2008年浙江省普通高校“专升本”联考《高等数学(一)》试题及答案
2007年浙江省普通高校“专升本”联考《高等数学(一)》试卷【附答案】
2007年浙江省普通高校“专升本”联考《高等数学(一)》试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个空格,每一空格5分,共40分)1.函数()2lg 1-=x y 的定义域是______________________。
2.设x y 3sin 5=,则_________________________________=dx dy。
3.极限_________________________1lim102=+⎰∞→dx x x n n 。
4.积分⎰=+_______________________________sin 1cot dx x x。
5.设,1111xxy -++=则()_______________________5=y 。
姓名:_____________准考证号:______________________报考学校 报考专业:6.积分________________________________sin sin 097=-⎰πdx x x 。
7.设()y x e y x u 32sin ++-=,则________________________=du 。
(超纲,去掉)8.微分方程()032=+++dy y y y x xdx 的通解________________________。
二.选择题:(本题共有4个小题,每一个小题5分,共20分,每个小题给出的选项中,只有一项符合要求)1.设()()⎪⎩⎪⎨⎧+⎪⎭⎫ ⎝⎛--+=x x x x x f ln 2311sin 13211≥<x x ,则1=x 是()x f 的 【 】。
().A 连续点, ().B 跳跃间断点, ().C 无穷间断点, ().D 振荡间断点。
2008年7月自考《高等数学》试题及答案
全国2008年7月高等教育自学考试高等数学(一)试题一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数f(x)=arcsin(2x-1)的定义域是( )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]2.设f(x)=⎩⎨⎧<≥+0x ,x 0x ),x 1ln(, 则=')0(f ( ) A.0B.1C.-1D.不存在3.设函数f(x)满足)x (f 0'=0, )x (f 1'不存在, 则( )A.x=x 0及x=x 1都是极值点B.只有x=x 0是极值点C.只有x=x 1是极值点D.x=x 0与x=x 1都有可能不是极值点 4.设f(x)在[-a,a](a>0)上连续, 则⎰-=a a dx )x (f ( ) A.0B.2⎰a 0dx )x (fC.⎰-+a 0dx )]x (f )x (f [D. ⎰--a0dx )]x (f )x (f [ 5.设供给函数S=S(p)(其中p 为商品价格), 则供给价格弹性是( ) A.)p (S Sp '- B. )p (S S p ' C. )p (S p ' D. )p (S S1'二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设f(x-1)=x 2-x, 则f(x)= ___________.7.n 31sin n 1lim 22n ∞→= ___________.8.设2)x 2(f x lim 0x =→, 则=→x)x 4(f lim 0x ___________. 9.设1)1(f =' 则⎥⎦⎤⎢⎣⎡--∞→)1(f )x 11(f x lim x =___________. 10.函数y=lnx 在[1,e]上满足拉格朗日定理的条件,应用此定理时相应的ξ___________.11.函数y=arctan x 2的最大的单调减小区间为___________.12.曲线y=2-(1+x)5的拐点为___________. 13.⎰+∞-++122x 2x dx =___________. 14.微分方程0y y 2=+'的通解为y=___________.15.设z=x 4+y 4-4x 2y 2, 则=∂∂∂y x z 2___________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.求极限xcos x sec )x 1ln(lim 20x -+→ . 17.设y=ln(arctan(1-x)), 求y '.18.求不定积分 ⎰+)x ln 1(x dx . 19.设z=2cos 2(x-21y), 求y x z 2∂∂∂. 20.设z=z(x,y)是由方程1cz b y a x 222222=++所确定的隐函数,求dz .四、计算题(二)(本大题共3小题,每小题7分,共21分)21.设y=cot 2x +tan x2, 求y ' . 22.计算定积分)0a (dx x a x a 0222>-⎰.23.计策二重积分dxdy y e D 3yx ⎰⎰, 其中D 由直线x+y=1, y=21及y 轴所围成的闭区域.五、应用题(本大题共9分)24.由y=x 3, x=2及y=0所围成的图形分别绕x 轴及y 轴旋转,计算所得的两个旋转体的体积.六、证明题(本大题共5分)25.设f(x)在[0,1]上连续,且f(0)=0, f(1)=1. 证明:至少存在一点ξ∈(0,1),使f(ξ)=1-ξ.2008年7月高等数学(一)自考试题答案。
2008年高考数学全国卷1、浙江卷(含答案)
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在A B C △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( ) A .21x e -B .2x eC .21x e +D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A B C △的A .B .C .D .中心,则1A B 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试..题卷上作答无效........ 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形A B D E 有一公共边A B ,二面角C A B D --的余弦值为3,M N ,分别是A C B C ,的中点,则E M A N ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设A B C △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A B C D E -中,底面B C D E 为矩形,侧面A B C ⊥底面B C D E ,2B C =,CD =,A B A C =.(Ⅰ)证明:AD C E ⊥;(Ⅱ)设C E 与平面A B E 所成的角为45 ,求二面角C A D E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳DE AB性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+ ,1233A D c b =+ ;4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=;6. B.由()()()()21212ln 1,1,y x xy x e f x ef x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----;8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数s in 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x xx--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x y ab+=与圆221x y +=221111ab+≤1,≥.另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1abαα+=由⋅≤m n m n可得cos sin 1abαα=+≤11.C.由题意知三棱锥1A ABC-为正四面体,设棱长为a,则1AB=,棱柱的高13A O a===(即点1B到底面ABC的距离),故1A B与底面ABC所成角的正弦值为113A OA B=.另解:设1,,AB AC AA为空间向量的一组基底,1,,AB AC AA的两两间的夹角为060长度均为a,平面ABC的法向量为111133O A A A A B A C=--,11AB AB AA=+211112,33O A AB a O A AB⋅===则1A B与底面ABC所成角的正弦值为11113O A ABA O AB⋅=12.B.分三类:种两种花有24A种种法;种三种花有342A种种法;种四种花有44A种种法.共有234444284A A A++=.另解:按A B C D---顺序种花,可分A C、13.答案:9.如图,作出可行域,作出直线:20l x y-=,将l平移至过点A处时,函数2z x y=-有最大值9.14. 答案:2.由抛物线21y ax=-的焦点坐标为1(0,1)4a-为坐标原点得,14a=,则2114y x=-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=15.