活性剂在 水溶液中的溶解度。
03 亲水基团的性质和数量对表面活性剂的离子类型、 溶解度和性能有重要影响。
连接基团
01
连接基团是连接疏水基团和亲水基团的桥梁,通常为
碳链或芳香环。
02
连接基团的性质和长度对表面活性剂的聚集状态和性
能有重要影响。
03
连接基团的设计和优化是表面活性剂分子设计中的关
短链表面活性剂
疏水基团较短的表面活性剂,具有较 低的表面张力和较好的润湿性。
长链表面活性剂
疏水基团较长的表面活性剂,具有较 高的表面张力和较好的渗透性。
按亲水基团分类
羧酸盐型
以羧酸及其衍生物作为亲水基团的表面活性剂, 具有较好的耐酸、耐硬水能力。
硫酸酯盐型
以硫酸酯作为亲水基团的表面活性剂,具有较好 的耐碱、耐硬水能力。
磺化法
用浓硫酸或氯磺酸等强酸处理有机物,引入磺 酸基团,形成表面活性剂。
酯化法
通过醇和酸的酯化反应,生成酯类表面活性剂。
绿色合成方法
生物发酵法
利用微生物发酵产生表面活性剂,具有环保、可持续 的优点。
酶催化法
利用酶催化反应合成表面活性剂,选择性高、条件温 和。
绿色氧化还原法
利用环保的氧化剂和还原剂合成表面活性剂,减少对 环境的污染。
亲水亲油平衡值(HLB)
总结词
亲水亲油平衡值是衡量表面活性剂亲水性和亲油性平衡程度的指标。
详细描述
HLB值越大,表面活性剂的亲水性越强;反之,HLB值越小,表面活性剂的亲油性越强。选择合适的 HLB值的表面活性剂对于发挥其应用性能至关重要。
泡沫性能与去污力
总结词
泡沫性能和去污力是衡量表面活性剂在 洗涤、清洁等领域应用效果的性能参数 。

表面活性剂介绍

表面活性剂介绍
表面活性剂的这一特性使其能够在界面上富集,降低界面张力,从而起到 润湿、乳化、增溶、起泡等多方面的作用。
表面活性剂的分类
01
按化学结构分类
阴离子型、阳离子型、非离子型和 两性离子型等。
按应用分类
洗涤剂、化妆品、食品工业、医药、 农药等专用表面活性剂。
03
02
按来源分类
天然表面活性剂和合成表面活性剂。
表面活性剂能够降低固体表面与液体的接 触角,提高固体表面的润湿性,有利于物 质的分离和制备。
在泡沫体系中,表面活性剂可以控制泡沫 的大小和稳定性,发泡和消泡在日化、食 品、医药等领域有广泛应用。
03
表面活性剂的应用领域
工业清洗
总结词
表面活性剂在工业清洗中发挥重要作用,能够降低水的表面张力,使污渍和油 脂更容易被去除。
THANKS
感谢观看
石油工业
总结词
表面活性剂在石油工业中用于提高采收率和油水分离效果。
详细描述
表面活性剂能够降低油水界面张力,改善原油的流动性,提高采收率。同时,它 们在油水分离过程中发挥重要作用,能够将水和原油有效分离,提高油品质量和 产量。
食品工业
总结词
表面活性剂在食品工业中用于食品加工、乳化、增稠和稳定食品体系。
04
表面活性剂的发展趋势与展望
新材料与新技术的应用
纳米材料的应用
表面活性剂在纳米材料制备中发 挥重要作用,如纳米颗粒、纳米 纤维和纳米膜等。
高分子材料的应用
高分子表面活性剂在胶束、乳液 、微乳液等领域具有广泛应用, 可提高材料的性能和稳定性。
绿色环保与可持续发展
生物可降解表面活性剂
随着环保意识的提高,生物可降解表 面活性剂成为研究热点,如脂肪酸酯 、烷基多糖苷等。

表面活性剂分类

表面活性剂分类

表面活性剂的分类姓名:黄朋学号: 2012G0303006 1、高分子表面活性剂:离子分类亲水基高分子表面活性剂天然系半合成系合成系阴离子型羧酸基海藻酸钠果胶酸钠腐植酸钠咕吨树胶羧甲基纤维素羟甲基淀粉丙烯酸接枝淀粉水解丙烯腈接枝淀粉丙烯酸共聚物马来酸共聚物水解聚丙烯酰胺磺酸基木质素磺酸盐铁铬木质素磺酸盐缩合萘磺酸盐聚苯乙烯磺酸盐硫酸酯基缩合烷基苯醚硫酸酯阳离子型胺基壳聚糖阳离子淀粉氨基烷基丙烯酸酯共聚物聚乙烯苯甲基三甲铵盐季铵盐两性型胺基、羧基等水溶性蛋白质类非离子型多元醇及其他淀粉淀粉改性产物甲基纤维素乙基纤维素羧乙基纤维素聚乙烯醇聚乙烯基醚EO加成物聚乙烯吡咯烷酮2、离子分类:阴离子型表面活性剂离子型表面活性剂阳离子型表面活性剂表面活性剂非离子型表面活性剂两性表面活性剂特殊表面活性剂阴离子型表面活性剂:羧酸盐型、磺酸盐型、硫酸酯盐型、磷酸酯盐型等阳离子表面活性剂:脂肪胺盐、烷基咪唑啉盐、烷基吡啶盐、β—羟基胺等两性表面活性剂:从广义上讲,分子结构中含有两种及两种以上极性基团的表面活性剂,均可称为两性活性剂。

