代数方程组的MATLAB求解
Matlab多项式运算与代数方程求解
![Matlab多项式运算与代数方程求解](https://img.taocdn.com/s3/m/9a4c37d82cc58bd63186bd47.png)
上机要求
上机要求
将所有文件作为附件,通过 foxmail 以邮件形式发给
mhjs@system.mail 邮件主题为:机号-学号-姓名,其中机号为 两位数 三个字段之间用英文状态下的减号连接 每个 M 文件的第一行添加一条注解语句:
% 机号-学号-姓名
22
注意:f 不是方程!也不能使用符号表达式!
15
fzero 举例
例:求 f(x)=x3-3x+1 在区间 [-2, 0] 内的实根。
f=@(x) x^3-3*x+1; x0=fzero(f,[-2,0])
例:求 f(x)=sin(x) 在 10 附近的实根。
fzero(@sin,10)
用 fzero 求零点时可以先通过作图确定零点的大致范围
17
代数方程符号求解
solve 也可以用来解方程组 solve(f1,f2, ...,fN, v1,v2, ...,vN)
求由 f1 , f2 , ... , fN 确定的方程组关于 v1 , v2 , ... , vN 的解
x 2 y z 27 xz3 x 2 3 y 2 28
11
多项式运算中, 使用的是多项式
系数向量,
不涉及符号计算!
内容提要
多项式运算
多项式转化为符号表达式:poly2sym, sym2poly
四则运算:conv、deconv
导数与积分:ployder、polyint 求值与零点:polyval、polyvalm、roots、poly
代数方程求解
线性方程组数值求解:linsolve 非线性方程数值求解:fzero 非线性方程符号求解:solve
MATLAB计算方法3解线性方程组计算解法
![MATLAB计算方法3解线性方程组计算解法](https://img.taocdn.com/s3/m/1e3dc8c270fe910ef12d2af90242a8956becaac7.png)
MATLAB计算方法3解线性方程组计算解法线性方程组是数学中的一个重要问题,解线性方程组是计算数学中的一个基本计算,有着广泛的应用。
MATLAB是一种功能强大的数学软件,提供了多种解线性方程组的计算方法。
本文将介绍MATLAB中的三种解线性方程组的计算方法。
第一种方法是用MATLAB函数“linsolve”解线性方程组。
该函数使用高斯消元法和LU分解法求解线性方程组,可以处理单个方程组以及多个方程组的情况。
使用该函数的语法如下:X = linsolve(A, B)其中A是系数矩阵,B是常数向量,X是解向量。
该函数会根据A的形式自动选择求解方法,返回解向量X。
下面是一个使用“linsolve”函数解线性方程组的例子:A=[12;34];B=[5;6];X = linsolve(A, B);上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。
运行代码后,X的值为[-4.0000;4.5000]。
第二种方法是用MATLAB函数“inv”求解逆矩阵来解线性方程组。
当系数矩阵A非奇异(可逆)时,可以使用逆矩阵求解线性方程组。
使用“inv”函数的语法如下:X = inv(A) * B其中A是系数矩阵,B是常数向量,X是解向量。
该方法先计算A的逆矩阵,然后将逆矩阵与B相乘得到解向量X。
下面是一个使用“inv”函数解线性方程组的例子:A=[12;34];B=[5;6];X = inv(A) * B;上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。
运行代码后,X的值为[-4.0000;4.5000]。
第三种方法是用MATLAB函数“mldivide”(或“\”)求解线性方程组。
该函数使用最小二乘法求解非方阵的线性方程组。
使用“mldivide”函数的语法如下:X=A\B其中A是系数矩阵,B是常数向量,X是解向量。
matlab 解方程组
![matlab 解方程组](https://img.taocdn.com/s3/m/b3e45bc9534de518964bcf84b9d528ea81c72f38.png)
matlab 解方程组Matlab是一种常用的数学计算工具,可以解决大量复杂的计算问题。
它可以帮助解决各种抽象科学问题,特别是解方程组,解决了大量复杂的计算问题。
解方程组是数学中最基础的概念之一,广泛应用于物理、统计学、经济学等领域。
由于方程的形式复杂,手动解方程组工作量巨大,极容易出现错误,这时候就需要用Matlab来求解方程组。
Matlab中提供了各种函数来求解方程组,如fsolve函数、symsolve函数等,可以帮助我们解决实际问题。
fsolve函数可以解求非线性方程组,它需要给定初始猜测值,并求解多元非线性方程组;而symsolve函数可以用来解复杂的符号方程组,直接可以得出其解析解而无需使用初始猜测值。
此外,Matlab还提供了特殊的函数ddesol, ddesd, ddensd等,可以解决时滞系统的方程组。
具体来讲,ddesol函数可以解决一阶时滞系统的方程组;而ddesd和ddensd函数则可以解决二阶时滞系统的方程组。
下面来看如何使用Matlab来求解一般的非线性方程组。
假如要求解一个三元非线性方程组:x^2 + y^2 + z^2 = 152x + y - z = 4x + y^2 - z = -2首先需要定义给定的方程,可以采用如下的Matlab代码:f1 = @(x,y,z)x^2 + y^2 + z^2 - 15;f2 = @(x,y,z)2*x+ y - z - 4;f3 = @(x,y,z)x + y^2 - z + 2;接下来就可以用fsolve函数来求解方程组:X0 = [0, 0, 0];X = fsolve(@(x) [f1(x(1),x(2),x(3)), f2(x(1),x(2),x(3)), f3(x(1),x(2),x(3))],X0)得到结果X = [2.406, 0.1322, 1.909],从而得到了三元方程组的解。
Matlab还提供了许多其他的函数用来求解不同形式的方程组,有特定的用途。
专题4 使用MATLAB求解线性方程组的不同方法