答案:38.设1A B B C==,7cos18B=-则222252cos9AC AB BC AB BC B=+-⋅⋅= 53A C=,582321,21,3328ca c ea=+====.16.答案:16.设2A B=,作CO ABDE⊥面,O H AB⊥,则C H A B⊥,C H O∠为二面角C A B D--cos1C H O H C H C H O==⋅∠=,结合等边三角形ABC与正方形A B D E可知此四棱锥为正四棱锥,则AN EM C H ===11(),22A N A C A B E M A C A E =+=- ,11()()22A N E M A B A C A C A E ⋅=+⋅-=12故E M A N ,所成角的余弦值16A N E M A N E M⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),(0,A B E C ----,1111(,,(,,222222M N ---,则31131(,,(,,),,2222222AN EM AN EM ==-⋅= 故E M A N ,所成角的余弦值16A N E MA NE M ⋅= .17.解析:(Ⅰ)在A B C △中,由正弦定理及3cos cos 5a B b A c -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =;(Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B BA B A BB B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取B C 中点F ,连接D F 交C E 于点O , A B A C =,∴AF BC ⊥,又面A B C ⊥面B C D E ,∴A F ⊥面B C D E , ∴AF C E ⊥.tan tan 2C ED FD C ∠=∠=,∴90OED ODE ∠+∠= ,90DOE ∴∠=,即C E D F ⊥,C E ∴⊥面AD F ,CE A D ∴⊥.(2)在面A C D 内过C 点作A D 的垂线,垂足为G .C G AD ⊥,CE AD ⊥,A D ∴⊥面C EG ,E G A D ∴⊥, 则C G E ∠即为所求二面角的平面角.3AC C D C G AD==,3D G =,3EG ==,C E =222cos 210C G G E C EC G E C G G E+-∠==-,πarccos 10C G E ⎛∴∠=- ⎝⎭,即二面角C A D E --的大小πarccos 10⎛- ⎝⎭. 19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为3x =即()f x在3⎛-∞ ⎝⎭递增,33⎛⎝⎭递减,3⎛⎫+∞⎪ ⎪⎝⎭递增 (2)233133a a ⎧---⎪⎪⎨-+⎪-⎪⎩≤,且23a >解得:74a ≥20.解:对于乙:0.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设O A m d =-,AB m =,O B m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b A O F a∠=,4tan tan 23A B A O B A O F O A∠=∠==由倍角公式∴22431b ab a =⎛⎫- ⎪⎝⎭,解得12b a=,则离心率2e =(Ⅱ)过F 直线方程为()a y x c b=--,与双曲线方程22221x y ab-=联立将2a b =,c =代入,化简有22152104x x bb-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369xy-=。
成人专升本高等数学一真题2008年_真题(含答案与解析)-交互
成人专升本高等数学一真题2008年(总分150, 做题时间90分钟)一、选择题1.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B2.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A3.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D4.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C5.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B6.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D7.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C8.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D9.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C10.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A二、填空题11.SSS_FILL该题您未回答:х该问题分值: 4答案:12.SSS_FILL该题您未回答:х该问题分值: 4答案:313.SSS_FILL该题您未回答:х该问题分值: 4答案:514.SSS_FILL该题您未回答:х该问题分值: 4答案:e x+1dx15.SSS_FILL该题您未回答:х该问题分值: 4答案:16.SSS_FILL该题您未回答:х该问题分值: 4答案:2arcsin x+C17.SSS_FILL该题您未回答:х该问题分值: 4答案:018.SSS_FILL该题您未回答:х该问题分值: 4答案:2x-2y+3z=019.SSS_FILL该题您未回答:х该问题分值: 4答案:e y20.SSS_FILL该题您未回答:х该问题分值: 4答案:3x+C三、解答题21.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 822.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 823.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 824.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 825.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 826.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 1027.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 1028.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 101。
2009年浙江省普通高校专升本《高等数学一,二》解答
2009年浙江省普通高校“专升本”联考《高等数学(一)》参考答案及评分标准一. 选择题(每小题4分,共20分)1.D ,2.A ,3.B ,4.B ,5.C . 二. 填空题(每小题4分,共40分) 1.54, 2.1 , 3.2 , 4.0 , 5.sin14x c π⎛⎫++ ⎪⎝⎭, 6.0 , 7.()af a , 8.3 , 9.2 , 10.2 . 三. 计算题(每小题6分,共60分) 1. 解.0limlim1x xx xx x e ee ex--→→-+= 5分2.= 6分 2.解.()3221',11y xx ==++ 5分故 ()3221+dx dy x =. 6分3.解.原式=()11xxd e e++⎰3分()ln 1.xec =++ 6分4.解法1.dydydt dx dxdt = 3分222sin 2.sin t t t t-==- 6分解法2.因为22sin ,2sin dx t dt dy t t dt ==-, 4分故2.dy t dx=- 6分5.解.原式()()2111d x x +∞-∞+=++⎰3分 =()tan 1arc x +∞-∞+ 5分=.π 6分6.解. 由条件推得()()'00,1 1.f f == 2分于是()1220limlim 220n n f f n n →∞→∞⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥-⎢⎥⎣⎦5分 (第1页,共3页)= 6分注:若按下述方法:原式()()112200'lim lim 1f x f x x ++→→⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭解答者,只给4分. 7.解法1.分离变量,得到c o t ,3dyxdx y=-+ 2分积分得到ln 3ln sin y x c +=-+ 或 ()3 .s i n c y c x=-∈R 4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 33.sin y x=- 6分 解法2.由()()(),p x dx p x dxy e q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 其中()()13,tan tan p x q x xx==-,得到()3 .sin c y c x=-∈R 4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 3 3.sin y x=- 6分8.