2018年中考数学专题复习卷《数学文化专题》

合集下载

2018年陕西省中考数学专题复习复习试题三精品

2018年陕西省中考数学专题复习复习试题三精品

考点: 全等三角形的判定与性质. 专题: 证明题. 分析: (1)根据 CE =DE 得∠ ECD=∠ EDC ,再利用平行线的性质进行证明即可; (2)根据 SAS证明△ AEC 与△ BED 全等,再利用全等三角形的性质证明即可. 解答: 证明:( 1)∵ AB∥ CD , ∴∠ AEC=∠ ECD,∠ BED=∠ EDC, ∵CE =DE, ∴∠ ECD =∠EDC , ∴∠ AEC=∠ BED; (2)∵ E 是 AB 的点,
—复杂作图. .
5、 . ( 2018?四川泸州 ,第 18 题 6 分)如图, AC=AE,∠ 1= ∠ 2,AB =AD . 求证: BC =DE .
B
E
D
2 1
C
A
考点:全等三角形的判定与性质. .
专题:证明题.
分析:先证出∠ CAB =∠DAE ,再由 SAS 证明△ BAC≌△ DAE ,得出对应边相等即可.
∠AFE +∠ EAF =∠CFD +∠ECB=90°,结合∠ AEF =∠ CFD 得出∠ EAF =∠ECB ,从而得到
△AEF ≌△ CEB;根据全等得到 AF =BC,根据△ ABC 为等腰三角形则可得 BC=2 CD,从而 得出 AF=2CD .
试 题 解 析 : (1) 、 ∵ AD ⊥ BC , CE⊥ AB ∠AFE +∠ EAF =∠CFD +∠ECB=90°
在△ ABE 和△ ADF 中,

∴△ ABE≌△ ADF ( SAS),
∴ BE = AF .
点评:
本题考查了正方形的性质,全等三角形的判定与性质,以及垂直的定义,
求出两三角形全等,从而得到 BE =AF 是解题的关键.

2018年河北省初中毕业生升学文化课数学试卷(电子版含答案)

2018年河北省初中毕业生升学文化课数学试卷(电子版含答案)

俯视左视主视俯视左视主视俯视左视主视俯视左视主视2018年河北省初中毕业生升学文化课数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形具有稳定性的是( )2.一个整数8155500用科学记数法表示为108.155510⨯,则原数中“0”的个数为( )A .4B .6C .7D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+ 5.图2中三视图对应的几何体是( )1l 2l 3l 4l 图 1图A .B . C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 图3是按上述要求排乱顺序的尺规作图: 则正确的配对是( )A .①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB .①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D .①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ① ② ③ ④7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是( ) A .B .C. D .8.已知:如图4,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是( ) A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PC D .过点P 作PC AB ⊥,垂足为C图3图4图59.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;223.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( ) A .2个 B .3个 C. 4个 D .5个11. 如图6,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30︒B .北偏东80︒ C.北偏西30︒ D .北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( ) A .4cm B .8cm C.(4)a cm + D .(8)a cm + 13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁图6图715.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( ) A.4.5 B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上) 17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案. 例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .图图8三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简:22x x x x++-++发现系数“”印刷不清68)(652)楚.(1)他把“”猜成3,请你化简:22++-++;x x x x(368)(652)(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?-)和不完整21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-),其中条形图被墨迹掩盖了一部分.的扇形图(图112(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少? (2)求第5个台阶上的数x 是多少? 应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=. (1)求证:APM BPN △△≌; (2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.图13图1224. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式; (2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值. 25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)ky x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;(2)设5v =.用表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v 乙的范围.参考答案1-10、ABCCC DABDA 11-16、ABADB D 17、2 18、0 19、14 ;2120、21、22、24、26、。