可将其分为:非离子-阴离子型;非离子-阳离子型;阴离子-阳离子型;非离子-阳离子-非离子型。

这类表面活性剂具有许多独特的性质。

例如,对皮肤的低刺激性,具有较好的抗盐性,且兼备阴离子型和阳离子型两类表面活性剂的点,既可用作洗涤剂、乳化剂,也可用作杀菌剂、防霉剂和抗静电剂。

因而,两性离子表面活性剂是近年来发展较快的一类。

非离子型表面活性剂:这类表面活性剂溶于水后不发生解离,其极性基部分大多为氧乙烯基、多元醇和酰胺基。

类型:酯型;醚型;胺型;酰胺型;混合型(Tween)酯醚型等。

特殊表面活性剂:以碳氟链为疏水基的表面活性剂,简称为氟表面活性剂,如全氟辛酸。

这类活性剂具有极高的表面活性,不仅可以使水的表面张力降至20 mN.m-1以下,而且能降低油的表面张力。

其化学性质极其稳定,具有抗氧化、抗强酸和强碱及抗高温等特性。

高分子表面活性剂的分类、特征及应用

高分子表面活性剂的分类、特征及应用

高分子表面活性剂的分类、特征及应用摘要:概述了高分子表面活性剂的分类、性质、合成方法及应用,分析了其应用前景,旨在通过对高分子表面活性剂相关内容的综述和介绍,让更多的人认识和了解高分子表面活性剂。

关键词:高分子表面活性剂;分类;应用高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而言讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物,也有说法认为,高分子表面活性剂是指分子量达到某种程度以上(一般为103~106) 又一定表面活性的物质[5],虽然,高分子表面活性剂分子量,甚至,高分子物质分子分子量到底多大并没有严格的界限,但总之,高分子表面活性剂相比低分子表面活性剂其分子量要大很多。

和低分子表面活性剂一样,高分子表面活性剂由亲水部分和疏水部分组成。

1951年施特劳斯把结合有表面活性官能团的聚1-十二烷基-4-乙烯吡啶溴化物命名为聚皂从而出现了合成高分子表面活性剂。

1954年美国Wyandotte公司报到了合成聚氧乙烯聚氧丙烯嵌段共聚物非离子高分子表面活性剂此后具有高性能的各种高分子表面活性剂相继开发。

高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,被广泛用作胶凝剂、减阻剂、增粘剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等[1]。

因此高分子表面活性剂近年来发展迅速,目前,已成为表面活性剂的重要发展方向之一。

1.高分子表面活性剂的分类高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。

如阴离子型的高分子表面活性剂有聚甲基丙烯酸钠、羧甲基纤维素钠、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸脂等。

阳离子型的高分子表面活性剂有氨基烷基丙烯酸酯共聚物、改型聚乙烯亚胺、含有季胺盐的丙烯酸酰胺共聚物、聚乙烯苯甲基三甲铵盐等。

两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸一阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。

大学表面活性剂复习资料(考试用)

大学表面活性剂复习资料(考试用)

大学表面活性剂复习资料(考试用)表面活性剂化学复习资料名词解释题目第一章表面活性剂的概述1.表面:液体或固体和气体的接触面。

(物质和它产生的蒸汽或者真空接触的面)2. 界面:液体与液体,固体与固体或液体的接触面。

(物质相与相之间的分界面称之为界面)3. 表面张力:指垂直通过液面上任一单位长度、与液面相切的收缩表面的力(N/m)。

4. 表面自由能:指液体增加单位表面上所需做的可逆功,或恒温恒压下增加单位表面积时体系自由能的增值,或单位表面上的分子比体相内部同分子量所具有的自由能过剩值,称为表面自由能(J/m2)。

5. 表面活性:在液体中加入某种物质使液体表面张力降低的性质叫表面活性。

如肥皂中的脂肪酸钠,洗衣粉中的烷基苯磺酸钠等。

6. 表面活性剂:是指在某液体中加入少量某物质时就能使液体表面张力急剧降低,并且产生一系列应用功能,该物质即为表面活性剂。

第二章表面活性剂的作用原理1. 吸附:表面上活性剂这种从水内部迁至表面,在表面富集的过程叫吸附。

2. 低表面能固体:表面活性剂的表面能<100mJ/m2的物质3. 高表面能固体:表面活性剂的表面能>100mJ/m2的物质。

4. 胶束:两亲分子溶解在水中达一定浓度时,其非极性部分会互相吸引,从而使得分子自发形成有序的聚集体,使憎水基向里、亲水基向外,减小了憎水基与水分子的接触,使体系能量下降,这种多分子有序聚集体称为胶束。

(2)反胶束:表面活性剂在有机溶剂中形成极性头向内,非极性头尾朝外的含有水分子内核的聚集体,称为反胶团。

(3)临界胶束浓度:表面活性剂溶液的表面张力随着活性剂浓度的增加而急剧地降低,但是当浓度增加到一定值后,表面张力随溶液浓度的增加而变化不大,此时表面活性剂从分子或离子分散状态缔合成稳定的胶束,从而引起溶液的高频电导、渗透压、电导率等各种性能发生明显的突变,这个开始形成胶束的最低浓度称为临界胶束浓度(CMC)。