解.方程两边对x 求偏导数,得到224,z zx z x x∂∂+=∂∂ 4分 故.2z xx z∂=∂- 6分 9.解.原式 2 2 0sin d r rdr πππθ=⎰⎰3分= 222cos cos r r rdr πππππ⎡⎤-+⎢⎥⎣⎦⎰ 5分=26.π- 6分10.解.由121121321131limlim3n nn n n n n nx a x a x+++-→∞→∞==,可知收敛半径R =4分又当x =,对应数项级数的一般项为±级数均发散,故该级数的收敛域为(. 6分(第2页,共3页)四. 综合题(第1小题14分,第2小题8分, 第3小题8分,共30分) 1.解.定义域()(),00,-∞⋃+∞, ()34232',",x x y y x x++=-=令'0,y =得驻点12x =-, 5分 令"0,y =得3x =-, 6分 函数的单调增加区间为()2,0,-单调减少区间为(),2-∞-及()0,,+∞ 在2x =-处,有极小值14-.其图形的凹区间为(),2-∞-及()0,+∞,凸区间为(),3.-∞- 14分 2.证明.由于()f x 不恒等于x ,故存在()00,1,x ∈使得()00.f x x ≠ 2分 如果()00,f x x >根据拉格朗日定理,存在()00,,x ξ∈使得 ()()()0000'10fx f x f x xξ-=>=-, 5分若()00,f x x <根据拉格朗日定理,存在()0,1,x ξ∈使得 ()()()00011'111f fx x f x x ξ--=>=--. 8分注:在“ 2分”后,即写“利用微分中值定理可证得,必存在ξ,使得()'1f ξ>”者共得3分.3.解.P 点处该曲线的切线方程为2y x =+,且与x 轴的交于点()2,0A - 2分 曲线与x 轴的交点()1,0B -和()2,0C ,因此区域由直线P A 和A B 及曲线弧PB所围成. 4分 该区域绕x 旋转生成的旋转体的体积() 02218292330V x x dx πππ-=--++=⎰. 8分 注:若计算由直线P A 与A C 及曲线弧 PC所围成 ,从而 () 22281362315V x x dx πππ=+-++=⎰者得6分.(第3页,共3页)2009年浙江省普通高校“专升本”联考《高等数学(二)》参考答案及评分标准一.选择题 (每小题4分,共20分)1.D ,2.B ,3.C ,4.A ,5.D . 二.填空题(每小题4分,共40分) 1.k , 2.1, 3.12, 4.2, 5.0,6.2ln 2x ,7.sin14x c π⎛⎫++ ⎪⎝⎭, 8.0, 9.()af a , 10.()2sin x c x +. 三.计算题(每小题6分,共60分) 1.解.原式=0lim2xxx e e x -→- 3分 =0lim1.2xxx e e-→+= 6分2.解.由条件推得()()'00,11f f ==, 2分于是()1220limlim 220n n f f n n →∞→∞⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥-⎢⎥⎣⎦5分= 6分注:若按下述方法:原式()()1122'lim lim 1f x f x x ++→→⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭解答者,只给4分.3.解. ()3221'11y xx ==++, 5分()3221+dx dy x =. 6分4.解.取对数 ()221ln arctan2y x yx+=, 2分两边求导数2222122'1'21x y y y x y x yxy x +-⋅=⋅+⎛⎫+ ⎪⎝⎭, 5分整理得 '.x y y x y+=- 6分(第1页,共3页)5.解. 原式=()11xxd e e++⎰3分()ln 1.x e c =++ 6分6.解法1. 解法1.dydydt dx dxdt = 3分222sin 2.sin t t t t-==- 6分解法2.因为22sin ,2sin dx t dt dy t t dt ==- 4分故2.dy t dx=- 6分7.解.原式()()2111d x x +∞-∞+=++⎰3分 =()tan 1arc x +∞-∞+ 5分=.π 6分8解. 当10x -≤<时,() 1;x t xx e dt e e ---Φ==-⎰2分当01x ≤≤时,()()()0 2101311.22xtx e dt t dtx e --Φ=++=++-⎰⎰ 5分故()()2,131,22x e e x x e -⎧-⎪Φ=⎨++-⎪⎩ 100 1.x x -≤<≤≤ 6分 9.解法1. 分离变量,得到c o t .3dyxdx y =-+ 2分积分得到ln 3ln sin y x c +=-+ 或 ()3 s i n c y c x=-∈R , 4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 33.sin y x=- 6分 解法2. 解法2.由()()(),p x dx p x dxy e q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰其中()()13,tan tan p x q x x x ==-,得到()3sin c y c x=-∈R 4分代入初值条件02y π⎛⎫= ⎪⎝⎭,得到3c =.于是特解为3 3.sin y x =- 6分(第2页,共3页)10. 解.由121121321131limlim3n nn n n n n nx a x a x+++-→∞→∞==,可知收敛半径R = 4分又当x =,对应数项级数的一般项为±级数均发散,故该级数的收敛域为(. 6分四.综合题(第1小题14分,第2、3小题各8分, 共30分)1.解.定义域(),0-∞及()0,+∞ ()34232',",x x y y x x++=-=令'0,y =得驻点12x =-, 5分 令"0,y =得3x =-, 6分 10分函数的单调增加区间为()2,0,-单调减少区间为(),2-∞-与()0,.+∞在2x =-处,有极小值14-.其图形的凹区间为()3,0-及()0,+∞,凸区间为(),3.-∞- 14分2.证明.两边对x 求导,得() 0sin ,x f t dt x =⎰4分再对x 求导,得()c o s ,f x x = 6分从而证得()22cos 1.f t dt xdx ππ==⎰⎰8分3.解.P 点处该曲线的切线方程为2y x =+,且与x 轴的交于点()2,0A - 2分 曲线与x 轴交点()1,0B -和()2,0C ,因此区域由直线P A 和A B 及曲线弧PB所围成. 4分 该区域绕x 旋转生成的旋转体的体积() 02218292330V x x dx πππ-=--++=⎰. 8分 注:若计算由直线P A 与A C 及曲线弧 PC所围成 ,从而 () 22281362315V xx dx πππ=+-++=⎰者得6分.(第3页,共3页)。
浙江省专升本历年真题卷(完整资料).doc
【最新整理,下载后即可编傅】2005年浙江省普通商校“专升本”联考《高等数学(一)》试卷 一、填空题1. 函数的连续区间是c■V -(A-l)-------------------------2.lim --------- =ogY x(x +4)3.(1) x 轴在空间中的直线方程是 ___________(2)过原点且与x 轴垂直的平面方程是 ______________点X=1处连续。
5.设参数方程[s :cos2:y = r sin 2&(1)当厂是常数,&是参数时,则2=ax (2)当&是常数,厂是参数时,则字二CIX ------------二. 选择题1 •设函数y = f(x)在[°,b ]上连续可导,ce(a.b),且/ (c) = 0,则当( )时,fW 在x = C •处取得极大值。
(A) 当“ 5 X V c时,当 C V A : S /?时, f'(x)>0, (B) 当0 W X V C 时, / «>0,当c < xSb时〉 /«<o, (C) 当 <7 5 X V C 时〉 / W<o ,当 c < x S Z?时, /(A )>0,(D) 当Sx vc 时, / W<o ,当 c v x S Z?时〉2.设函数y = /(x)在点"心处可导,则4.设函数f(x)= < ("IFG,bx + 1,x=\,当 G = ____ ,b =X<1时,函数门X )在lim /(儿+3力)一/(如一2力)=( )o(A)f(x°), (B)3f'(x0), (C)4f(x°), (D)5fg・F, x> 03.设函数/(x) = < 0, x = 0,则积分£/(%>/%= ( )o-e』,x<0 _(A) — l, (3)0 (C)l, (£>)2.e5.设级数f?”和级数都发散,则级数是( ). n=l ;f=l w-l(A)发散(B)条件收敛(C)绝对收敛(D)可能发散或者可能收敛三•计算题1.求函数y = U2-x + ir的导数。
数学同步练习题考试题试卷教案2008年成人高考(专升本)高等数学一真题及答案
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
Hale Waihona Puke 学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
学而思教育·学习改变命运 思考成就未来!