【初中数学】浙江省2018年中考数学总复习试题(112套) 人教版70

【初中数学】浙江省2018年中考数学总复习试题(112套) 人教版70

第2课时相似形的应用相似形的应用1.(2017·绍兴模拟)如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB ∥CD,AB=2m,CD=6m,点P到CD的距离是3m,则P到AB的距离是____________________m.2.(2016·衢州模拟)如图,是小李设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.1米,BP=1.9米,PD=19米,那么该古城墙CD的高度是____________________米.3.(2016·新昌模拟)如图1,小红家阳台上放置了一个可折叠的晒衣架,如图2是晒衣架的侧面示意图,经测量:OC=OD=126cm,OA=OB=56cm,且AB=32cm,则此时C,D 两点间的距离是____________________cm.4.(2017·湖州模拟)如图,AB是斜靠在墙壁上的固定爬梯,梯脚B到墙脚C的距离为1.6m,梯上一点D到墙面的距离为1.4m,BD长0.5m,则梯子的长为( )A.3.5m B.4m C.4.5m D.5m【问题】如图,在Rt△ABC与Rt△ADC中,∠ACB=∠ADC=90°,AC=6,AD=2.(1)若AB∥CD,则BC的长为________;(2)当AB的长为多少时,这两个直角三角形相似?(3)通过(1)、(2)解答的体验,你认为相似三角形的应用要注意哪些问题?【归纳】通过开放式问题,归纳、疏理相似三角形在实际问题中的应用,即如何建立相似三角形模型;复习几何图形中如何寻找相似三角形或构建相似三角形,从而解决问题.类型一利用相似解决实际生活问题例1如图,铁道口的栏杆短臂OA长1m,长臂OB长8m.当短臂外端A下降0.5m时,长臂外端B升高( )A.2m B.4m C.4.5m D.8m【解后感悟】此题是相似三角形在实际生活中的运用,通过实际问题构建相似三角形.1.(2015·新疆)如图,李明打网球,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为m.2.某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图所示),他们想在△AMD和△BMC地带种植单价为10元/米2的太阳花,当△AMD地带种满花后,已经花了500元,请你预算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由.类型二利用相似测量物体的高(长)度例2如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE =10m,CD=20m,则河的宽度AB等于( )A.60m B.40m C.30m D.20m【解后感悟】考查相似三角形的应用,用到的知识点为:两角对应相等的两个三角形相似;相似三角形的对应边成比例.3.(1)(2015·吉林)如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB =2m,BC=14cm,则楼高CD为m.(2)(2015·天水)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.4.如图是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整地拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?类型三 相似三角形中一个常见的模型例3 如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =7,∠B =∠C=60°,P 为BC 边上一点(不与B ,C 重合),过点P 作∠APE =∠B,PE 交CD 于E. (1)求证:△APB∽△PEC; (2)若CE =3,求BP 的长.【解后感悟】如图是基本图形,若B ,C ,D 在同一直线上,且∠ABC=∠ACE=∠CDE=α,则有△ABC∽△CDE,∴a c =bd()ad =bc ;此题通过基本图形与四边形、相似三角形以及等边三角形的结合,揭示基本数量关系,利用方程思想求解.注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.5.如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,△ABE ∽△DEF ,AB =6,AE =9,DE =2,求EF 的长.类型四与相似三角形有关的综合问题例4(2016·金华)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )【解后感悟】本题运用相似三角形的判定和性质、线段垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.例5(2016·陕西)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连结AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC·BG.【解后感悟】本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.6.(1)如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为( )(2)如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点停止,动点E从C点出发到A点停止.点D运动的速度为1cm/s,点E运动的速度为2cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间t为s.7.(2017·杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC 上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于____________________.【实际应用题】某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D 所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D 处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?【方法与对策】这是实际应用性问题,通过题意,构造几何图形,揭示基本图形是相似三角形,这样把实际问题建模为相似三角形的问题,从而求解.这种设置是中考命题的方向.【忽视三角形相似的对应关系】如图,在△ABC中,AB=9,AC=6,点E在AB上,且AE=3,点F在AC上,连结EF,若△AEF与△ABC相似,则AF=________.参考答案第2课时相似形的应用【考题体验】1.1 2.11 3.72 4.B【解析】(1)∵AB∥CD ,∵∠BAC =∠ACD ,又∵∠ACB =∠ADC =90°,∴Rt △ABC∽Rt △CAD ,∴AC CD =BC AD .在Rt △ADC 中,∵AC =6,AD =2,∴CD =AC 2-AD 2= 2.∴BC =2×62=2 3. (2)要使这两个直角三角形相似,有AC AD =AB AC 或AC CD =AB AC ,∴AB =AC 2AD =(6)22=3,或AB =AC 2CD =(6)22=3 2.故当AB 的长为3或32时,这两个直角三角形相似. (3)证明线段的数量关系,求线段的长度,图形的面积大小等问题时,要想到相似三角形的应用;投影、平行线、标杆等问题以及测量物体的高度、宽度都需要构建相似三角形.当相似三角形对应边不明确时,需要分类讨论.【例题精析】例1 设长臂端点升高x 米,则0.5x =18,∴x =4.故选B .例2 B例3 (1)∵∠B=∠C,而∠APB+∠EPC=180°-∠APE,∠APB +∠PAB=180°-∠B,又∠APE=∠B,∴∠PAB =∠EPC,∴△APB ∽△PEC. (2)过A 作AF⊥BC 于F ,过D 作DH⊥BC 于H 则△ABF≌△DCH,∵AD =3,BC =7,∴BF =CH =2,在Rt △AFB 中,∠AFB =90°,AB =BFcos B =2cos B =212=4,∵△APB ∽△PEC ,∴AB CP =BP CE ,∴47-BP =BP3,∴BP =3或4. 例4 ∵DH 垂直平分AC ,∴DA =DC ,AH =HC =2,∴∠DAC =∠DCH,∵CD ∥AB ,∴∠DCA =∠BAC,∴∠DAH =∠BAC,∵∠DHA =∠B=90°,∴△DAH ∽△CAB ,∴AD AC =AH AB ,∴y 4=2x ,∴y =8x,∵AB <AC ,∴x <4,∴图象是D .故选D .例5 (1)∵EF∥BC,AB ⊥BG ,∴EF ⊥AD ,∵E 是AD 的中点,∴FA =FD ,∴∠FAD =∠D,∵GB ⊥AB ,∴∠GAB +∠G=∠D+∠DCB=90°,∴∠DCB =∠G,∵∠DCB =∠G CF ,∴∠GCF =∠G,∴FC =FG ; (2)连结AC ,如图所示:∵AB⊥BG,∴AC 是⊙O 的直径,∵FD 是⊙O 的切线,切点为C ,∴∠DCB =∠CAB,∵∠DCB =∠G,∴∠CAB =∠G,∵∠CBA =∠GBA=90°,∴△ABC ∽△GBA ,∴ABGB =BC AB ,∴AB 2=BC·BG.1.1.42.梯形ABCD 中AD∥BC,∴∠DAM =∠BCM,∠ADM =∠CBM,∴△DAM ∽△BCM ,∵AD =10,BC =20∴S △AMD S △BMC =(1020)2=14,∵S △AMD =500÷10=50m 2,∴S △BMC =4×50=200m 2.还需要资金200×10=2000(元),而剩余资金为2000-500=1500元<2000元,所以资金不够用.3. (1)12 (2)84. 根据物体成像原理知:△LMN∽△LBA,∴MN AB =LC LD .(1)∵像高MN 是35mm ,焦距是50mm ,拍摄的景物高度AB 是4.9m ,∴3550=4.9LD ,解得:LD =7,∴拍摄点距离景物7米; (2)拍摄高度是2m 的景物,拍摄点离景物有4m ,像高不变,∴35LC =24,解得:LC =70,∴相机的焦距应调整为70mm .5. ∵四边形ABCD 是矩形,AB =6.∴∠A=∠D=90°,DC =AB =6.又∵AE=9,∴在Rt △ABE 中,由勾股定理得:BE =AE 2+AB 2=92+62=313.∵△ABE ∽△DEF ,∴AB DE =BEEF,即62=313EF .∴EF =3133=13. 6.(1)A (2)3或4.8 7.78 【热点题型】【分析与解】根据题意∠BAD=∠BCE,然后根据两组角对应相等,两三角形△BAD 和△BCE 相似,再根据相似三角形对应边成比例列式求解即可.由题意得,∠BAD =∠BCE,∵∠ABD =∠CBE=90°,∴△BAD ∽△BCE ,∴BD BE =AB CB ,即BD 9.6=1.71.2,解得BD =13.6米.答:河宽BD 是13.6米.【错误警示】答案:2或4.5. 分情况讨论,①当△ABC∽△AEF 时,AB AE =AC AF ,∴93=6AF ,∴AF =2;②当△ABC∽△AFE 时,AB AF =AC AE ,∴9AF =63,∴AF =4.5.。