![专题4 使用MATLAB求解线性方程组的不同方法](https://img.taocdn.com/s3/m/d439c56e0b4c2e3f5727637b.png)
Z = null(A) 求出 Ax=0 的基础解系后,将基础解系的向量正交单位化,存储在 Z 中. MATLAB 源代码如下: A=[1 2 2 1;2 1 -2 -2;1 -1 -4 -3]
A= 12 2 1 2 1 -2 -2 1 -1 -4 -3
Rank(A) Ans= 2 A=sym(A) A= [1,2,2,1] [2,1,-2,-2] [1,-1,-4,-3] null(A) ans= [2, 5/3] [-2,-4/3] [1, 0] [0, 1]
运行结果为: rank_A =
2 rank_B =
2 S_H =
-2
1
1
0
0
2
0
1
S_P =
0
1.7500
0
-0.5000
则该线性方程组有无穷多解为:
2 1 0
x
k1
1 0
k2
0 2
7 0
/
4
,
k1
,Leabharlann k2R 0 1 1/ 2
nulla?r?求系数矩阵为a的齐次线性方程组ax0的基础解系结果为有理数bnulla求出ax0的基础解系后将基础解系的向量正交单位化存储在zmatlab源代码如下
专题 4 使用 MATLAB 求解线性方程组的方法
x1 2 x2 2x3 x4 0
【例
1】求齐次方程组
2 x1
end end
x1 2x2 2x3 3x4 2 【例 1.3】使用 Matlab 求解方程组 2x1 4x2 3x3 4x4 5
matlab常用解方程及方程组函数
![matlab常用解方程及方程组函数](https://img.taocdn.com/s3/m/8402822403020740be1e650e52ea551810a6c917.png)
matlab常用解方程及方程组函数matlab常用解方程及方程组函数1、roots求解多项式的根r=roots(c)注意:c为一维向量,者返回指定多项式的所有根(包括复根),poly与roots就是互为反运算,还有就就是roots只能求解多项式的解还有下面几个函数poly2sym、sym2poly、eig>>syms x>>y=x^5+3*x^3+3;>>c=sym2poly(y);%求解多项式系数 >>r=roots(c); >>poly(r)2、residue求留数[r, p, k] = residue(b,a) >>b = [ 5 3 -2 7] >>a = [-4 0 8 3]>>[r, p, k] = residue(b,a)3、solve符号解方程(组)——使用最多的g = solve(eq1,eq2,、、、,eqn,var1,var2,、、、,varn)注意:eqn与varn可以就是符号表达式,也可以就是字符串表达式,但就是使用符号表达式时不能有“=”号,假如说varn没有给出,使用findsym函数找出默认的求解变量。
返回的g就是一个结构体,以varn 为字段。
由于符号求解的局限性,好多情况下可能得到空矩阵,此时只能用数值解法解方程A=solve('a*x^2 + b*x + c')解方程组B=solve('a*u^2 + v^2', 'u - v = 1', 'a^2 - 5*a + 6')4、fzero数值求零点[x,fval,exitflag,output]=fzero(fun,x0,options,p1,p2、、、)fun就是目标函数,可以就是句柄(@)、inline函数或M文件名x0就是初值,可以就是标量也可以就是长度为2的向量,前者给定一个位置,后者就是给定一个范围options就是优化参数,通过optimset设置,optimget获取,一般使用默认的就可以了,具体参照帮助p1,p2、、、为需要传递的其它参数假如说(x/1446)^2+p/504、1+(t/330、9)*(log(1-x/1446)+(1-1/5、3)*x/1446)=0的根,其中p,t就是已知参数,但就是每次都改变那么目标函数如下三种书写格式,效果完全等效。
用MATLAB做线性代数实验
![用MATLAB做线性代数实验](https://img.taocdn.com/s3/m/1af4988476a20029bd642dce.png)
2
0
, 2
5 3
, 3
1
3
, 4
1
4
, 5
1
2
。
3
6
0Hale Waihona Puke 73【程序如下】:
% (1)
A=[1 2 1 3;4 -1 5 6;1 -3 -4 7;1 2 1 1]' r=rank(A) [R,IP]=rref(A) % (2) A=[1 2 0 2 1;-2 -5 1 -1 1;0 -3 3 4 2;P3 6 0 -7 3] r=rank(A) [R,IP]=rref(A)
例如:
已知
A
1 3
2 4
,
B
1 1
2 0
,解矩阵方程
(1)
AX
B , (2) XA B 。
MATLAB 程序如下:
A=[1 2;3 4];
B=[1 2;-1 1];
X1=inv(A)*B % AX=B or
X1=A\B
X2=B*inv(A) % XA=B
X2=A/B
将 p(x) 分解为最简分式之和 q( x)
[p,q]=residue(a,b,r) 将简单分式之和合并为有理分式
例如,将有理分式
f
(x)
x2 x3 2x2 3x2
分解为最简分式之和的程序如下:
p=[1 2];
q=[1 2 3 2];
[a,b,r]=residue(p,q)
输出:a =
-0.2500 - 0.4725i
p=[1 -6 11 -6];
19476-数学建模-代数方程组的解法实验
![19476-数学建模-代数方程组的解法实验](https://img.taocdn.com/s3/m/94be6994453610661fd9f452.png)