高考网
高中数学2008年普通高等学校招生全国统一考试(浙江卷)(理科)试题
高中数学2008年普通高等学校招生全国统一考试(浙江卷)(理科) 试题 2019.091,已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为_______________________.2,有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).3,已知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是2π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.4,甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率. 5,如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.6,在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*n N ∈,na 是3n a +与6n a +的等差中项.7,已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,. (Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅲ)若对于任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,求b 的取值范围.8,已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x .(Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围.9,已知a 是实数,1a ii -+是纯虚数,则a =( )(A )1 (B )-1 (C )2(D )-210,已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()u u A C B B C A = ( ) (A )∅ (B ){}|0x x ≤(C ){}|1x x >- (D ){}|01x x x >≤-或11,已知a ,b 都是实数,那么“22b a >”是“a >b ”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件12,在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是( ) (A )-15 (B )85(C )-120 (D )27413,在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是( )(A )0(B )1 (C )2 (D )4 14,已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++=( )(A )16(n --41) (B )16(n--21)(C )332(n --41)(D )332(n--21)15,若双曲线12222=-b y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )(A )3(B )5 (C )3 (D )516,若cos 2sin αα+=则tan α=( )(A )21 (B )2 (C )21-(D )2-17,已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c的最大值是( )(A )1 (B )2 (C )2 (D )2218,如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线19,已知a >0,若平面内三点A (1,-a ),B (2,2a ),C (3,3a )共线,则a =______20,已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B两点若1222=+B F A F ,则AB =____________。
08级高等数学1试题及答案
华东交通大学2008—2009学年第一学期考试卷承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
专业 班级 学号 学生签名:试卷编号: (A )卷《高等数学(A)Ⅰ》 课程 (工科本科08级) 课程类别:必 闭卷(√) 考试时间:2009.1.10题号 一 二三四 五 总分12 3 4 5 6 7 1 2 分值 10 15 7 7777779 98阅卷人(全名)考生注意事项:1、本试卷共 6 页,总分 100 分,考试时间 120 分钟。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每题2分,共10分)_____ 00 0 2)( 1==⎩⎨⎧≥+<+=a x x x a x e x f x 则处连续,在,,设、_________)21()1( 3)1( 2lim=--='→xx f f f x 则,设、________]3 0[29)( 33=+-=ξ上满足罗尔定理的,在函数、x x x f ______)]([ ]1 1[)( 411 =+-⎰-dx x f x x x f 则上为偶函数,,在设、 ___________________cos 5的通解为微分方程、x y =''二、选择题(每题 3分,共15分)1D. 2 C. 3 B. 4 A.) C ()2sin 2sin(1lim=+∞→xxx x x 、)A (4 sin 1cos cos 22=⎩⎨⎧+=+=点处的法线斜率为上在对应曲线、πt t y t t x 得分 评阅人得分 评阅人3633221cos C x C x y ++-=Cx C x C x C x dx x x +-++-+=⎰22222cos 21D. cos 21 C. cos B. cos A.)D (sin 3不定积分、 32D. 31 C. 2 B. 5 A.)B (1 4ππ积为轴旋转一周所得立体体轴围成图形绕及直线、由曲线、y y y y x ==2 D. 1 C. 0 B. 1 A.)C ( 502lim--=⎰-→xdtext x 极限、三、解答题(每题 7分,共49分). 6)12( 12limb a b ax x xx x 、求,设、=---+∞→解)12(2limb ax x x x x ---+∞→1)1()2(2lim-+-++-=∞→x bx b a x a x6=⎩⎨⎧=-+=-61 02b a a3 2-==b a ,].)1ln(11[2lim+-→x x x 求极限、解)1ln()1ln(lim+-+=→x x x x x 原式1)1ln(111lim+++-+=→x xx x x22)1(111)1(1lim++++-=→x x x x1得分 评阅人得分评阅人. )(cos 3sin dy x y x求,设、= 解 两边取对数得x x y cos ln sin ln =x xxx x y ycos sin sin cos ln cos 1-+=' )tan sin cos ln (cos )(cos sin x x x x x y x -=' dx y dy '=dx x x x x x x)tan sin cos ln (cos )(cos sin -=.442dx x x ⎰-求不定积分、解 tdt t dx t x tan sec 2 sec 2==则,令tdt t t ttan sec 2sec 2tan 2⎰=原式dtt ⎰=2tan 2dtt )1(sec 22-=⎰C t t +-=)(tan 2Cx x +--=2arccos 242得分 评阅人得分 评阅人.ln 5 12dx x x e⎰求定积分、 解31 ln 31dx x e ⎰=原式⎰-=e e xd x x x 1 313ln 31)ln (31dxx e e ⎰-= 1 233131e x e 1339131-=9123+=e.]2 1[ln 214 62上的长度,在区间求曲线、x x y -= 解x x y 212-='dxy s ⎰'+=2121dx x x )1(2121+=⎰212)ln 21(21x x +=2ln 2143+= 得分 评阅人得分 评阅人.ln 721的特解满足求微分方程、e y xyx y y x =='=解x yu =令dxx du u u 1)1(ln 1 =-则 dxx du u u ⎰⎰=-1)1(ln 1 C x u ln ln )1ln(ln +=-1+=Cx xe y 通解121===C e yx 得由1 +=x xe y 特解四、综合题(每题 9分,共18分).)( 12拐点的极值及该函数图形的求函数、xxe x f -= 解 xxxeex f 222)(---='210)(=='x x f 得令0)( 21 0)( 21<'>>'<x f x x f x 时,当,时,当121)21( )(21-==e f x f x 极小值为取极小值,时当x x xe e x f 2244)(--+-='' 1 0)(==''x x f 得令 0)( 1 0)( 1>''><''<x f x x f x 时,当,时,当) 1(2-e ,拐点为得分 评阅人得分 评阅人.)1(86 24的通解求微分方程、x e x y y y -=+'-''解 086 2=+-r r 特征方程为4 2 21==⇒r r ,x x e C e C Y y y y 4221086+==+'-''的通解的单根为08642=+-=r r λ x e b ax x y 4)(*+=可设1224 *-=++x b a ax y 代入原方程得把 ⎩⎨⎧-=+=122 14b a a43 41-==b a , xex x y 4)4341(*-=xx x eC e C e x x y 42214)4341(++-=通解五、证明题(8分)dxx f dx x f x f ⎰⎰=22)(cos )(sin ]1 0[)( 1ππ证明:上连续,,在设、证dtdx t x -=-=则,令 2π证211limx x x -+→))((cos )(sin 0 22dt t f dx x f ⎰⎰--=ππ112lim++=→x xdxx f ⎰=20 )(cos π1= 得分 评阅人得分 评阅人.211 0 2等价与时,证明当、xx x -+→等价与故211 xx -+。
(16、17题细看)2008高考浙江数学理科试卷含详细解答(全word版)
1
.