2018年河北省初中毕业生升学文化课考试数学试卷

2018年河北省初中毕业生升学文化课考试数学试卷

2018年河北省初中毕业生升学文化课考试数学试卷2018年河北省初中毕业生升学文化课考试数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是()A. B.C.D.2.一个整数8155500用科学记数法表示为10,8.155510则原数中“0”的个数为()A.4 B.6 C.7 D.10 3.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l B.2l C.3l D.4l14.将29.5变形正确的是()则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A.B.C.D.8.已知:如图4,点P在线段AB外,且PA PB=.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A.作APB∠的平分线PC交AB于点CB.过点P作PC AB⊥于点C且AC BC=C.取AB中点C,连接PCD.过点P作PC AB⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:13x x==甲丙,15 x x==乙丁;22 3.6s s==甲丁,22 6.3s s==乙丙.则麦苗又高又整齐的是()A.甲 B.乙 C.丙 D.丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个 B.3个 C. 4个D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm),得到新的正方形,则这根铁丝需增加()A .4cmB .8cm C.(4)a cm +D .(8)a cm +13.若22222n n n n +++=,则n =( )A.-1 B .-2 C .0 D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.123-=- .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简:(2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22++-++;(368)(652)x x x x(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人. 22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用k(k为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50∠=∠=︒,P为AB中点,点M为射A B线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设BPNα∠=.(1)求证:APM BPN≌;△△(2)当2=时,求α的度数;MN BN(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式; (2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值. 25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值;(2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系;(3)若线段PQ 的长为12.5,直接..写出这时x 的值. 26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x =≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k,并用t表示h;(2)设5v=.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及13y=时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v米/秒.当甲距x轴1.8米,且乙位乙于甲右侧超过4.5米的位置时,直接..写出t的值的范围.及v乙。