(4)亲水-亲油平衡值(HLB):系表面活性剂中亲水和亲油基团对油或水的综合亲合力,是用来表示表面活性剂的亲水亲油性强弱的数值。

高分子表面活性剂

高分子表面活性剂
高分子表面活性剂
1
一、高分子表面活性剂简介

二、高分子表面活性剂结构与ቤተ መጻሕፍቲ ባይዱ能

三、高分子表面活性剂的分类

四、高分子表面活性剂的合成

五、高分子表面活性剂的应用
一、高分子表面活性剂简介
通常是某种物质当它溶于水中即使浓度 很小时,能显著降低水同空气的表面张力, 或同其它物质的界面张力,则该物质称为表 面活性剂
胶束浓度(CMC)
表面活性剂浓度和活动情况关系图
7
二、高分子表面活性剂的结构与性能
棒状 球状
片状
层状
8
二、高分子表面活性剂的结构与性能
乳化作用: 指将一种液体的细小颗粒分散于另一种不相溶的液 体中,所得到的分散体系被成为乳液。
泡沫作用: 泡沫实际是气结体论分:散表于面液活体性中剂的水分溶散液体其系,泡沫的 形成涉及起泡和稳泡两个浓因度素只。有稍高于其CMC值 分散作用: 增加固体粒子时在,溶才液能中充的分分显散示分其散作稳用定。性问题。
五、高分子表面活性剂的应用
4.2在石油工业中的应用 驱油剂:利用高分子表面活性剂如(超高分子量聚丙烯
酰胺)能够充分解决石油开采过程中由于原油中的胶质 、沥青质、蜡等重质成份的析出在地层中沉积成垢的堵 塞。大致每用1kg驱油剂可以多出原油10桶,在三次采油 中应用前景广阔。 破乳剂 压裂液 稠油降粘剂 钻井用化学剂 油田水处理剂
四、高分子表面活性剂的合成
3.高分子化学反应 通过化学反应的方法在聚合物上引入疏水基或亲水基 。 优点:直接用已商品化的聚合物作起始原料, 得到的产物 相对分子量较高。 缺点:反应通常需要在高粘度的聚合物溶液中进行。
例如:将常用的 PVA(聚乙烯醇)完全醇解或部分醇解 后与氯代烷或醇进行醚化反应可得到具有表面活性的 PVA 。

表面活性剂的类型

表面活性剂的类型
详细描述
含氟表面活性剂的分子结构中含有一氟或多氟基团,这些基 团的存在使得含氟表面活性剂具有极佳的表面活性和化学稳 定性。它们广泛应用于石油、化工、制药、电子等领域,作 为清洁剂、乳化剂、分散剂等。
高分子表面活性剂
要点一
总结词
高分子表面活性剂是一类具有高分子量和高表面活性的物 质,具有优异的分散性、增稠性和稳定性等特点。
的水溶性和生物相容性。
氨基酸型表面活性剂在低浓度下 即可显著降低水的表面张力,具 有较好的润湿、乳化、分散和泡
沫性能。
常见的氨基酸型表面活性剂有甘 氨酸、丙氨酸等。
05
其他表面活性剂
含氟表面活性剂
总结词
含氟表面活性剂是一种具有优异性能的表面活性剂,具有高 表面活性、低表面张力、良好的化学稳定性和热稳定性等特 点。
硫酸盐类
烷基硫酸酯盐
如十二烷基硫酸钠(SDS),具有良 好的发泡、去污和乳化性能,常用于 洗涤剂、化妆品和农药等领域。
脂肪醇硫酸酯盐
如月桂醇硫酸钠(SLS),具有较好的 去污和发泡性能,常用于洗发水、沐浴 露等领域。
磺酸盐类
烷基磺酸盐
如十二烷基磺酸钠(SDS),具有较好的去污和乳化性能,常用于洗涤剂、农 药等领域。
04
两性表面活性剂
咪唑啉型
咪唑啉型表面活性剂是一种两性表面活性剂,其分子结构中同时含有阳离子和阴离 子,具有较好的水溶性和生物相容性。
咪唑啉型表面活性剂在低浓度下即可显著降低水的表面张力,具有较好的润湿、乳 化、分散和泡沫性能。
常见的咪唑啉型表面活性剂有十二烷基二甲基咪唑啉、十六烷基二甲基咪唑啉等。
季铵盐型
总结词
季铵盐型阳离子表面活性剂是一种高效 、低毒、生物降解性好的阳离子表面活 性剂。

高分子表面活性剂在水处理剂中的应用

高分子表面活性剂在水处理剂中的应用

第17卷第12期2000年12月精细化工FINE CHEMICA LSV ol.17,N o.12Dec.2000表面活性剂高分子表面活性剂在水处理剂中的应用①宋照斌,宋启煌(广东工业大学化工系,广东广州 510090)摘要:概述了高分子表面活性剂的特性,用作水处理剂的表面活性剂的重要品种,应用及展望。

关键词:高分子表面活性剂;水处理剂;应用中图分类号:T Q423.9 文献标识码:A 文章编号:1003-5214(2000)12-0700-04 高分子表面活性剂通常是指相对分子质量在数千以上、具有表面活性的物质。