用心
爱心
专心
解析 : 本小题主要考查二次函数问题。对称轴为 x 1 ,下方图像翻到 x 轴上方.由区间[0,3] 上的最大值为 2,知 ymax f (3) 3 t 2, 解得 t 1或5, 检验 t 5 时,
f (0) 5 2 不符,而 t 1 时满足题意。
2
解析:本小题主要考查复数的概念。由
a i (a i )(1 i ) a 1 a 1 i 是纯虚数, 1 i (1 i )(1 i ) 2 2
则
a 1 a 1 0且 0, 故 a =1. 2 2
( 2) 已 知 U R , A x | x 0 , B x | x 1 , 则 ( A ðU B ) ( B ðU A) (D ) (A) (C) x | x 1 (B) x | x 0 (D) x | x 0或x 1
2 2
圆 x y 2 上即可.
2 2
【方法二】| a || b | 1, a b 0,
展开 ( a c) (b c) 0 | c | c ( a b) | c | | a b | cos ,
2
(6)已知 an 是等比数列, a2 2 , a5
用心
爱心
专心
1 8[1 ( ) n ] 4 32 (1 4 n ) 。 a1a2 a2 a3 an an 1 1 3 1 4
(7)若双曲线 是( D ) (A)3
x2 y2 1 的两个焦点到一条准线的距离之比为 3:2,则双曲线的离心率 a2 b2
2008年普通高等学校招生全国统一考试理科数学试卷-浙江卷
2008年普通高等学校招生全国统一考试数学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂.写在答题纸上。
第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名.准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A.B 互斥,那么 P (A+B )=P (A )+(B ) 如果事件A.B 相互独立,那么P (A ·B )=P (A )·(B ) 如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生k 次的概率: k n k k n n p p C k P --=)1()(球的表面积公式S=42R π 其中R 表示球的半径求的体积公式V=334R π 其中R 表示球的半径一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知a 是实数,ii a +-1是春虚数,则a = (A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则(A ()()=A C B B C A u u(A )∅ (B ){}0|≤χχ(C ){}1|->χχ (D ){}10|-≤>χχχ或(3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是(A )-15 (B )85 (C )-120 (D )274(5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a = (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n --21) (7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是 (A )3 (B )5 (C )3 (D )5(8)若,5sin 2cos -=+a a 则a tan =(A )21 (B )2 (C )21- (D )2- (9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是(A )1 (B )2 (C )2 (D )22 (10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是(A )圆 (B )椭圆(C )一条直线 (D )两条平行直线2008年普通高等学校招生全国统一考试数学(理科)第Ⅱ卷(共100分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。
2008年浙江省普通高校“专升本”联考《高等数学》试卷及答案
2008年浙江省普通高校“专升本”联考《高等数学(一)》试卷及答案考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.函数()()x x x f cos 12+=是( ).()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数2.设函数()x x f =,则函数在0=x 处是( ).()A 可导但不连续 ()B 不连续且不可导()C 连续且可导 ()D 连续但不可导3.设函数()x f 在[]1,0上,022>dxfd ,则成立( ). ()A ()()0101f f dxdf dxdf x x ->>== ()B ()()0110==>->x x dx df f f dxdf()C ()()0101==>->x x dxdf f f dxdf()D ()()11==>>-x x dxdf dxdf f f4.方程22y x z +=表示的二次曲面是( ).()A 椭球面 ()B 柱面()C 圆锥面()D 抛物面5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 至少有一条 ()B 仅有一条().C 不一定存在 ().D 不存在二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)1.计算_________________2sin 1lim 0=→xx x2.设函数()x f 在1=x 可导, 且()10==x dx x df ,则()().__________121lim=-+→xf x f x .3.设函数(),ln 2x x f =则().________________________=dxx df4.曲线x x x y --=233的拐点坐标._____________________5.设x arctan 为()x f 的一个原函数,则()=x f ._____________________6.()._________________________2=⎰x dt t f dxd 7.定积分().________________________2=+⎰-ππdx x x8.设函数()22cos y x z +=,则._________________________=∂∂x z9. 交换二次积分次序().__________________________,010=⎰⎰xdy y x f dx10. 设平面∏过点()1,0,1-且与平面0824=-+-z y x 平行,则平面∏的方程为._____________________三.计算题:(每小题6分,共60分)1.计算xe x x 1lim 0-→.2.设函数()()x x g e x f xcos ,==,且⎪⎭⎫⎝⎛=dx dg f y ,求dx dy .3.计算不定积分()⎰+.1x x dx4.计算广义积分⎰+∞-0dx xe x .5.设函数()⎩⎨⎧<≥=0,0,cos 4x x x x x f ,求()⎰-12dx x f .6. 设()x f 在[]1,0上连续,且满足()()⎰+=12dt t f e x f x,求()x f .7.求微分方程xe dx dy dxy d =+22的通解.8.将函数()()x x x f +=1ln 2展开成x 的幂级数.9.设函数()yx yx y x f +-=,,求函数()y x f ,在2,0==y x 的全微分.报考学校:______________________报考专业:______________________姓名: 准考证号: ------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------10.计算二重积分,()⎰⎰+Ddxdy y x22,其中1:22≤+y x D .四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形由曲线xe y =及直线0,==x e y 所 围成,()1求此平面图形的面积;()2求上述平面图形绕x 轴旋转一周而得到的旋转体的体积.2.求函数1323--=x x y 的单调区间、极值及曲线的凹凸区间.3.求证:当0>x 时,e x x<⎪⎭⎫⎝⎛+11.《高等数学(一)答案二..填空题:(每小题4分,共40分) 1.21; 2. 