【初中数学】浙江省2018年中考数学总复习试题(112套)-人教版52

【初中数学】浙江省2018年中考数学总复习试题(112套)-人教版52

【初中数学】浙江省2018年中考数学总复习试题(112套)-人教版52第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法考试内容考试要求等式的性质性质1:等式两边加(或减)同一个数或同一个____________________,所得结果仍是等式;性质2:等式两边乘(或除以)同一个数(除数不能为0),所得结果仍是.ab方程的概念含有未知数的叫做方程.方程的解使方程左右两边的值的未知数的值叫做方程的解.3.列方程解应用题的一般步骤考试内容考试要求列方程解应用题的一般步骤c 1.审审清题意和数量关系,弄清题中的已知量和未知量,明确各数量之间的关系.2.设设未知数(可设直接或____________________未知数).3.列根据题意寻找列方程.4.解解方程.5.答检验所求的未知数的值是否符合题意(分式方程既要检验求出来的解是否为原方程的根,又要检验是否符合题意),写出答案.考试内容考试要求基本思想解分式方程的基本思想:把分式方程转化为整式方程,即分式方程――→去分母转化整式方程.c 基本方法1.分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.2.列方程的关键是寻找等量关系,寻找等量关系常用的方法有:①抓住不变量;②找关键词;③画线段图或列表格;④运用数学公式.1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为( ) A.518=2(106+x) B.518-x=2×106C.518-x=2(106+x) D.518+x=2(106-x)2.(2017·宁波)分式方程2x+13-x=32的解是____________________.3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x+1=1x-1.【问题】给出以下五个代数式:2x-4,x-2,x,12,3.(1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程;(2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一等式性质和方程的解的含义例1(1)(2017·杭州)设x,y,c是实数,( )A.若x=y,则x+c=y-cB.若x=y,则xc=ycC.若x=y,则xc=ycD.若x2c=y3c,则2x=3y(2)已知关于x的方程2x+a-9=0的解是x=2,则a=________.(3)已知关于x的方程3x+n2x+1=2的解是负数,则n的取值范围为______________.【解后感悟】(1)熟记等式的性质并根据等式的性质求解是解题关键;(2)本题利用方程的思想,通过方程的解来构造关于a的一元一次方程,求出a值;(3)本题是分式方程的解和解一元一次不等式,关键是得出n-2<0和n-2≠-12,注意题目中的隐含条件2x+1≠0不要忽略.1.(1)已知等式3a=2b+5,则下列等式中不一定成立的是( )A.3a-5=2b B.3a+1=2b+6C.3ac=2bc+5 D.a=23b+53(2)如果方程x+2=0与方程2x-a=0的解相同,那么a=____________________.(3)(2017·成都)已知x=3是分式方程kx x -1-2k -1x=2的解,那么实数k 的值为( ) A .-1 B .0 C .1 D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.【解后感悟】(1)去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项(尤其是常数项),若分子是多项式,则要把它看成一个整体加上括号;(2)去括号可用分配律,注意符号,勿漏乘.2.解方程:(1)(2016·贺州)解方程:x 6-30-x 4=5;(2)7x-12⎣⎢⎡⎦⎥⎤x-12(x-1)=23(x-1).类型三分式方程的解法例3(2015·营口)若关于x的分式方程2 x-3+x+m3-x=2有增根,则m的值是( )A.m=-1B.m=0C.m=3 D.m=0或m=3【解后感悟】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程:③把增根代入整式方程即可求得相关字母的值.例4(1)(2017·湖州)解方程:2x-1=1 x-1+1;(2)(2017·陕西模拟)解方程:2-xx-3=13-x-2.【解后感悟】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.解分式方程:(1)xx-3=x-63-x+3;(2)xx+1-4x2-1=1.类型四一元一次方程和分式方程的应用例5(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解后感悟】此题主要考查了分式方程的应用,此题关键是正确理解题意,找到合适的等量关系,列出方程.注意不要忘记检验.4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】解分式方程:x2-4xx2-1+1=2xx+1. 参考答案第6讲一元一次方程与分式方程及其应用【考点概要】1.整式等式等式相等一 1 括号同类项 2.未知数整式最简公分母不为0 3.间接等量关系【考题体验】1.C 2.x=1 3.160x=200x+54.x=3【知识引擎】【解析】(1)答案不唯一,2x-4=3和2x-4 x-2=12;(2)2x-4=3,解得x=3.5;2x-4x-2=12,解得x=2,代入方程x=2是方程的增根,舍去,所以,方程无解.【例题精析】例1 (1)B;(2)5;(3)解方程3x+n2x+1=2得x=n-2.∵关于x的方程3x+n2x+1=2的解是负数,∴n-2<0.解得:n<2.又∵原方程有意义的条件为:x≠-12,∴n-2≠-12,即n≠32.∴n<2且n≠32. 例2 6x-3(x-1)=12-2(x+2),6x-3x+3=12-2x-4,3x+3=8-2x,3x+2x =8-3,5x=5,∴x=1. 例3 方程两边都乘以(x-3)得,2-x-m=2(x-3),∵分式方程有增根,∴x-3=0,解得x=3,∴2-3-m=2(3-3),解得m=-1.故选A. 例4 (1)方程两边都乘以x-1得:2=1+x-1,解得:x=2,检验:∵当x=2时,x-1≠0,∴x=2是原方程的解,即原方程的解为x=2. (2)方程的两边同乘(x-3),得:2-x=-1-2(x-3),解得:x=3,检验:把x=3代入(x-3)=0,即x=3不是原分式方程的解.则原方程无解.例5 (1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:x+2x-600=6600,解得:x=2400,2x-600=4200,答:B花木数量为2400棵,则A 花木数量是4200棵; (2)设安排a 人种植A 花木,由题意得:420060a =240040(26-a ),解得:a =14,经检验:a =14是原分式方程的解,26-a =26-14=12,答:安排14人种植A 花木,12人种植B 花木.【变式拓展】1.(1)C (2)-4 (3)D 2. (1)x =30; (2)x =-573.3.(1)解得x =3,经检验x =3是增根,分式方程无解. (2)x =-3.4.设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为(x +5)元.根据题意,得12000x +5=5000x .解得x =257.经检验,x =257是原方程的解,且符合题意,则科普类图书平均每本的价格为257+5=607元,答:文学类图书平均每本的价格为257元,科普类图书平均每本的价格为607元.【热点题型】【分析与解】(1)寻找规律:1张这样的餐桌四周可坐6人,2张这样的餐桌拼接起来四周可坐6+4人,3张这样的餐桌拼接起来四周可坐6+4×2人,4张这样的餐桌拼接起来四周可坐6+4×3人,…n张这样的餐桌拼接起来四周可坐6+4(n-1)人.∴4张这样的餐桌拼接起来四周可坐18人,8张这样的餐桌拼接起来四周可坐34人.(2)∵n张这样的餐桌拼接起来四周可坐6+4(n-1)人,∴若用餐的人数有90人,则6+4(n-1)=90,解得n =22.∴若用餐的人数有90人,则这样的餐桌需要22张.【错误警示】原方程变形为x2-4x(x+1)(x-1)+1=2xx+1.方程两边同乘(x+1)(x-1),得x2-4x+(x+1)(x-1)=2x(x-1).整理得x2-4x+x2-1=2x2-2x,即2x=-1,x=-12.检验:当x=-12时,(x+1)(x-1)≠0,所以x=-12是原方程的根.。