实验目的实验内容MATLAB2、通过实例练习用(非)线性方程组求解实际问题.实验软件1、用Matlab 软件掌握(非)线性方程组的解法,对迭代法的收敛性和解的稳定性作初步分析.1、向量和矩阵的范数.2、解线性方程组的方法介绍.3、解非线性方程(组)的方法介绍.2)、条件数的性质:a) 1)(≥A cond ;b) 对于R ∈≠)0(α,)()(A cond A cond =α; c) 对于正交阵n n R Q ⨯∈,)()()(A cond AQ cond QA cond ==;讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:)1(22112222212111212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a从(4)式最后一个方程解出n x ,代入它上面的一个方程解出1-n x ,并如此进行下去,即可依次将1,,x x n 全部解出,这样在),,2,1(0)(n k a k kk =≠的假设下,由上而下的消元由下而上的回代,就构成了方程组的消元法,称高斯消元法。
高斯消元法的MATLAB程序%顺序gauss消去法,gauss函数function [A,u]=gauss(a,n)for k=1:n-1%消去过程for i=k+1:nfor j=k+1:n+1%如果a(k,k)=0,则不能消去if abs(a(k,k))>1e-6%计算第k步的增广矩阵a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j);else%a(k,k)=0,顺序gauss消去失败disp('顺序gauss消去失败');pause;exit;endendendend%回代过程x(n)=a(n,n+1)/a(n,n);for i=n-1:-1:1s=0;for j=i+1:ns=s+a(i,j)*x(j);endx(i)=(a(i,n+1)-s)/a(i,i);end%返回gauss消去后的增广矩阵A=triu(a);%返回方程组的解u=x;例1 用高斯消元法求解方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=++++=+++=++++63521967414832157425421542154321542154321x x x x x x x x x x x x x x x x x x x x x x列主元素消元法的MATLAB程序%列主元gauss消去函数function [A,u]=gauss(a,n)%消去过程for k=1:n-1%选主元c=0;for q=k:nif abs(a(q,k))>cc=a(q,k);l=q;endend%如果主元为0,则矩阵A不可逆if abs(c)<1e-10disp('error');pause;exit;end%如果l不等于k,则交换第l行和第k行if l~=kfor q=k:n+1temp=a(k,q);a(k,q)=a(l.q);a(l,q)=temp;endend%计算第k步的元素值for i=k+1:nfor j=k+1:na(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j);endendend%回代过程x(n)=a(n,n+1)/a(n,n); for i=n-1:-1:1s=0;for j=i+1:ns=s+a(i,j)*x(j); endx(i)=(a(i,n+1)-s)/a(i,i); end%返回列主元gauss消去后的增广矩阵A=triu(a);%返回方程组的解u=x;例2 用列主元素消去法重新解例1二、迭代法1、迭代法的总体思想:1)、迭代公式的构造:对线性方程组b Ax =,可以构造一个迭代公式 f BX Xk k +=++)1()1(,给出)0(X 由迭代公式的{})(k X ,如果{})(k X 收敛于*X ,那么*X 就是原方程组的解。
MATLAB线性方程组和代数方程数值求解
![MATLAB线性方程组和代数方程数值求解](https://img.taocdn.com/s3/m/9d9699a2aff8941ea76e58fafab069dc502247ba.png)
第10讲 线性方程组和代数方程数值求解 (第8章 MATLAB 方程数值求解)目的:一、 掌握矩阵的分解与线性方程组的解 二、 代数方程数值求解的方法。
—————————————————————————————————————— 一、掌握线性方程组和代数方程数值求解的方法。
(一)矩阵的分解 1、化简矩阵的计算工作量当方程组AX b =的系数矩阵为方阵且可逆时,方程组有唯一解。
1X A b −=,求1A −或者1A b −的方法是将()()1,~,rA E E A−或者()()1,~,rA b E A b −这两个方法都需要经过将矩阵A 化为单位矩阵E 这一过程,而将矩阵A 化为单位矩阵E 通常采用高斯消元法。
假设110a ≠利用11a 将红框内的元素化为0,在计算化简的过程中,蓝框内的元素也要一起同步计算。
重复这一过程,可以将A 从上往下化简为上三角矩阵:可以继续将这个矩阵从下往上化简为对角矩阵,在往上化简时,比如用nn b 化简红框元素,由于主对角线下元素是零,此时蓝框内的元素不会一起同步计算。
112233000000000000nn a b b b,(2)对比从上往下,和从下往上化简的过程可知,化简一般矩阵为单位矩阵的计算工作量远远大于将三角矩阵化简为单位矩阵的计算工作量。
2、方阵的LU 分解与方程组n A X b =的求解矩阵的LU 分解是指将矩阵A 分解为下三角矩阵L 与上三角矩阵U 的乘积,即A L U =⋅,方程组AX b =等同于LUX b =,解得11X U L b −−=,由于,L U 是三角矩阵,求逆时运算量比较小。
所以如果,L U 已知,用11X U L b −−=求解比用1X A b −=更加有效。
但如果,L U 未知,用11X U L b −−=求解方程组,还需要将A 分解为,L U ,如果求出的,L U 只用于求解一个方程组AX b =,显然并不比用1A −求解更有效。
matlab求解代数方程组解析
![matlab求解代数方程组解析](https://img.taocdn.com/s3/m/66c6095d1711cc7931b716f1.png)