2; 3. x1; 4. )3,1(-; 5. 211x+; 6. ()x f -; 7. 332π; 8. ()22sin 2y x x +-; 9.()⎰⎰110,ydx y x f dy ;10. 224=+-z y x .三.计算题(每小题6分,共60分)1.解法一.由洛必达法则,得到1lim 1lim 00xx x x e x e →→=- (4)分1=. (6)分解法二.令t e x=-1, 则 ()t x +=1ln (2)分于是, ()11ln lim 1lim00=+=-→→t t x e t x x . …………6分2.解.x dxdgsin -=, ()x e x f dx dg f y sin sin -=-=⎪⎭⎫⎝⎛= …………3分故 x e dxdyx cos sin --=. ………..6分3. 解法一.令t x =,,则2t x =, (2)分()()⎰⎰⎰+=+=+=+.arctan 21212122C t t dtt t tdt x x dx ……….5分C x +=arctan 2. ……….6分解法二. ()()⎰⎰=+=+21)(21x x d x x dx (4)分C x +=arctan2. ……….6分4.解.⎰⎰+∞-∞+-+∞-+-=00dx e xedx xe x x x……….3分10=-=+∞-xe . ………..6分5.解. ()()()⎰⎰⎰⎰⎰+=+=---1024100212cos xdx dx xdx x f dx x f dx x f (3)分1sin 532sin 5110025+=+=-x x . ……….6分 6.解. 设()A dx x f =⎰1,两边对已给等式关于x 从0到1积分,得到()()⎰⎰⎰⎰+-=+=+=1101112122dx x f e A eAdx dx e dx x f x x (4)分从而解得()e dx x f -=⎰11.. (5)分代入原式得()()e e x f x-+=12. (6)分7.解.特征方程为02=+k k ,得到特征根1,021-==k k , ………..1分故对应的齐次方程的通解为xe c c y -+=21, ………..3分由观察法,可知非齐次方程的特解是xe y 21=*, ………..5分 因而,所求方程的通解为 x xe e c c y 2121++=-,其中21,c c 是任意常数. ……….6分8.解.因为()())11(114321ln 1432≤<-++-++-+-=++x n x x x x x x n n , ….3分 所以()221ln x x x =+())11432(1432 ++-++-+-+n x x x x x n n =())11(1143236543≤<-++-++-+-+x n x x x x x n n . ……..6分9解.()()222,2y x x y x y x y y f y x y y x y x x x f +-=⎪⎪⎭⎫ ⎝⎛+-∂∂=∂∂+=⎪⎪⎭⎫ ⎝⎛+-∂∂=∂∂, ……….2分 从而()()0,12,02,0=∂∂=∂∂yf xf, ……….4分所以()()()()dx dy yf dx xf y x df =∂∂+∂∂=2,02,02,0,. ………6分10.解.采用极坐标变换,令θθsin ,cos r y r x == ,πθ20,10<≤≤<r , ……..2分()⎰⎰⎰⎰=+132022dr r d dxdy y xDπθ ……….4分2π=. (6)分四.综合题:(每小题10分,共30分) 1.解法一(1).()⎰-=1dx e e S x (4)分()1110=+-=-=e e e ex x. (6)分(2).()⎰-=122dx e eV x π (9)分()()12121212221022+=⎥⎦⎤⎢⎣⎡--=⎪⎭⎫ ⎝⎛-=e e e e x e x πππ ………..12分解法二.(1)⎰-=1dx e e S x (3)分110=-=x ee . (6)分(2).⎰-=122dx e e V xππ (9)分()1222122+=-=eee x πππ. (12)分2.解.定义域为),(+∞-∞,()23632-=-=x x x x dx dy ,令0=dxdy ,得到 2,021==x x (驻点), …….2分(),1622-=x dx y d 由022=dx yd ,得到13=x , …….3分分故 )0,(-∞),2(+∞为单调增加区间,(0,2)为单调减少区间; ……….10分极大值为-1,极小值为-5, ……..11分)1,(-∞为凸区间,),1(+∞为凹区间 ………12分3.证明. 令()()],ln )1[ln(11ln x x x x x x F -+=⎪⎭⎫⎝⎛+= ()(),11ln 1ln 111ln 1ln +--+=⎪⎭⎫ ⎝⎛-++-+=x x x x x x x x dx dF ……….2分 利用中值定理,()ξ1ln 1ln =-+x x ,其中1+<<x x ξ, (4)分所以0111>+-=x dx dF ξ,因此,当0>x 时,()x F 是单调增加的, ………5分 而e x xx =⎪⎭⎫⎝⎛++∞→11lim , 所以当0>x 时,e x x<⎪⎭⎫⎝⎛+11. (6)分(注:文档可能无法思考全面,请浏览后下载,供参考。
浙江专升本高数一试卷
浙江省普通高校“专升本”联考《高等数学(一)》试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个空格,每一空格5分,共40分)1.函数xe x x x y −−=)1(sin 2的连续区间是____________________. 2.___________________________)4(1lim 2=−+−∞→x x x x .3.(1)x 轴在空间中的直线方程是________________________.(2)过原点且与x 轴垂直的平面方程是._____________________4.设函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<+=>+=−−1 ,1b 1 ,1,)1(1)(2)1(12x x x a x e x x f x ,当_________,==b a 时,函数)(x f 在点x=1处连续.5.设参数方程⎩⎨⎧==θθ2sin 2cos 32r y r x , (1)当r 是常数,θ是参数时,则_______________=dx dy . (2)当θ是常数,r 是参数时,则=dxdy_____________. 姓名:_____________准考证号:______________________报考学校报考专业: ------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------二.选择题. (本题共有5个小题,每一小题4分,共20分,每个小题给出的选项中,只有一项符合要求)1.设函数)(x f y =在b], [a 上连续可导,),(b a c ∈,且0)('=c f ,则当( )时,)(x f 在c x =处取得极大值.)(A 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('>x f ,)(B 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('<x f , )(C 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('>x f , )(D 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('<x f . 2.设函数)(x f y =在点0x x =处可导,则). ()2()3(lim 000=−−+→h h x f h x f h ).(5)( ),( 4)( ),(x 3)( ),()(0'0'0'0'x f D x f C f B x f A 3.设函数⎪⎩⎪⎨⎧<−=>=−−0,0 0,0x ,)(22x e x e x f x x ,则积分⎰−11)(dx x f =( )..2)( ,e1)(0)( ,1)(D C B A −4.可微函数),(y x f z =在点),(00y x 处有0=∂∂=∂∂yzx z 是函数),(y x f z =在点),(00y x 取得极值的( ).(超纲,去掉) )(A 充分条件,)(B 必要条件,)(C 充分必要条件,)(D 既非充分条件又非必要条件.5.设级数∑∞=1n na和级数∑∞=1n nb都发散,则级数∑∞=+1)(n n nb a是().)(A 发散,)(B 条件收敛,)(C 绝对收敛,)( D 可能发散或者可能收敛.