与普通表面活性剂一样,高分子表面活性剂同样由亲水和亲油二部分组成。

从分子结构来看,高分子表面活性剂有无规型、嵌段型和接枝型等几种分子结构型式。

若从表面活性剂亲水部分的性质来看,它则可分为阴离子型、阳离子型、两性离子型和非离子型四大类。

高分子表面活性剂具有分散、乳化、增溶、增稠等能力,毒性小,可用作分散稳定剂、乳化剂、破乳剂、药物增溶剂、保湿剂、洗涤剂、水处理剂等。

作为工业“味精”的表面活性剂发展迅猛,其应用领域从日用化学工业发展到石油、纺织、食品、农业、环境以及新型材料等方面,年产量以4%~5%的速度增长,1995年世界表面活性剂的产量就已达900万t,品种一万种以上,市场营销额为100亿美元以上[1],1997年我国主要表面活性剂产量为48万t,其中:阴离子39万t,非离子7万t,阳离子约2万t。

表面活性剂品种1444种,其中:非离子644种,阴离子407种,阳离子289种,两性离子104种。

据日用化学工业信息预测世界表面活性剂的需求2000年将达1080万t,2005年将达1250万t。

工业的迅猛发展大大推动和促进了表面活性剂学科的发展,并扩大了其应用范围。

在水处理剂中得到了新的应用。

水处理剂是精细化工产品中的一个重要门类,目前所用的水处理剂主要有絮凝剂、缓蚀剂、阻垢分散剂、杀菌灭藻剂、除垢剂、除油剂、除氧剂、浮选剂、软化剂等。

聚醚高分子表面活性剂的性质

聚醚高分子表面活性剂的性质

聚醚高分子表面活性剂的性质(胶束化)PEO-PPO-PEO嵌段共聚物是典型的高分子表面活性剂,与小分子表面活性剂的性质不同,如胶束内核含有大量的水、外界因素对胶束结构有显著影响等: 另一方面PEO-PPO-PEO嵌段共聚物具有温度敏感胶束化、温度敏感增溶以及温度敏感的液晶晶型结构等特点,鉴于对PEO-PPO-PEO嵌段共聚物物理化学性质的研究是扩展其应用领域的关键,许多研究小组从不同的技术,考察PEO-PPO-PEO嵌段共聚物的物理化学性质。

a.理论模型Linse[1-3]从平均场格子理论基础上对PEO-PPO-PEO三嵌段共聚物在溶液中的胶束化进行了研究,通过实验得到了Pluroni型高分子表面活性剂的CMC、聚集数、水力半径受温度影响的半定量关系,发现分子量的增加或分子中EO/PO比的减小有利于在给定聚合物浓度下胶束化起始温度的降低,也相应地有利于在给定温度下CMC的降低。

图1是Linse等人建立的格子理论模型图。

多种模型可以用于模拟表面活性剂在水溶液中的胶束化行为,最著名的是Hurter[4,5]习等使用自洽均匀场晶格理论模拟PEO-PPO-PEO嵌段共聚物在水溶液中的胶束化,均匀场近似限制在二维空间(同心的格子层内),应用步长加权的随机行走描述非均相体系。

聚合物链节和溶剂分子分布在格子内,每条聚合物有多种构造方式,链节作用对自由能的贡献可用Flory-Huggins作用参数表达,在自由能最小的条件下确定每种构造的聚合物链数,大致计算出平衡时链节的密度。

自洽均匀场模型PEO-PPO-PEO嵌段共聚物的结果表明:PPO链段组成胶束的内核,胶束的内核中包裹有部分的水,胶束的内核和外核之间以及胶束的外壳和溶剂水之间没有严格的分界,而是扩散的界面。

Hurte:进一步模拟了PEO-PPO-PEO嵌段共聚物增溶多环芳香烃,一个多环芳香烃分子占据一个格子,芳香烃的增溶影响PEO-PPO-PEOO嵌段共聚物胶束的结构,降低胶束内核的含水量,自洽均匀场理论模型的胶束结构与实验观察的结果相一致。

简述聚合表面活性剂和高分子表面活性剂的分类和应用

简述聚合表面活性剂和高分子表面活性剂的分类和应用

简述聚合表面活性剂和高分子表面活性剂的分类和应用化学化工学院08级王化成20081810010038徐畅200818100100322011年5月18日简述聚合表面活性剂和高分子表面活性剂的分类和应用王化成徐畅辽宁师范大学化学化工学院摘要:表面活性剂已经成为高新技术产业不可缺少的重要助剂。

本文综述了聚合表面活性剂和高分子表面活性剂在不同领域的应用。

并对其今后的研究开发方向及发展趋势作了展望。

关键词:聚合表面活性剂;高分子表面活性剂;分类;应用1引言表面活性剂是一大类有机化合物,它活跃于表/界面上、具有极高的降低表/界面张力的能力和效率,在一定浓度以上的溶液中能形成分子有序组合体,从而具有一系列应用功能。

新一代gemini表面活性剂的出现,为表面活性剂的发展开拓了广阔的前景,它已成为当今生命科学、药物科学、材料科学等众多重要领域所共同关注的热点之一。

与传统单链表面活性剂相比,gemini表面活性剂具有极低的临界胶束浓度(cmc)、很强的降低表面张力的能力、奇异的聚集形态、特殊的相行为及流变性质等[1],可以说是表面活性剂领域的一场重大变革。