第三讲 Matlab 求解代数方程组理论介绍:直接法+迭代法,简单介绍相关知识和应用条件及注意事项 软件求解:各种求解程序讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)一、直接法 1.高斯消元法:高斯消元法的基本原理: 在(1)中设110,a ≠将第一行乘以111,k a a -加到第(2,3,,),k k n = 得: (1)(1)(1)(1)11112211(2)(1)(2)22112(2)(2)(2)22n n n n n nn n n a x a x a x b a x a x b a x a x b ⎧+++=⎪++=⎪⎨⎪⎪++=⎩(2)其中(1)(1)1111,.k k aa b b ==再设(2)220,a ≠将(2)式的第二行乘以(2)2(2)22,(3,,)k a k n a -= 加到第k 行,如此进行下去最终得到:(1)(1)(1)(1)11112211(2)(1)(2)22112(1)(1)(1)1,111,1()()n n n n n n n n n n n n n n n n nn n n a x a x a x b a x a x b a x a x b a x b --------⎧+++=⎪++=⎪⎪⎨⎪+=⎪⎪=⎩(3) 从(3)式最后一个方程解出n x ,代入它上面的一个方程解出1n x -,并如此进行下去,即可依次将121,,,,n n x x x x - 全部解出,这样在()0(1,2,,)k kk a k n ≠= 的假设下,由上而下的消元由下而上的回代,构成了方程组的高斯消元法. 高斯消元法的矩阵表示:若记11(),(,,),(,,)T T ij n n n n A a x x x b b b ⨯=== ,则(1)式可表为.Ax b =于是高斯消元法的过程可用矩阵表示为:121121.n n M M M Ax M M M b --=其中:(1)21(1)111(1)1(1)11111n a a M a a ⎛⎫ ⎪ ⎪- ⎪=⎪ ⎪ ⎪ ⎪- ⎪⎝⎭ (2)32(2)222(2)2(2)221111n a a M a a ⎛⎫⎪⎪ ⎪-⎪=⎪ ⎪ ⎪⎪- ⎪⎝⎭高斯消元法的Matlab 程序: %顺序gauss 消去法,gauss 函数 function[A,u]=gauss(a,n) for k=1:n-1%消去过程 for i=k+1:n for j=k+1:n+1%如果a(k,k)=0,则不能削去 if abs(a(k,k))>1e-6 %计算第k 步的增广矩阵 a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j); else%a(k,k)=0,顺序gauss 消去失败 disp (‘顺序gauss 消去失败‘); pause; exit; end end end end%回代过程 x(n)=a(n,n+1)/a(n,n); for i=n-1:-1:1 s=0; for j=i+1:n s=s+a(i,j)*x(j); endx(i)=(a(i,n+1)-s)/a(i,i); end%返回gauss 消去后的增广矩阵 A=triu(a); %返回方程组的解 u=x ;练习和分析与思考: 用高斯消元法解方程组:12345124512345124512452471523814476192536x x x x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++=⎪⎪++++=⎨⎪+++=⎪+++=⎪⎩2.列主元素消元法在高斯消元法中进行到第k 步时,不论()k ik a 是否为0,都按列选择()||(,,)k ik a i k n = 中最大的一个,称为列主元,将列主元所在行与第k 行交换再按高斯消元法进行下去称为列主元素消元法。
【matlab-7】Matlab与线性代数(一)
![【matlab-7】Matlab与线性代数(一)](https://img.taocdn.com/s3/m/5bb2610fc4da50e2524de518964bcf84b9d52da4.png)
【matlab-7】Matlab与线性代数(⼀)⼀、线性代数基本⽅程组基本⽅程组:矩阵表⽰:解决问题的视⾓:1、解联⽴⽅程的视⾓ (⾏阶梯变换 & 矩阵运算)着重研究解x,即研究线性⽅程组的解法。
中学⾥的解⽅程和MATLAB的矩阵除法就是这样。
要点:矩阵的每⼀⾏代表⼀个⽅程,m⾏代表m个线性联⽴⽅程。
n列代表n个变量。
如果m是独⽴⽅程数,根据m<n、m=n、m>n确定⽅程是 ‘⽋定’、‘适定’ 还是 ‘超定’。
对这三种情况都会求解了,研究就完成了。
必须剔除⾮独⽴⽅程。
⾏阶梯形式、⾏列式和秩的概念很⼤程度上为此⽬的⽽建⽴。
2、向量空间中向量的合成的视⾓ (⽤向量空间解⽅程组)把A各列看成n个m维基本向量,线性⽅程组看成基向量的线性合成:要点:解x是这些基向量的系数。
它可能是常数(适定⽅程),也可能成为其中的⼀个⼦空间(⽋定⽅程) 。
要建⽴其⼏何概念,并会求解或解空间。
3、线性变换或映射的视⾓ (线性变换及其特征)把b看成变量y,着重研究把Rn空间的x变换为Rm空间y 的效果,就是研究线性变换系数矩阵A的特征对变换的影响。
要点:就是要找到适当的变换,使研究问题的物理意义最为明晰。
特征值问题就是⼀例。
⼆、线性代数建模与应⽤概述介绍⼀些⼤的系统⼯程中使⽤线性代数的情况,使读者知道为什么线性代数在近⼏⼗年来变得如此的重要。
Leontief教授把美国的经济⽤500个变量的500个线性⽅程来描述,在1949年利⽤当时的计算机解出了42×42的简化模型,使他于1973年获得诺贝尔经济奖,从⽽⼤⼤推动了线性代数的发展。
把飞⾏器的外形分成若⼲⼤的部件,每个部件沿着其表⾯⼜⽤三维的细⽹格划分出许多⽴⽅体,这些⽴⽅体包括了机⾝表⾯以及此表⾯内外的空⽓。
对每个⽴⽅体列写出空⽓动⼒学⽅程,其中包括了与它相邻的⽴⽅体的共同边界变量,这些⽅程通常都已经简化为线性⽅程。
对⼀个飞⾏器,⼩⽴⽅体的数⽬可以多达400,000个,⽽要解的联⽴⽅程可能多达2,000,000个。
matlab微积分例题精选
![matlab微积分例题精选](https://img.taocdn.com/s3/m/d0c14124ccbff121dd36836d.png)
matlab 微积分基本运算§1 解方程和方程组解1. 线性方程组求解对于方程 AX = B ,其中 A 是( m ×n )的矩阵有三种情形:1)当n=m 且A 非奇异时,此方程为“恰定”方程组。
2)当 n > m 时,此方程为“超定”方程组。
3)当n<m 时,此方程为“欠定”方程组。