三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本题共10个小题,每小题7分,共70分)1.求函数x x x y )1(2+−=的导数.2.求函数1223+−=x x y 在区间(-1,2)中的极大值,极小值.3.求函数xe x xf 2)(=的n 阶导数nn dxfd .4.计算积分⎰−+−012231dx x x . 5.计算积分⎰+dx e x 211.6.计算积分⎰−+12)2(dx e x x x.7.设函数)sin()cos(y x xy z ++=,求偏导数x z∂∂和yx z ∂∂∂2.(超纲,去掉).姓名:_____________准考证号:______________________报考学校 报考专业:------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------8.把函数11+=x y 展开成1−x 的幂级数,并求出它的收敛区间. 9.求二阶微分方程x y dx dydx y d =+−222的通解.10.设b a ,是两个向量,且,3,2==b a 求2222b a b a −++的值,其中a 表示向量a 的模..四.综合题: (本题共2个小题,每小题10分,共20分)1.计算积分⎰++π212sin 212sinxdx m x n ,其中m n ,是整数.2.已知函数d cx bx ax x f +++=234)(23, 其中常数d c b a ,,,满足0=+++d c b a , (1)证明函数)(x f 在(0,1)内至少有一个根,(2)当ac b 832<时,证明函数)(x f 在(0,1)内只有一个根.。
【高考数学】2008年真题试卷及答案解析--浙江理科
【⾼考数学】2008年真题试卷及答案解析--浙江理科2008年普通⾼等学校招⽣全国统⼀考试数学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷1⾄2页,第Ⅱ卷3⾄4页。
满分150分,考试时间120分钟。
请考⽣按规定⽤笔将所有试题的答案涂、写在答题纸上。
第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考⽣务必将⾃⼰的姓名、准考证号⽤⿊⾊字迹的签字笔或钢笔填写在答题纸上。
2.每⼩题选出答案后,⽤2B 铅笔把答题纸上对应题⽬的答案标号涂⿊,如需改动,⽤橡⽪擦⼲净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+(B )如果事件A 、B 相互独⽴,那么P (A ·B )=P (A )·(B )如果事件A 在⼀次试验中发⽣的概率是p 那么n 次独⽴重复试验中恰好发⽣k 次的概率: k n k k n n p p C k P --=)1()(球的表⾯积公式 S=42R π其中R 表⽰球的半径求的体积公式V=334R π其中R 表⽰球的半径⼀、选择题:本⼤题共10⼩题,每⼩题5分,共50分。
在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。
(1)已知a 是实数,ii a +-1是纯虚数,则a = (A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则(A ()()=A C B B C A u u(A )? (B ){}0|≤χχ(C ){}1|->χχ(D ){}10|-≤>χχχ或(3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分⽽不必要条件(B )必要⽽不充分条件(C )充分必要条件(D )既不充分也不必要条件(4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是(A )-15 (B )85 (C )-120 (D )274(5)在同⼀平⾯直⾓坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等⽐数列,41252==a a ,,则13221++++n n a a a a a a = (A )16(n --41)(B )16(n --21)(C )332(n --41)(D )332(n --21)(7)若双曲线12222=-by a x 的两个焦点到⼀条准线的距离之⽐为3:2,则双曲线的离⼼率是(A )3 (B )5 (C )3 (8)若,5sin 2cos -=+a a 则a tan =(A )21 (B )2 (C )21- (D )2- (9)已知a ,b 是平⾯内两个互相垂直的单位向量,若向量c 满⾜0)()(=-?-c b c a ,则c 的最⼤值是(A )1 (B )2 (D )22 (10)如图,AB 是平⾯a 的斜线段,A 为斜⾜,若点P 在平⾯a 内运动,使得△ABP 的⾯积为定值,则动点P 的轨迹是(A )圆(B )椭圆(C )⼀条直线(D )两条平⾏直线。
08年成考专升本高等数学(一)、(二)试卷基本分析
⼀、试卷知识内容⽐例基本上与《复习考试⼤纲》相吻合 ⾼等数学(⼀): 极限和连续:共3个⼩题,计12分,占总分值8%,⼤纲规定约13%; ⼀元函数微分学:共9个⼩题,计50分,占总分值33.3%,⼤纲规定约25%; ⼀元函数积分学:共6个⼩题,计32分,占总分值21.3%,⼤纲规定约25%; 多元函数微积分学:共6个⼩题,计30分,占总分值20%,⼤纲规定约20%; ⽆穷级数:共1个⼩题,计10分,占总分值6.7%,⼤纲规定约7%; 常微分⽅程:共3个⼩题,计16分,占总分值10.7%,⼤纲规定约10%. ⾼等数学(⼆): 极限和连续:共4个⼩题,计20分,占总分值13.3%,⼤纲规定约15%; ⼀元函数微分学:共10个⼩题,计56分,占总分值37.3%,⼤纲规定约30%; ⼀元函数积分学:共7个⼩题,计38分,占总分值25.3%,⼤纲规定约32%; 多元函数微分学:共5个⼩题,计24分,占总分值16%,⼤纲规定约15%; 概率论初步:共2个⼩题,计12分,占总分值8%,⼤纲规定约8%. ⼆、强调基础,突出主线 试卷强调考查⾼等数学中的基础知识、基本理论、基本技能和基本⽅法,试题所涉及到的都是⾼等数学中最基本的、最主要的、最突出的知识点,是学完⾼等数学必须掌握⽽且极易掌握的知识点。
特别是突出微分——积分的这样⼀条主线。
在⾼等数学(⼀)中,有关微分与积分的试题有19⼩题,计104分。
在⾼等数学(⼆)中,有关微分与积分的试题有21⼩题,计114分。
试题涉及到的知识点为导数与微分的计算,导数的应⽤,不定积分与定积分的计算,定积分的应⽤。
所以考⽣在考前如果能够紧紧抓住微分——积分的这样⼀条主线进⾏复习,考试中必然能取得好的成绩。
三、考查能⼒,降低难度 试卷中⽆论选择题、填空题,还是解答题,多以常规型计算题为主,主要考查考⽣能否理解基本概念,能否熟记基本公式,能否掌握基本⽅法进⾏导数与微分,不定积分与定积分的计算。
2008年浙江省普通高校“专升本”联考《高等数学(一)》试卷【附答案】
0
0
10. 设平面 过点 1,0,1且与平面 4x y 2z 8 0 平行,则平面 的方程为
_____________________ .
三.计算题:(每小题 6 分,共 60 分)
ex 1
1.计算 lim
.
x0 x
得分
阅卷人
2.设函数 f x e x , gx cos x ,且 y f dg ,求 dy .
得分
1.计算 lim 1 sin x x0 x 2 _________________
2.设函数 f x在 x 1可导, 且 df x 1 ,则
dx x0
lim f 1 2x f 1
.
x0
x
__________ .
3.设函数 f 2x ln x, 则 df x
dx ________________________ .
7.求微分方程
d2y dx 2
dy dx
8.将函数 f x x2 ln1 x展开成 x 的幂级数.
e x 的通解.
9.设函数 f x, y x y ,求函数 f x, y在 x 0, y 2 的全微分. (超纲,去掉)
x y
10.计算二重积分, x2 y2 dxdy ,其中 D : x 2 y 2 1 . (超纲,去掉)
准考证号:
-----------------------------------------------------------密封线---------------------------------------------------------------------------------------------------
4.曲线 y x3 3x 2 x 的拐点坐标 _____________________ .