原因在于gemini表面活性剂分子中含有两个极性头和两条疏水链,在其亲水基之间或者靠近亲水基的疏水部分之间由一个联接基团(spacer)通过化学键连接构成。

这种结构一方面增强了碳氢链的疏水作用,使疏水基团自水溶液中逃逸而相互聚集成胶束的趋势增大;另一方面,受化学键的限制,极性头间的静电斥力被大大削弱。

Gemini表面活性剂实质上可看作是两个传统单头单尾表面活性剂分子的聚合体,那么对于更高聚合度的表面活性剂,如三聚、四聚甚至是高聚表面活性剂,其性能又会如何呢?大量的实践证明,寡聚乃至高聚表面活性剂相比于gemini表面活性剂而言,又具有更低的临界胶束浓度、更加丰富的聚集行为和更为优异的性质.但是到目前为止,关于寡聚和高聚型两亲分子的研究报道还极少,从分子设计合成到物理化学性质的研究才刚刚起步,有诸多的自组装规律、有序聚集体结构方面的问题亟待解决。

高分子表面活性剂

高分子表面活性剂

1.1 表面活性剂分子中具有亲水基与疏水基,能富集(吸附)于界面,使界面性质发生显著改变而表现出界面活性的物质称为表面活性剂。

常用的表面活性剂多为分子量为数百的低分子量化合物。

随着诸多热点领域,如强化采油(enhanced oil recovery)[1]、药物载体与控制释放、生物模拟、聚合物LB膜、医用高分子材料(抗凝血)以及乳液聚合等的深入研究,对表面活性剂的要求趋于多样化和高性能化。

而在众多的新型结构的表面活性剂中,具有表面活性的高分子化合物现已成为人们关注的焦点,对其进行的研究开发如火如荼。

1.2 高分子表面活性剂[1-3]一般来说,将分子量在数千以上且具有表面活性的物质称为高分子表面活性剂[4-9]。

最早使用的高分子表面活性剂有纤维素及其衍生物,以及作为胶体保护剂使用的天然海藻酸钠和各种淀粉。

1951年Strauss首次合成了高分子表面活性剂—聚十二烷基4-乙烯吡啶溴化物,并将其命名为聚皂(ploysoap);随后1954年美国Wyandotte公司报道了非离子型高分子表面活性剂聚氧乙烯聚氧丙烯嵌段共聚物的合成,并将其进行了工业化生产(商品名为Pluronics),其中分子量为8.1×103的Pluronic104在重量百分比浓度为0.1%时可使溶液的表面张力降至33.1Mn·m-1。

与低分子表面活性剂相比,高分子表面活性剂具有以下特点[5]:1) 具有较高的分子量,渗透能力差,可形成单分子胶束或多分子胶束;2) 溶液粘度高,成膜性好;3) 具有很好的分散、乳化、增稠、稳定以及絮凝等性能,起泡性差,常作消泡剂;4) 大多数高分子表面活性剂是低毒或无毒的,具有环境友好性;5) 降低表面张力和界面张力的能力较弱,且表面活性随分子量的升高急剧下降,当疏水基上引入氟烷基或硅烷基时其降低表面张力的能力显著增强。

在众多的高分子表面活性剂中,水溶性高分子表面活性剂由于具有水溶性近年来发展十分迅速。

表面活性剂的名词解释

表面活性剂的名词解释

表面活性剂的名词解释
表面活性剂是一种在化学和物理领域中广泛使用的添加剂,也被称为表面活性物质或高分子活性物质。

它们可以改变液体的物理性质,从而使其更容易与其它液体和固体分子混合,并形成更加稳定的聚合物。

更重要的是,表面活性剂可以有效地保护和改善少量添加剂的物理和力学性质,并维持其稳定性。

表面活性剂的类型主要有三种:阴离子活性剂、阳离子活性剂和非离子活性剂。

阴离子活性剂是指含有负电荷的分子,它们在水中有很好的溶解度,可以在液体中形成聚合物。

阳离子活性剂含有正电荷,它们在液体中形成聚合物,而非离子活性剂则不含电荷,它们可以在液体中形成均匀的乳状液体。

表面活性剂在众多行业中都有重要的应用,其中最常见的应用包括家用化妆品和清洁剂、农药、纺织品助剂以及工业用的洗涤剂和润滑剂等。

它们可以帮助消解泥沙,改善液体的稳定性,保护和改善基质的物理和力学性质,防止结晶,降低表面张力,增强乳状液体的流变性,提高界面活性物质的稳定性,去除污染物并延长储存时间等。