下面就三种情形的求解分别作一说明:(1) MATLAB 解恰定方程 A* X = B 的方法1)采用求逆运算解方程x=inv(A)*B2)采用左除运算解方程x=A\B例1 “求逆”法和“左除”法求下列方程组的解⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x xx x x x x x x 在Matlab 编辑器中建立M 文件fanex1.m :A=[5 6 0 0 01 5 6 0 00 1 5 6 00 0 1 5 60 0 0 1 5];B=[1 0 0 0 1]';R_A=rank(A) %求秩X1=A\B %用"左除"法解恰定方程所得的解X2=inv(A)*B %用"求逆"法解恰定方程所得的解运行后结果如下R_A =5X1 =2.2662-1.72181.0571-0.59400.3188X2 =2.2662-1.72181.0571-0.59400.3188两种方法所求方程组的解相同。
(2)MATLAB 解超定方程AX=B 的方法对于方程 AX = B ,其中 A 是( m ×n )的矩阵, n > m ,如果A 列满秩,则此方程是没有精确解的。
然而在实际工程应用中,求得其最小二乘解也是有意义的。
基本解法有:1)采用求伪逆运算解方程x=pinv(A)*B说明:此解为最小二乘解x=inv(A ’*A)*A*B,这里pinv(A) =inv(A ’*A)*A.2)采用左除运算解方程x=A\B例2 “求伪逆”法和“左除”法求下列方程组的解⎪⎩⎪⎨⎧=+=+=+12214212212121x x x x x x命令如下:>> a=[1 2;2 4;2 2];>> b=[1,1,1]';>> xc=a\b %用左除运算解方程运行得结果:xc =0.40000.1000>> xd=pinv(a)*b %用求伪逆运算解方程运行得结果:xd =0.40000.1000>> a*xc-b %xc 是否满足方程ax=b运行得结果:ans =-0.40000.20000.0000可见xc 并不是方程的精确解。
matlab求解联立两个方程组
![matlab求解联立两个方程组](https://img.taocdn.com/s3/m/1ee67952a31614791711cc7931b765ce04087a49.png)
matlab求解联立两个方程组使用Matlab求解联立两个方程组方程组是数学中常见的问题,是一组含有未知数的方程。
当方程的个数大于未知数的个数时,我们称之为联立方程组。
求解联立方程组是数学中的一项重要任务,它在实际问题中有着广泛的应用。
在Matlab中,通过使用线性代数工具箱中的函数,可以很方便地求解联立方程组。
下面我们通过一个具体的例子来演示如何使用Matlab求解联立方程组。
假设我们有如下的一个联立方程组:```2x + 3y = 74x - 5y = 1```我们的目标是求解出未知数x和y的值。
我们需要将方程组转化为矩阵形式。
将方程组的系数和常数项分别放入一个矩阵和一个向量中,可以得到如下的形式:```A = [2, 3; 4, -5]B = [7; 1]```其中,矩阵A是方程组的系数矩阵,向量B是方程组的常数项向量。
接下来,我们使用Matlab中的线性代数函数`linsolve`来求解方程组。
具体的代码如下:```A = [2, 3; 4, -5];B = [7; 1];X = linsolve(A, B);```执行这段代码后,我们可以得到方程组的解X。
通过打印X的值,我们可以得到未知数x和y的值。
Matlab还提供了其他几个函数用于求解方程组,如`mldivide`和`inv`等。
这些函数在不同情况下有着不同的优势和适用性。
在使用时,我们可以根据具体的需求选择合适的函数。
除了使用Matlab提供的函数,我们还可以通过矩阵的逆来求解方程组。
具体的步骤如下:1. 计算矩阵A的逆矩阵A_inv;2. 将方程组的常数项向量B乘以逆矩阵A_inv,得到未知数向量X;3. 打印X的值,得到未知数的解。
具体的代码如下:```A = [2, 3; 4, -5];B = [7; 1];A_inv = inv(A);X = A_inv * B;```通过以上的步骤,我们可以得到方程组的解X。
在实际应用中,方程组的个数和未知数的个数可能会更多,但是求解的原理和方法是类似的。
如何用MATLAB解方程
![如何用MATLAB解方程](https://img.taocdn.com/s3/m/98d3f6ecfbb069dc5022aaea998fcc22bcd14382.png)
用MATLAB解方程的三个实例1、对于多项式p(x)=x3-6x2-72x-27,求多项式p(x)=0的根,可用多项式求根函数roots(p),其中p为多项式系数向量,即>>p =[1,-6,-72,-27]p =1.00 -6.00 -72.00 -27.00p是多项式的MATLAB描述方法,我们可用poly2str(p,'x')函数,来显示多项式的形式: >>px=poly2str(p,'x')px =x^3 - 6 x^2 - 72 x - 27多项式的根解法如下:>> format rat %以有理数显示>> r=roots(p)r =2170/179-648/113-769/19802、在MATLAB中,求解用符号表达式表示的代数方程可由函数solve实现,其调用格式为:solve(s,v):求解符号表达式s的代数方程,求解变量为v。
例如,求方程(x+2)x=2的解,解法如下:>> x=solve('(x+2)^x=2','x')x =.69829942170241042826920133106081得到符号解,具有缺省精度。
如果需要指定精度的解,则:>> x=vpa(x,3)x =.6983、使用fzero或fsolve函数,可以求解指定位置(如x0)的一个根,格式为:x=fzero(fun,x0)或x=fsolve(fun,x0)。