【初中数学】2018届中考数学复习专题题型(10份)人教版

【初中数学】2018届中考数学复习专题题型(10份)人教版
( 2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场? 【答案】 91) 甲队胜了 8 场,则负了 2 场; (2) 乙队在初赛阶段至少要胜 5 场. 【解析】
( 2)设乙队在初赛阶段胜 a 场,根据题意可得: 2a+( 10﹣ a) ≥ 1,5 解得: a≥5,
答:乙队在初赛阶段至少要胜 5 场. 考点:一元一次不等式的应用;一元一次方程的应用. 7.(2017 贵州安顺第 23 题)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进 价的和为 40 元,用 90 元购进甲种玩具的件数与用 150 元购进乙种玩具的件数相同. ( 1)求每件甲种、乙种玩具的进价分别是多少元? ( 2)商场计划购进甲、乙两种玩具共 48 件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资 金不超过 1000 元,求商场共有几种进货方案? 【答案】( 1)甲,乙两种玩具分别是 15 元/ 件, 25 元 / 件;( 2) 4. 【解析】 试题分析:(1)设甲种玩具进价 x 元 / 件,则乙种玩具进价为( 40﹣ x)元 / 件,根据已知一件甲种玩具的进价与一件 乙种玩具的进价的和为 40 元,用 90 元购进甲种玩具的件数与用 150 元购进乙种玩具的件数相同可列方程求解. ( 2)设购进甲种玩具 y 件,则购进乙种玩具( 48﹣ y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此 次进货的总资金不超过 1000 元,可列出不等式组求解. 试题解析:设甲种玩具进价 x 元 / 件,则乙种玩具进价为( 40﹣ x)元 / 件,
考点: 1.一元二次方程的应用; 2.一元一次不等式的应用 .
6(. 2017 广西贵港第 23 题)某次篮球联赛初赛阶段, 每队有 10 场比赛, 每场比赛都要分出胜负, 每队胜一场得 2 分, 负一场得 1分,积分超过 15分才能获得参赛资格 . ( 1)已知甲队在初赛阶段的积分为 18 分,求甲队初赛阶段胜、负各多少场;