表面活性剂的安全性取决于它的化学结构,部分活性剂会对人体和环境产生不良影响,因此在使用表面活性剂时应非常小心,避免受到污染物的危害。

此外,应按照产品说明书的指示和产品性能要求,遵循相关法律和法规,并正确使用和处理表面活性剂,以确保生产环境的安全性。

表面活性剂具有许多特性,可以改善液体的力学性能,减少表面
张力和结晶,防止物质的污染,提高乳状液体的流变性,延长储存时间等。

它们可以有效地改善少量添加剂的物理和力学性质,并维持其稳定性,因此是大多数工业生产中不可或缺的添加剂。

表面活性剂的结构特点及分类

表面活性剂的结构特点及分类

润湿性能
总结词
表面活性剂能够改善液体的润湿性能,使其更好地与固体表面接触。
详细描述
表面活性剂能够降低界面张力,使得液体更好地渗透到固体表面,从而提高润湿效果。
乳化性能
总结词
表面活性剂能够将两种不混溶的液体混合在一起,形成稳定的乳浊液。
详细描述
表面活性剂分子能够吸附在两种液体的界面上,形成稳定的乳化膜,防止液体分离,从而实现乳化效 果。
表面活性剂的应用
工业清洗
用于清洗机械、设备、管道等表面的油污和 杂质。
农药
作为农药的辅助剂,提高农药的附着力和渗 透力,从而提高药效。
化妆品
用于制作洗发水、沐浴露、护肤品等,起到 保湿、滋润、清洁等作用。
油气开采
作为乳化剂和破乳剂,用于提高采油采气效 率。
02
表面活性剂的结构特点
亲水基团
亲水基团是表面活性剂分子中与水分子相互作用的部分,通常为极性基团,如羟基、 羧基、氨基等。
地降低油水界面张力。
疏水基团的性质和数量对表面 活性剂的溶解度、润湿性、乳
化性等性能有重要影响。
连接基团
01
连接基团是连接亲水基团和疏水基团的桥梁,通常为碳链或碳 氧链。
02
连接基团的长度和性质对表面活性剂的性能有重要影响,如降
低表面张力、润湿性、乳化性等。
连接基团的数量和排列方式也会影响表面活性剂的性能。
新型绿色表面活性剂的研究与开发
随着环保意识的提高,新型绿色表面活性剂的研究与开发越来越受到重视。
新型绿色表面活性剂主要包括天然表面活性剂、生物表面活性剂和可降解 表面活性剂等。
这些新型绿色表面活性剂具有低毒或无毒、可生物降解、环境友好等特点, 在化妆品、食品、医药等领域有广泛的应用前景。

高分子表面活性剂

高分子表面活性剂

高分子表面活性剂高分子表面活性剂能显著降低液体表面张力的高分子量物质。

有天然高分子表面活性剂和合成高分子表面活性剂两类,同时含有亲水链段(或基因)和疏水链段的高分子可具有表面活性,如聚环氧乙烷、环氧乙烷和环氧丙烷的嵌段共聚物等。

可用于乳液聚合、悬浮聚合,并用作凝结剂和抗静电剂等环氧乙烷环氧乙烷分子结构示意图 环氧乙烷是一种有机化合物,化学式是C2H4O ,是一种有毒的致癌物质,以前被用来制造杀菌剂。

环氧乙烷易燃易爆,不易长途运输,因此有强烈的地域性。

被广泛地应用于洗涤,制药,印染等行业。

在化工相关产业可作为清洁剂的起始剂。

中文名: 环氧乙烷 外文名: epoxyethane 别名: 氧化乙烯 分子式:C2H4O 相对分子质量: 44.05 化学品类别: 有机物--烃的含氧衍生物 管制类型:环氧乙烷(*) 储存: 密封保存简介管制信息环氧乙烷(*) 该品根据《危险化学品安全管理条例》受公安部门管制。

物理性质环氧乙烷结构式外观与性状:无色气体。

熔点(℃):-112.2相对密度(水=1):0.87沸点(℃):10.4相对蒸气密度(空气=1):1.52分子式:C2H4O分子量:44.05饱和蒸气压(kPa):145.91(20℃)燃烧热(kJ/mol):1262.8临界温度(℃):195.8临界压力(MPa):7.19辛醇/水分配系数的对数值:-0.30闪点(℃):<-17.8(O.C)爆炸上限%(V/V):100引燃温度(℃):429爆炸下限%(V/V):3.0溶解性:易溶于水、多数有机溶剂。