例如,求方程0.8x+atan(x)- =0在x0=2附近一个根,解法如下:>> fu=@(x)0.8*x+atan(x)-pi;>> x=fzero(fu,2)x =2.4482或>> x=fsolve('0.8*x+atan(x)-pi',2)x =2.4482当然了,对于该方程也可以用第二种方法求解:>> x=solve('0.8*x+atan(x)-pi','x')x =2.4482183943587910343011460497668对于第一个例子,也可以用第三种方法求解:>> F=@(x)x^3-6*x^2-72*x-27F =@(x)x^3-6*x^2-72*x-27>> x=fzero(F,10)x =12.1229对于第二个例子,也可以用第三种方法:>> FUN=@(x)(x+2)^x-2FUN =@(x)(x+2)^x-2>> x=fzero(FUN,1)x =0.6983最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MA TLAB中有两种方法:(1)x=inv(A)*b —采用求逆运算解方程组;(2)x=A\b —采用左除运算解方程组。
数值分析中求解线性方程组的MATLAB程序(6种)
![数值分析中求解线性方程组的MATLAB程序(6种)](https://img.taocdn.com/s3/m/9c7943ea81c758f5f61f67a9.png)
数值分析中求解线性方程组的MATLAB程序(6种)1.回溯法(系数矩阵为上三角)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));2.系数矩阵为下三角function x=matrix_down(A,b)%求解系数矩阵是下三角的方程组n=length(b);x=zeros(n,1);x(1)=b(1)/A(1,1);for k=2:1:nx(k)=(b(k)-A(k,1:k-1)*x(1:k-1))/A(k,k);end3.普通系数矩阵(先化为上三角,在用回溯法)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));4.三角分解法function [X,L,U]=LU_matrix(A,B)%A是非奇异矩阵%AX=B化为LUX=B,L为下三角,U为上三角%程序中并没有真正解出L和U,全部存放在A中[N,N]=size(A);X=zeros(N,1);Y=zeros(N,1);C=zeros(1,N);R=1:N;for p=1:N-1[max1,j]=max(abs(A(p:N,p)));C=A(p,:);A(p,:)=A(j+p-1,:);A(j+p-1,:)=C;d=R(p);R(p)=R(j+p-1);R(j+p-1)=d;if A(p,p)==0'A is singular.No unique solution'break;endfor k=p+1:Nmult=A(k,p)/A(p,p);A(k,p)=mult;A(k,p+1:N)=A(k,p+1:N)-mult*A(p,p+1:N);endendY(1)=B(R(1));for k=2:NY(k)=B(R(k))-A(k,1:k-1)*Y(1:k-1);endX(N)=Y(N)/A(N,N);for k=N-1:-1:1X(k)=(Y(k)-A(k,k+1:N)*X(k+1:N))/A(k,k);endL=tril(A,-1)+eye(N)U=triu(A)5.雅克比迭代法function X=jacobi(A,B,P,delta,max1);%雅克比迭代求解方程组N=length(B);for k=1:max1for j=1:NX(j)=(B(j)-A(j,[1:j-1,j+1:N])*P([1:j-1,j+1:N]))/A(j,j);enderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)breakendendX=X';k6.盖斯迭代法function X=gseid(A,B,P,delta,max1);%盖斯算法,求解赋初值的微分方程N=length(B);for k=1:max1for j=1:Nif j==1X(1)=(B(1)-A(1,2:N)*P(2:N))/A(1,1);elseif j==NX(N)=(B(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N);elseX(j)=(B(j)-A(j,1:j-1)*X(1:j-1)-A(j,j+1:N)*P(j+1:N))/A(j,j);endenderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)break;endendX=X';k。
用Matlab解代数方程
![用Matlab解代数方程](https://img.taocdn.com/s3/m/8d600b778e9951e79b892711.png)
一般的代数方程函数solve用于求解一般代数方程的根,假定S为符号表达式,命令solve (S)求解表达式等于0的根,也可以再输入一个参数指定未知数。
例:syms a b c xS=a*x^2+b*x+c;solve(S)ans=[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))][ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]b=solve(S,b)b =-(a*x^2+c)/x线性方程组线性方程组的求解问题可以表述为:给定两个矩阵A和B,求解满足方程AX=B或XA=B的矩阵X。
方程AX=B的解用X=A\B或X=inv (A)*B表示;方程XA=B 的解用X=B/A或X=B*inv (A)表示。
不过斜杠和反斜杠运算符计算更准确,占用内存更小,算得更快。
线性微分方程函数dsolve用于线性常微分方程(组)的符号求解。
在方程中用大写字母D表示一次微分,D2,D3分别表示二阶、三阶微分,符号D2y相当于y关于t的二阶导数。