最新重庆市2018年中考数学一轮复习第四章三角形数学文化讲堂四练习_75含答案

最新重庆市2018年中考数学一轮复习第四章三角形数学文化讲堂四练习_75含答案

数学文化讲堂(四)一海伦——秦九韶公式古希腊的几何学家海伦,约公元50年,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了如下公式:若一个三角形的三边分别为a,b,c,记p=12(a+b+c),那么三角形的面积为:S△ABC=p(p-a)(p-b)(p-c)(海伦公式).我国南宋时期数学家秦九韶(约1202~约1261),曾提出利用三角形的三边求面积的秦九韶公式:S△ABC=1 4[a2b2-(a2+b2-c22)2].海伦公式和秦九韶公式实质上是同一个公式,所以我们一般也称此公式为海伦——秦九韶公式.(人教八下P16,北师八上P51)1. 若△ABC的三边长为5,6,7,△DEF的三边长为5,6,7,请利用上面的两个公式分别求出△ABC和△DEF的面积.2. 如图,在△ABC中,BC=5,AC=6,AB=9,求△ABC的内切圆半径.第2题图二赵爽弦图赵爽,三国吴人,是三国到南宋时期三百多年间中国杰出的数学家之一.他在注解《周髀算经》中给出的“赵爽弦图”证明了勾股定理的准确性,如图所示,四个全等的直角三角形可以围成一个大的正方形,中间空的是一个小正方形.通过对这个图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.证明方法如下:设直角三角形的三边中较短的直角边为a,另一直角边为b,斜边为c,朱实面积=2ab,黄实面积=(b-a)2=b2-2ab+a2,朱实面积+黄实面积=a2+b2=大正方形面积=c2.(人教八下P30,北师八下P16)3. 如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为________.第3题图第4题图4. 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于________.三泰勒斯——全等泰勒斯,公元前7至6世纪的古希腊时期的思想家、科学家、哲学家,希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人.泰勒斯是古希腊及西方第一个有记载有名字留下来的自然科学家和哲学家.5. 相传泰勒斯利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过点B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是( )第5题图A. SASB. ASAC. AASD. SSS四 《海岛算经》《海岛算经》是中国最早的一部测量数学专著,也是中国古代高度发达的地图学的数学基础.由刘徽于三国魏景元四年所撰,《海岛算经》共九问,都是用表尺重复从不同位置测望,取测量所得的差数,进行计算从而求得山高或谷深.(北师九上P 104)6. 该书中提出九个测量问题,其中一个为:有望深谷,偃矩岸上,令勾高六尺.从勾端望谷底,入下股九尺一寸.又设重矩于上,其矩间相去三丈.更从勾端望谷底,入上股八尺五寸.问谷深几何?题目的大意是:测量一个山谷AE 的深度,拿一个高AB 为6尺的矩尺△ABD 放在岸上,从B 端看谷底EG(D 在BG 上),下股AD 为9尺1寸,向上平移矩尺3丈,现从B ′端看谷底EG ,上股A ′D ′为8尺5寸,试求谷深AE.(一丈=10尺=100寸)第6题图7. 某校王老师根据《海岛算经》中的问题,编了这样一道题:如图,甲、乙两船同时由港口A 出发开往海岛B ,甲船沿北偏东60°方向向海岛B 航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,在C 港口停留0.5小时后再沿东北方向开往B 岛,B 岛建有一座灯塔,在灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔,两船看到灯塔的时间相差多少?(精确到分钟,3≈1.73,2≈1.41)第7题图答案1. 解: 当△ABC 的三边长为5,6,7时,则p =12×(5+6+7)=9,∴S △ABC =9×(9-5)×(9-6)×(9-7)=66,当△DEF 的三边长为5,6,7时,S △DEF =14[(5)2×(6)2-(5+6-72)2]=262. 2. 解:由题意得p =12×(5+6+9)=10,则 S =10×(10-5)×(10-6)×(10-9)=10 2.∵S =12r(AC +BC +AB), ∴102=12r(5+6+9), 解得r =2,故△ABC 的内切圆半径为 2.3. 1或4 【解析】分两种情况:①5为斜边时,由勾股定理得,另一直角边长=52-32=4,∴小正方形的边长=4-3=1,∴小正方形的面积=12=1;②3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积=22=4;综上所述,小正方形的面积为1或4.4. 6 【解析】设AH =x ,则AE =x +2,由四个全等的直角三角形可得DE =AH =x ,在Rt △DAE 中,由勾股定理得:AD 2=AE 2+DE 2,即102=(x +2)2+x 2,解得x =6或x =-8(舍去).5. B6. 解:∵AD ∥EG ,∴△BAD ∽△BEG ,∴BA BE =AD EG, ∴66+AE =9.1EG , ∵A ′D ′∥EG ,∴△B ′A ′D ′∽△B ′EG ,∴B ′A ′B ′E =A ′D ′EG, ∴66+30+AE =8.5EG , ∴9.1(6+AE)=8.5(36+AE),∴解得AE =419(尺),∴谷深AE 为41丈9尺.7. 解:如解图,过点B 作BD ⊥AC ,交AC 的延长线于点D ,设BD =x , 在Rt △BCD 中,第7题解图∵∠BCD =45°,∴BC =BD sin 45°=2x , 在Rt △ABD 中,∵∠ABD =60°,∴AD =BD ·tan 60°=3x ,AB =BD cos 60°=2x , ∵AC =20×1=20(海里),AC +CD =AD ,∴20+x = 3 x ,解得x =10(3+1)海里,∴AB =2x =20(3+1)海里,BC =2x =102(3+1)海里,∴t 甲=(AB -5)÷15×60=(203+20-5)÷15×60≈198.4(分钟),t乙=(AC+BC-5)÷20×60+0.5×60=[20+102(3+1)-5]÷20×60+30 ≈190.5(分钟).∵t甲>t乙,t甲-t乙≈8(分钟),∴乙船先看到灯塔,两艘船看到灯塔的时间相差约8分钟.。