[1]化学性质化学性质非常活泼,能与许多化合物起加成反应。

作用与用途环氧乙烷有杀菌作用,对金属不腐蚀,无残留气味,因此可用材料的气体杀菌剂。

通常采用环氧乙烷-二氧化碳(两者之比为90:10)或环氧乙烷-二氯二氟甲烷的混合物,主要用于医院和精密仪器的消毒。

环氧乙烷用熏蒸剂常用于粮食、食物的保藏。

例如,干蛋粉的贮藏中常因受细菌的作用而分解,用环氧乙烷熏蒸处理,可防止变质,而蛋粉的化学成分,包括氨基酸等都不受影响。

药剂3-表面活性剂与药用高分子材料-qxl

药剂3-表面活性剂与药用高分子材料-qxl

HLB值 3~6 7~9 8~18
应用 W/O型乳化剂 作润湿剂与铺展剂 O/W型乳化剂
HLB值 13~18 1~3 13~16
应用 增溶剂 消泡剂 去污剂
(三)HLB值计算
➢ 非离子表面活性剂的HLB具有加和性。 1. 对非离子型表面活性,可能过经验式求得:
HLBab=(HLBa×Wa+HLBb×Wb)/(Wa+Wb) 2. 理论计算法:如果HLB值是由表面活性剂分子中各种结
胶束:
亲水基团 疏水基团
CMC的测定方法: 1. 表面张力法 2. 电导法 3. 染料法 4. 光散射法
CMC
五、亲水亲油平衡值
(一)定义
➢ 亲水亲油平衡值(hydrophile-lipophile balance,HLB) 系表面活性剂中亲水和亲油基团对油或水的综合亲合力, 是用来表示表面活性剂的亲水亲油性强弱的数值。
➢ 表面活性剂的HLB值,可决定乳浊液的类型; ➢ 选用HLB值为3~8的表面活性剂作为油包水型(W/O)乳
化剂; ➢ 选用HLB值8~16的表面活性剂作为水包油型(O/W)乳
化剂。
乳化剂
W/O
O/W
三、润湿剂(Wetters)
➢ 润湿:促进液体在固体表面铺展或渗透的作用。 ➢ HLB值7~9,并有适宜溶解度的表面活性剂,可作润湿
表面活性剂与药用高分子材料
药剂教研室 祁小乐
本章学习要求
➢ 掌握表面活性剂的定义和分类; ➢ 掌握表面活性剂的基本性质和应用; ➢ 熟悉药用高分子材料基本理化性质与应用性质; ➢ 了解表面活性剂的生物学性质; ➢ 了解常用的高分子材料及应用。
第一节 概述 一、概念
➢ 表面张力:使液体表面分子向内收缩至最小面积的一种 力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 高分子表面活性剂
(a) 概述
高分子表面活性剂是指分子量在数千以上并具有表面活性的物质[1-8]。

广义上,凡是能够减小两相界面张力的大分子物质皆可称为高分子表面活性剂。

其具有分散、乳化、增溶、增稠等能力。

毒性小,作为一种多功能的新型表面活性剂可用作分散稳定剂、乳化剂破乳剂、药物增溶剂、保湿剂,洗涤剂、水处理剂等。

由于高分子表面活性剂兼具有增粘性和表面活性,因此在石油开采、涂料工业、医药、化妆品和蛋白质等领域中有巨大的应用前景。

高分子表面活性剂按离子类型划分,可分为阴离子型、阳离子型、两性离子型和非离子型四大类[9]。

按来源划分,可分为天然高分子表面活性剂、天然改性高分子表面活性剂及合成高分子表面活性剂。

最早使用的高分子表面活性剂有淀粉、纤维素及其衍生物等天然水溶性高分子化合物,它们虽然具有一定的乳化和分散能力,但由于这类高分子化合物具有较多的亲水性基团,故其表面活性较低。

1951年Stauss合成了聚皂,1954年第一种商品化高分子表面活性剂问世,此后各种合成高分子表面活性剂相继开发并应用于各种领域[10]。

(b) 高分子表面活性剂驱油机理
在油田广泛应用的水溶性高分子表面活性剂有改性淀粉、纤维素醚、磺化本质素、水解聚丙烯酰胺、聚乙烯醇、聚丙烯酸盐、丙烯酸和甲基丙烯酸及其衍生物的共聚物,苯乙烯磺酸—马来酸酐共聚物等,它们虽然对水的表面张力降低很小,但它们分子中有-OH、-COOH、-CONH2、=C=O、-SO3-、-COO-等活性基团,吸附于界面之后,能改变界面状态,多年来在油田用作增稠剂、降失水剂、絮凝剂、分散剂、降阻剂、阻垢剂、流度控制剂、钻探用乳化泥浆。

世界上几乎2/3的原油都含有水,为使原油中的含水量不超过1%,常加入破乳剂,以破坏稳定的油水型乳液,使油水分离。

我国原油含水有的高达30%,原油中不但含水,还含蜡和沥青,因此原油破乳剂应是多效复合剂,能同时起脱水、脱盐、防蜡降枯等作用,这就要求破乳剂不但具有较强的表面活性、合适的HLB (即Hydrophile-Lipophile Balance亲水亲油平衡)值、良好的润湿性,而且还有足够的絮凝能力,高分子表面活性剂就成为破乳剂的主要使用对象,如聚乙二醇醚缩乙醛、阳离子化聚乙烯醇。

1.1.2高分子表面活性剂的溶液性质[11-34]
高分子表面活性剂的溶液性能研究主要集中在胶束的形成、形态、胶束大小、
聚集数、临界胶束浓度(CMC)以及高分子表面活性剂的分子结构和分子量、体系的温度及溶剂种类等对胶束形态方面的影响。

对胶束形成的热力学及动力学的研究也日益引起人们的重视。

Frank等指出表面活性剂溶于水后,水分子之间的一些氢键结构将重新列,在表面活性剂亲油基碳氢链周围形成新的结构(不同于原来水中的结构),即所谓的“冰山结构”(Iceberg structure)。

如果亲油基链相互缔合靠拢则“冰山结构”将被破坏,体系从比较有序变为比较无序,即为熵增加的过程,而此过程的焓变化不大,所以体系的吉布斯自由能变化为负值(ΔG<0)。

由于这一过程发生的本质主要在于熵增加,故常称之为“熵驱动过程”,并将水溶液中表面活性剂非极性基团(如碳氢键)相互靠拢缔合的作用称之为“疏水作用”。

与低分子表面活性剂一样,在水溶液中,由于疏水作用,高分子表面活性剂的亲油组分也存在力图脱离水包围的趋势,这种趋势将导致两种情况:
(1)高分子表面活性剂聚集在溶液的表面,非极性基团与水的接触最小化,而极
性基团仍溶于水中,从而能够降低溶液的表面张力;
(2)在溶液内部形成胶束,即形成以疏水链段为内核、亲水链段为极性外壳的胶
束。