函数dsolve的输出方式格式说明y=dsolve(‘Dyt=y0*y’) 一个方程,一个输出参数[u,v]=dsolve(‘Du=v’,’Dv=u’) 两个方程,两个输出参数S=dsolve(‘Df=g’,’Dg=h’,’Dh=-2*f ‘)方程组的解以S.fS.g S.h结构数组的形式输出例1 求 21u dtdu += 的通解.解 输入命令:dsolve('Du=1+u^2','t')结果:u = tg(t-c)例2 求微分方程的特解.ïîïíì===++15)0(',0)0(029422y y y dxdydx y d 解输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')结果为: y =3e -2x sin (5x )例3 求微分方程组的通解.ïïïîïïïíì+-=+-=+-=z y x dtdz zy x dtdyz y x dt dx244354332解输入命令:[x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z', 't');x=simple(x) % 将x 化简y=simple(y)z=simple(z)结果为:x = (c 1-c 2+c 3+c 2e -3t -c 3e -3t )e 2ty = -c 1e -4t +c 2e -4t +c 2e -3t -c 3e -3t +(c 1-c 2+c 3)e 2t z = (-c 1e -4t +c 2e -4t +c 1-c 2+c 3)e 2t非线性微分方程注意:1、在解n个未知函数的方程组时,x0和x均为n维向量,m-文件中的待解方程组应以x的分量形式写成.2、使用Matlab软件求数值解时,高阶微分方程必须等价地变换成一阶微分方程组.例4 ïîïíì===---0)0(';2)0(0)1(1000222x x x dtdx x dt x d 解: 令y 1=x ,y 2=y 1’则微分方程变为一阶微分方程组:ïîïíì==--==0)0(,2)0()1(1000''211221221y y y y y y y y 1、建立m-文件vdp1000.m 如下:function dy=vdp1000(t,y)dy=zeros(2,1);dy(1)=y(2);dy(2)=1000*(1-y(1)^2)*y(2)-y(1);2、取t 0=0,t f =3000,输入命令:[T,Y]=ode15s('vdp1000',[0 3000],[2 0]); plot(T,Y(:,1),'-')3、结果如图50010001500200025003000-2.5-2-1.5-1-0.500.511.52例5 解微分方程组.ïïîïïíì===-=-==1)0(,1)0(,0)0(51.0'''321213312321y y y y y y y y y y y y 解1、建立m-文件rigid.m 如下:function dy=rigid(t,y)dy=zeros(3,1);dy(1)=y(2)*y(3);dy(2)=-y(1)*y(3);dy(3)=-0.51*y(1)*y(2);2、取t 0=0,t f =12,输入命令:[T,Y]=ode45('rigid',[0 12],[0 1 1]);plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')3、结果如图24681012-1-0.8-0.6-0.4-0.200.20.40.60.81图中,y 1的图形为实线,y 2的图形为“*”线,y 3的图形为“+”线.例6 Lorenz 模型的状态ïîïíì-+-=+-=+-=)()()()()()()()()()()()(322133223221t x t x t x t x t xt x t x t xt x t x t x t x r s s b &&& 若令3/8,28,10===b r s 且初值为e ===)0(,0)0()0(321x x x ,e 为一个小常数,假设1010-=e。
线性代数方程组数值解法及MATLAB实现综述
![线性代数方程组数值解法及MATLAB实现综述](https://img.taocdn.com/s3/m/5bff1f93a58da0116d17491c.png)
线性代数方程组数值解法及MATLAB 实现综述廖淑芳 20122090 数计学院 12计算机科学与技术1班(职教本科) 一、分析课题随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。
其数值计算中线性代数方程的求解问题就广泛应用于各种工程技术方面。
因此在各种数据处理中,线性代数方程组的求解是最常见的问题之一。
关于线性代数方程组的数值解法一般分为两大类:直接法和迭代法。
直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。
直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。
迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。
迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。
迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。
迭代法包括Jacobi 法SOR 法、SSOR 法等多种方法。
二、研究课题-线性代数方程组数值解法 一、 直接法 1、 Gauss 消元法通过一系列的加减消元运算,也就是代数中的加减消去法,以使A 对角线以下的元素化为零,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。
1.1消元过程1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。
11121121222212n n n n nn n a a a b a a a b a a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M O M M L (1)(1)(1)(1)(1)11121311(2)(2)(2)(2)222322(3)(3)(3)3333()()000000nn n n n nn n a a a a b a a a b a a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭L L L M M M OM M L 步骤如下:第一步:1111,2,,i a i i n a -⨯+=L 第行第行 11121121222212n nn n nn n a a a b a a a b a a a b ⎛⎫⎪ ⎪ ⎪⎪⎝⎭L L M M O M M L111211(2)(2)(2)2222(2)(2)(2)200n nn nn n a a a b a a b a a b ⎛⎫⎪⎪ ⎪ ⎪⎝⎭LL M M O M M L第二步:(2)2(2)222,3,,i a i i n a -⨯+=L 第行第行111211(2)(2)(2)2222(2)(2)(2)200nnn nn n a a a b a a b a a b ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭L L M M O M M L11121311(2)(2)(2)(2)222322(3)(3)(3)3333(3)(3)(3)300000n n nn nn n a a a a b a a a b a a b a a b ⎛⎫⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭LL LM M M O M M L 类似的做下去,我们有:第k 步:()()k ,1,,k ikk kka i i k n a -⨯+=+L 第行第行。
Matlab方程的求解
![Matlab方程的求解](https://img.taocdn.com/s3/m/04319f866037ee06eff9aef8941ea76e58fa4a2e.png)
Matlab方程的求解Matlab是一个广泛使用的数学编程环境,它提供了许多强大的数值计算功能,包括求解各种数学方程。
以下是一些关于如何在Matlab中求解方程的基本步骤。
步骤1:启动Matlab首先,你需要打开Matlab。
你可以在Windows、macOS或Linux等操作系统上安装和使用Matlab。
步骤2:创建方程在Matlab中求解方程的第一步是创建方程。
例如,如果你想求解以下线性方程:2x + 3y = 104x - y = 14你可以在Matlab中输入这些方程如下:eq1 = 2x + 3y == 10;eq2 = 4*x - y == 14;步骤3:使用solve函数求解方程接下来,你可以使用Matlab中的solve函数来求解这些方程。
solve函数可以找到使方程为零的变量值。
你可以输入以下命令来求解上述方程:sol = solve([eq1, eq2], [x, y]);在这个例子中,sol是一个包含解的对象,x和y是未知数,eq1和eq2是包含已知数的方程列表。
这个命令会找到满足这两个方程的x和y的值。
步骤4:显示解你可以使用以下命令来查看解:disp(sol)这将显示包含解的对象sol的属性。
例如,它可能会显示以下内容:x = 1.0000 + 2.0000i y = 3.0000 + 2.0000i这表明x的值为1+2i,y的值为3+2i。
如果你需要的是实数解,可以通过以下方法获得:x_real = real(sol.x); y_real = real(sol.y);disp([x_real, y_real])以上就是在Matlab中求解方程的基本步骤。
需要注意的是,对于一些更复杂的方程或者非线性方程,可能需要使用其他的Matlab函数或者额外的工具箱来求解。
在处理复杂的数学问题时,Matlab的文档和帮助功能可以提供更多的信息和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】对于这样一个比较复杂的函数,我们不好判断它的零点的范围,只有先画出图形观察。 执行如下语句,得到函数图形如图所示。
图
函数图形
由图可知,题述函数共有5个根,下面利用鼠标取点函数ginput选取迭代初始值,然后利用fsolve 函数求解
谢谢大家!
Gauss消去法 Gauss消去法是求解线性方程组较为有效的方法,它主要包括两个操作:消元和迭代。顺 序Gauss消去法是指按行原先的位置进行消元的Gauss消去法。下面介绍顺序Gauss消去法的一 般步骤。为叙述方便,将线性方程组 写成增广矩阵的形式
其中
3.矩阵分解法及其MATLAB实现
求解线性方程组除了消去法,还有矩阵分解方法。 所谓矩阵分解方法,就是将矩阵 A 分解成两个或多个简单矩阵的乘积,由于分解后的矩阵 具有某种特殊性,因此便于方程组的求解。
,而其余
2.消去法及其MATLAB实现
上三角形方程组的求解
称形如 的方程组为上三角形方程组
,写成矩阵形式为
其中
称 U为上三角矩阵。若
即
则上三角方程组有唯一解,且可从上式的最后一个方程解出 代入倒数第二个方程 可得 一般地,设已求得 ,则由上述方程组的第i个方程可得 上述求解方程组的过程称为回代过程。
第10章 代数方程组的MATLAB求解
编者
Outline
10.1 10.2 10.3
线性方程组的求解 多项式方程组的准解析解法 超越方程组的求解
10.1 超越方程组的求解
1.克莱姆(Cramer)法则及其MATLAB实现
对于恰定线性方程组
若其系数行列式
,
则上述线性方程组有唯一解
其中 是把D 中第j 列元素 对应地换成常数项 各列保持不变所得到的行列式,这就是克莱姆(Cramer)法则。 MATLAB中没有提供实现克莱姆法则的函数,这需要我们自行编写相应的函数文件
输入F ( x ), x (0)
计算F ( x (0) )和F ( x (0) )
的Jacobi矩阵。
x
(1)
F ( x (0) )奇异 ?
否
是
停止计算
得
解方程 F ( x (0) )x F ( x (0) )得到x (0)
否
计算 x (1) x (0) x (0)
上式写成迭代格式为:
4.迭代法及其MATLAB实现
迭代法是求解线性方程组的一个重要的使用方法,特别 适用于求解系数矩阵为稀疏矩阵的大型线性方程组。 Jacobi迭代法 Gauss-Seidel迭代法 逐次超松弛迭代法
5.线性方程组的MATLAB函数求解
齐次线性方程组的求解 非齐次线性方程组的求
对于本题,我们也可以使用roots函数求解
首先将 代入 则得到关于 的一元多项式
试求解下面的含自变量导数形式的多项式型方程组。
10.3 超越方程组的求解
1.牛顿法及其MATLAB实现
牛顿法求解非线性方程组 首先将多元向量函数 在点 其中, 解方程 是 的根 处展开
x
(0)
x (1) x (0) eps ?
牛顿法的一般执行流程(右图)
是
输出 x (1)
图 Newton法执行流程
2.超越方程组的MATLAB函数求解 MATLAB优化工具箱提供的fsolve函数是专门用来求解非线性方程组的实数根的函数。 例:利用fsolve函数求函数 在 上的所有零点,其中参数