【初中数学】浙江省2018年中考数学总复习试题(112套) 人教版54

【初中数学】浙江省2018年中考数学总复习试题(112套) 人教版54

第8讲一元二次方程及其应用1.一元二次方程的概念及解法2.一元二次方程根的判别式1.(2015·温州)若关于x 的一元二次方程4x 2-4x +c =0有两个相等实数根,则c 的值是( )A .-1B .1C .-4D .42.(2017·舟山)用配方法解方程x 2+2x -1=0时,配方结果正确的是( )A .(x +2)2=2B .(x +1)2=2 C.(x+2)2=3 D .(x +1)2=33.(2017·丽水)解方程:(x -3)(x -1)=3.【问题】给出以下方程①3x+1=0;②x 2-2x =8;③1x -3-2x 3-x=1. (1)是一元二次方程的是__________;(2)求出(1)中的一元二次方程的解,并联想还有其他的解法吗? (3)通过(1)(2)问题解决,你能想到一元二次方程的哪些知识?【归纳】通过开放式问题,归纳、疏理一元二次方程的概念以及解法.类型一 一元二次方程的有关概念例1 (1)关于x 的方程(a -6)x 2-8x +6=0有实数根,则整数a 的最大值是________. (2)若x =1是一元二次方程ax 2+bx -40=0的一个解,且a≠b,则a 2-b 22a -2b的值为________.(3)关于x 的方程a(x +m)2+b =0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a ≠0),则方程a(x +m +2)2+b =0的解是________.【解后感悟】(1)切记不要忽略一元二次方程二次项系数不为零这一隐含条件;(2)注意解题中的整体代入思想;(3)注意由两个方程的特点进行简便计算.1.(1)(2016·南京模拟)关于x 的一元二次方程(a 2-1)x 2+x -2=0是一元二次方程,则a 满足( )A .a ≠1B .a ≠-1C .a ≠±1D .为任意实数(2)已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为____________________. 类型二 一元二次方程的解法例2 解下列方程: (1)(3x -1)2=(x +1)2; (2)2x 2+x -12=0.【解后感悟】解一元二次方程要根据方程的特点选择合适的方法解题,但一般顺序为:直接开平方法→因式分解法→公式法.一般没有特别要求的不用配方法.解题关键是能把解一元二次方程转化成解一元一次方程.2.解方程:(1)(2x-1)2=x(3x+2)-7;(2)x(x-2)+x-2=0.类型三一元二次方程根的判别式例3(1)(2017·潍坊)若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.(2)(2015·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是________(填序号).【解后感悟】在一元二次方程ax2+bx+c=0中,需要把握根的三种存在情况:b2-4ac≥0,方程有实数根(两个相等或两个不相等);b2-4ac<0,无实数根.3.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例是( )A.b=-1 B.b=2 C.b=-2 D.b=04.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是____________________.5.已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根,求ab2的值.(a-2)2+b2-4类型四与几何相关的综合问题例4(1) 在宽为20m ,长为32m 的矩形田地中央修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小田地,作为良种试验田,要使每小块试验田的面积为135m 2,则道路的宽为________m .(2)(2016·张家口模拟)如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a =1,则b =________.(3)(2015·广安)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是________.【解后感悟】(1)此题关键是将四个矩形以恰当的方式拼成大矩形列出等量关系.(2)此题是一个信息题目,首先根据题目隐含条件找到数量关系,然后利用数量关系列出方程解决问题.(3)本题关键是确定三角形的三边的长度,用的数学思想是分类讨论思想.要随时注意三边之间满足的关系“任意两边之和大于第三边”.6.(1)(2016·台湾)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A .12 B .35C .2- 3D .4-2 3(2)一个直角三角形的两条边长是方程x 2-7x +12=0的两个根,则此直角三角形的面积等于 .(3)有一块长32cm ,宽24cm 的长方形纸片,如图,在每个角上截去相同的正方形,再折起来做成一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是____________________cm .类型五一元二次方程在生活中的应用例5(1)(2017·济宁市任城区模拟)某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为________.(2)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场)计划安排15场比赛,则参加比赛的球队应有________队.(3)商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是________.(4)将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货________个.【解后感悟】(1)若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b;(2)关键是准确找到描述语,根据等量关系准确地列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解;(3)此题打a折转化a10是解决问题的关键;(4)解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.(1)(2016·宁波市镇海区模拟)毕业典礼后,九年级(1)班有若干人,若每人给全班的其他成员赠送一张毕业纪念卡,全班共送贺卡1190张,则九年级(1)班人数为____________________人.(2)(2017·山西模拟)将一些半径相同的小圆按如图的规律摆放,请仔细观察,第____________________个图形有94个小圆.【探索研究题】1.(1)(2017·温州)我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( )A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-3(2)(2017·宁波市北仑区模拟)已知m 是方程x 2-2017x +1=0的一个根,则代数式m 2-2018m +m 2+12017+3的值是________.【方法与对策】(1)此题主要利用了方程结构相同的整体代入的方法求一元二次方程的解;(2)此题主要利用了一元二次方程的解得到已知式,再利用整体代入的方法求值.该题型是中考命题方法之一.【忽视一元二次方程ax 2+bx +c =0(a≠0)中“a≠0”】已知关于x 的一元二次方程(m -1)x 2+x +1=0有实数根,则m 的取值范围是________.参考答案第8讲 一元二次方程及其应用【考点概要】1.一 2 降次 配方 因式分解 2.b 2-4ac 有两个不相等 有两个相等 没有 【考题体验】1.B 2.B 3.x 1=0,x 2=4. 【知识引擎】【解析】(1)②; (2)x 1=4,x 2=-2(配方法),其他方法:因式分解法、公式法; (3)一元二次方程的概念以及解法.【例题精析】例1 (1)①若a =6,则方程有实数根,②若a≠6,则Δ≥0,∴64-4×(a-6)×6≥0,整理得:a≤263,∴a 的最大值为8;(2)∵x=1是一元二次方程ax 2+bx -40=0的一个解,∴x =1满足一元二次方程ax 2+bx -40=0,∴a +b -40=0,即a +b =40①,a 2-b22a -2b=(a +b )(a -b )2(a -b )=a +b 2,即a 2-b 22a -2b =a +b 2②,把①代入②,得a 2-b22a -2b =20.(3)∵关于x的方程a(x +m)2+b =0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a ≠0),∴方程a(x +m +2)2+b =0变形为a[(x +2)+m]2+b =0,即此方程中x +2=-2或x +2=1,解得x =-4或x =-1.例2 (1)将方程(3x -1)2=(x +1)2移项得,(3x -1)2-(x +1)2=0,∴(3x -1+x +1)(3x -1-x -1)=0,∴4x(2x -2)=0,∴x(x -1)=0,解得x 1=0,x 2=1. (2)∵2x 2+x -12=0,可得,a =2,b =1,c =-12,∴x =-14±54. 例3 (1)∵关于x 的一元二次方程kx 2-2x +1=0有实数根,∴Δ=b 2-4ac≥0,即:4-4k≥0,解得:k≤1,∵关于x 的一元二次方程kx 2-2x +1=0中k≠0,故答案为:k≤1且k≠0.(2)当m =0时,x =-1,方程只有一个解,①正确;当m≠0时,方程mx 2+x -m +1=0是一元二次方程,Δ=1-4m(1-m)=1-4m +4m 2=(2m -1)2≥0,方程有两个实数解,②错误;把mx 2+x -m +1=0分解为(x +1)(mx -m +1)=0,当x =-1时,m -1-m +1=0,即x =-1是方程mx 2+x -m +1=0的根,③正确;故答案为①③.例4 (1)设道路的宽为x 米.依题意得:(32-x)(20-x)=135×4,解之得x 1=2,x 2=50(不合题意舍去),∴道路宽为2m .(2)依题意得(a +b)2=b(b +a +b),而a =1,∴b 2-b -1=0,∴b =1+52.(3)∵x 2-7x +10=0,∴(x -2)(x -5)=0,x 1=2,x 2=5,①等腰三角形的三边是2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故答案:12.例5 (1)20%;(2)6;(3)200×a 10×a10=128,得a =8;(4)设销售价x 元/个,得[500-10(x -50)]·(x-40)=8000,∴x =60或x =80,∴应进货400或200个.【变式拓展】 1.(1)C (2)12. (1)x 1=2,x 2=4 (2)x 1=2,x 2=-13.A4.15. ∵ax 2+bx +1=0(a≠0)有两个相等的实数根,∴Δ=b 2-4ac =0,即b 2-4a =0,b 2=4a.∴ab 2(a -2)2+b 2-4=ab 2a 2-4a +4+b 2-4=ab 2a 2-4a +b 2=ab 2a 2.∵a ≠0,∴原式=ab 2a 2=b2a=4aa=4. 6. (1)D (2)6或372 (3)47.(1)35 (2)9 【热点题型】【分析与解】(1)先把方程(2x +3)2+2(2x +3)-3=0看作关于2x +3的一元二次方程,利用题中的解得到2x +3=1或2x +3=-3,所以x 1=-1,x 2=-3.故选D . (2)根据一元二次方程根的定义得到m 2=2017m -1,再利用整体代入的方法得到原式=2017m -1-2018m +2017m -1+12017+3=-1-m +m +3=2.故答案是2.【错误警示】m ≤54且m≠1,由一元二次方程有实数根,则12-4(m -1)≥0且m -1≠0.∴m≤54且m≠1.。