这种核壳结构可以增溶有机物,并能作为聚合反应的场所。

高分子表面活性剂多为嵌段型或接枝型,由于分子量大且链结构多样化,所以在溶液中的形态也很复杂。

一般认为高分子表面活性剂在溶液中既能形成单分子胶束又可形成多分子胶束。

Merrett[35]首次提出了共聚物多分子胶束的存在。

Sadron[36]通过研究发现由于链段的溶解性能不同且彼此间不相溶,使得高分子表面活性剂在稀溶液下可单分子聚集卷曲成线团,溶液的表面张力等温线会出现双折射点现象,并且所测得的高分子表面活性剂的特性粘数与旋转半径均有明显的下降。

据此提出了单分子胶束的概念。

如果溶液浓度比较高且大分子链之间相互缠结则会形成多分子胶束。

人们对高分子表面活性剂在溶液中是否存在临界胶束浓度也进行了许多研究。

Gallot等认为接枝共聚物在选择性溶剂中先形成单分子胶束,随着溶液浓度的增加、温度的变化以及溶剂性质的改变,可观察到多分子聚集现象。

因此他认为高分子表面活性剂与低分子表面活性剂一样具有临界胶束浓度(CMC)。

然而方治齐等合成了可聚合型丙烯酸羟乙酯封端的聚氨酯类乳化剂(HTP),测试了HTP水溶液的浓度与表面张力及吸光度的对应数据并绘成曲线,结果却未观察到CMC。

他们在解释原因时认为,由于端基结构的多分散性和分子量的多分散性,造成了高分子乳化剂胶束形态的多分散性,所以难以测出准确的CMC值。

对于达到临界胶束浓度前后溶液的表面张力是否随浓度而变化,目前也存在一定的分歧。

Riess等指出当达到CMC时溶液除了存在胶束聚集体外,在很大范
围内仍然存在单个分子。

在达到CMC之前,表面张力随浓度的增加而减少;达到CMC之后,表面张力不随浓度的改变而改变。

对于能形成单分子胶束的聚合物溶液,表面张力始终不随浓度的改变而变化。

Riess还认为聚合物胶束呈球状且具有较窄的粒径分布。

曹亚等指出高分子表面活性剂存在临界胶束浓度,但其表面张力与浓度的等温曲线与低分子表面活性剂不同,不但存在多折点而且在达到临界胶束浓度以后,随着表面活性剂浓度的上升表面张力会继续下降,尽管下降的幅度逐渐减小。

他们认为这是由于高分子表面活性剂疏水链段在溶液表面排列的紧密程度远低于低分子表面活性剂,随着高分子表面活性剂在溶液中的浓度进一步上升,表面上的高分子表面活性剂大分子链进一步压缩,增加了疏水链段的排列密度,从而使表面张力进一步下降。

Chu指出溶剂的性质及聚合物的分子结构都会影响聚合物在溶液中的聚集过程,并详细研究了具有AB、BAB嵌段形式的高分子表面活性剂所形成的单分子胶束在不同选择性溶剂中的聚集形态。

Linse研究了聚合物PEO-PPO、PEO、PPO作为杂质对三嵌段聚合物PEO-PPO-PEO在水溶液中胶束形成的影响后得出结论:两嵌段聚合物的存在降低了CMC,但使胶束中分子聚集数上升;PPO也能在某种程度上降低CMC;胶束的存在增加了PPO的溶解(溶解于胶束疏水核内);PEO杂质对胶束的影很小,但是PEO端基头相互排斥决定着胶束的生长。

他还采用球形格子模型进一步解释了三嵌段聚合物的胶束形态。

Xu等指出影响胶束形成过程和胶束结构的因素主要有:高分子表面活性剂的组成、嵌段结构、分子量、嵌段与溶剂的相互作用、高分子表面活性剂的浓度以及体系的温度等。

他们合成了接枝型高分子表面活性剂PMMA-PEO,并研究了它在不同溶剂CDCl3、C6D6、D2O中的胶束化行为。

1HNMR数据揭示了PMMA-PEO在D2O中形成以PEO为内核、PMMA为外壳的胶束;在C6D6中则形成反相胶束。

而在CDCl3中PMMA与PEO均能溶于其中,可认为以分子状态存在。

Baines等研究了聚甲基丙烯酸N,N'-二甲氨基乙基酯与聚甲基丙烯酸甲酯的嵌段共聚物(PDMA-b-PMMA)在H2O/CH3OH以及H2O/THF溶液中的胶束化行为。

他们发现如果固定亲水链段的长度,则随着疏水链段长度的增加CMC将升高,胶束大小和聚集数目都降低;对于给定的组成,随着分子量的增大CMC将升高,胶束大小会增大而分子聚集数将降低。

在H2O/CH3OH以及H2O/THF为溶剂的条件下,实验所得PDMA-b-PMMA胶束的直径约为10-18nm,每个胶束中约含有13-33个大分子链,并且温度、pH、溶液的离子强度都会影响胶束的大小及聚集数目。

后来Antoun研究了季铵化的PDMA-b-PMMA在水中的胶束化行为,发现胶束大小比没有季铵化的聚合物胶束大,认为这是由于亲水端基季铵基团之间强的静电排斥作用使亲水链向外伸展造成的[37]。

相关文档
最新文档