2008年普通高等学校招生全国统一考试文科数学试题及答案-浙江卷
2008年普通高等学校招生全国统一考试(浙江卷)文科数学试卷第Ⅰ卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{},21|,0|≤≤-=>=x x B x x A 则B A =(A){}1|-≥x x (B) {}2|≤x x (C) {}20|≤<x x (D) {}21|≤≤-x x(2)函数1)cos (sin 2++=x x y 的最小正周期是(A )2π (B )π (C) 23π (D) 2π (3)已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)已知{a n }是等比数列,a 1=2,a 4=41,则公比q= (A)21- (B)-2 (C)2 (D)21 (5)已知则且,2,0,0=+≥≥b a b a(A)21≤ab (B) 21≥ab (C)222≥+b a(D) 322≤+b a (6)在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x 4的项的系数是(A )-15 (B )85 (C )-120 (D )274(7)在同一平面直角坐标系中,函数}[)2,0)(232cos(ππ∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2(D )4 (8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5(9)对两条不相交的空间直线a 与b ,必存在平面α,使得(A )αα⊂⊂b a , (B )b a ,α⊂∥α(C )αα⊥⊥b a , (D)αα⊥⊂b a ,(10)若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21 (B)4π (C)1 (D)2π 第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2008年普通高等学校招生全国统一考试数学卷(浙江.理)含详解
2008年普通高等学校招生全国统一考试数学(理科)浙江卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知a 是实数,iia +-1是纯虚数,则a = (A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()=A C B B C A u u (A )∅ (B ){}|0x x ≤ (C ){}|1x x >- (D ){}|01x x x >≤-或 (3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274 (5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x xy 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a = (A )16(n --41) (B )16(n--21)(C )332(n --41) (D )332(n--21)(7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (8)若,5sin 2cos -=+a a 则a tan =(A )21 (B )2 (C )21- (D )2- (9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是(A )1 (B )2 (C )2 (D )22 (10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是A B CDEFA BCD(12)已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点 若1222=+B F A F ,则AB = 8 。
2008高考浙江数学理科试卷含详细解答(全word版)-推荐下载
c2 a2 c
∴双曲线的离心率 e c 5. a
(8)若 cos 2sin 5, 则 tan =( B )
1
(A)
2
(B)2
,依题
c2 a2
c c2 a2
a2 c
c
解析:本小题主要考查三角函数的求值问题。由 cos 2 sin 5 可知,
c
2008 年普通高等学校招生全国统一考试
y2 b2
则双曲线的离心率是( D )
(A)3
(B)5
1的两个焦点到一条准线的距离之比为 3:2,
(C) 3
解析:本小题主要考查双曲线的性质及离心率问题。依题不妨取双曲线的右准线 x a2 , c
则左焦点 F1 到右准线的距离为
为c a2 c
Pn (k)
球的表面积公式
S=4 R 2
其中 R 表示球的半径
求的体积公式 V= 4 R3 3
其中 R 表示球的半径
(B)x | x 0
ห้องสมุดไป่ตู้
(D)x | x 0或x 1
第 1 页 共 12 页
C
k n
pk
(1
p)nk
2008 年普通高等学校招生全国统一考试
解析:本小题主要考查集合运算。 A Cu B x | x 0 B Cu A x | x 1 A Cu B B Cu A x | x 0或x 1
(A)
(C)x | x 1
湖南洞口一中 曾维勇
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得分阅卷人 得分阅卷人 2008年浙江省普通高校“专升本”联考《高等数学(一)》试
卷及答案
考试说明:
1、考试时间为150分钟;
2、满分为150分;
3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;
4、密封线左边各项要求填写清楚完整。
一. 选择题(每个小题给出的选项中,
只有一项符合要求:本题共有5个小
题,每小题4分,共20分)
1.函数是( ).
奇函数 偶函数 有界函数 周期函数2.设函数,则函数在处是( ).
可导但不连续 不连续且不可导 连续且可导 连续但不可导3.设函数在上,,则成立( ).
4.方程表示的二次曲面是( ).椭球面 柱面 圆锥面 抛物面
5.设在上连续,在内可导,, 则在内,曲线上平行于轴的切线( ).
至少有一条 仅有一条 不一定存在 不存在
二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分) 1.计算
2.设函数在可导, 且,则
.
得分阅卷人
3.设函数则
4.曲线的拐点坐标
5.设为的一个原函数,则
6.
7.定积分8.设函数,则
9. 交换二次积分次序
10. 设平面过点且与平面平行,则平面的方程为
三.计算题:(每小题6分,共60分)1.计算.
2.设函数,且,求.
3.计算不定积分
4.计算广义积分.
5.设函数,求.
6. 设在上连续,且满足,求.
7.求微分方程的通解.
报考学校:______________________报考专业:
______________________姓名:准考证号:
------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------
8.将函数展开成的幂级数.
得分阅卷人
9.设函数,求函数在的全微分.
10.计算二重积分,,其中.
四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分)1.设平面图形由曲线及直线所围成,
求此平面图形的面积;
求上述平面图形绕轴旋转一周而得到的
旋转体的体积.
2.求函数的单调区间、极值及曲线的凹凸区间.
3.求证:当时,.
《高等数学(一)答案
1. 选择题:(每小题4分,共20分)
题号12345答案B D C C A
二..填空题:(每小题4分,共40分)
1. ;
2. 2;
3. ;
4. ;
5. ;
6. ;
7. ;
8. ;
9.;
10. .
三.计算题(每小题6分,共60分)
1.解法一.由洛必达法则,得到 …………..4分 . …………
6分
解法二.令, 则 ……….. 2分
于是, . …………6分
2.解., …………3分
故 . ………..6分
3. 解法一.令,,则, ………..2分
……….5分
. ……….6分
解法二. ……….4分
. ……….6分
4.解. ……….3分
. ………..6分
5.解. ……….3分
. ……….6分
6.解. 设,两边对已给等式关于从0到1积分,得到
……….4分
从而解得 .. ………..5分
代入原式得. ……….6分
7.解.特征方程为,得到特征根, ………..1分
故对应的齐次方程的通解为, ………..3分
由观察法,可知非齐次方程的特解是, ………..5分
因而,所求方程的通解为
,其中是任意常数. ……….6分
8.解.因为, ….3分
所以
=. ……..6分
9解., ……….2分
从而, ……….4分
所以. ………6分
10.解.采用极坐标变换,令 ,, ……..2分
……….4分
. ……..6分
四.综合题:(每小题10分,共30分)
1.解法一(1). ……….4分
. ………..6分
(2). ………..9分
………..12分
解法二.(1) ……….3分
. ………..6分
(2). ……….9分
. …………12分
2.解.定义域为,
,令,得到 (驻点), …….2分
由,得到, …….3分
01(1,2)2
+0--0+
--++
极大值-1极小值-5
……..8分
故为单调增加区间,(0,2)为单调减少区间; ……….10分极大值为-1,极小值为-5, ……..11分
为凸区间,为凹区间 ………12分
3.证明. 令
……….2分
利用中值定理,,其中, …….4分
所以,因此,当时,是单调增加的, ………5分
而,
所以当时,. ………..6分。