2018年全国中考数学试题分知识点汇编:46 数学文化2

2018年全国中考数学试题分知识点汇编:46  数学文化2

2018年全国中考数学试题分知识点汇编:46 数学文化2一、选择题1.(2019湖南长沙,11题,3分)我国南宋著名数学家秦久韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米【答案】A【解析】将里换算为米为单位,则三角形沙田的三边长为2.5千米,6千米,6.5千米,因为2.52+62=6.52,所以这个三角形为直角三角形,直角边长为 2.5千米和6千米,所以×6×2.5=7.5(平方千米),故选AS=12【知识点】勾股定理的逆定理,三角形面积2.(2019浙江湖州,9,3)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A. 20B. 24C. 994D. 532【答案】B【思路分析】设矩形的两条边长为x,y利用对角线是a+b=7,所以x2+y2=49,再利用分割成一个正方形和两对全等的直角三角形所以x-y=1用完全平方公式得xy的值即为矩形的面积【解题过程】设矩形的两条边长为x,y利用对角线是a+b=7,所以x2+y2=49,再利用分割成一个正方形和两对全等的直角三角形所以x-y=1用完全平方公式得(x-y)2=1,x2-2xy+y2=1,49-2xy=1, -2xy=-48,所以xy=24即为矩形的面积为24所以答案为24【知识点】矩形的性质,勾股定理,完全平方公式的变形,矩形的面积公式1.(2019湖北宜昌,8,3分)1261年,我国南宋数学家杨辉用下图中的三角形解释二项和的惩罚规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”.请观察图中的数字排列规律,则,a b ,c 的值分别为( )(第8题图)A.1,6,15a b c === B .6,15,20a b c ===C.15,20,15a b c === D .20,15,6a b c ===【答案】B【解析】15651015101020B a b c =+==+==+=∴,,,选项正确.【知识点】据数字排列,找规律.2. (2019山东德州,11,3分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式 ()n a b +的展开式的各项系数,此三角形称为“杨辉三角”。

【初中数学】浙江省2018年中考数学总复习试题(112套) 人教版28

【初中数学】浙江省2018年中考数学总复习试题(112套) 人教版28

第39讲开放与探索型问题类型一条件开放与探索型问题例1(1)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种【解后感悟】判断一个四边形是平行四边形的基本依据是:平行四边形的定义及其判定定理.解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件.(2)(2016·河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有( )A.1个B.2个C.3个D.3个以上【解后感悟】本题运用等边三角形的判定和性质、全等三角形的判定和性质、角平分线的性质等知识的开放性问题,解题的关键是正确添加辅助线,构造全等三角形.1.(1)请举反例说明“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x=(写出一个x的值即可).(2)(2015·无锡)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元.类型二结论开放与探索型问题例2(2016·绍兴)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由;(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.【解后感悟】此题是动态开放探究型问题,通过画图转化为所求的图形,利用全等三角形、二元一次方程组和三角形三边关系解决问题.2.(2015·丽水)如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有( )A.3种B.6种C.8种D.12种3.(2015·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是(填序号).类型三条件、结论开放与探索型问题例3(2015·绍兴)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【解后感悟】本题通过条件的改变寻求新的结论,从特殊到一般来探求问题即α=0°的情况,再逆命题的探究,以及补充一个条件后能使该命题为真命题的探究.逐步画图来解决问题.4.(2015·南京)如图,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF、∠CFE 的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证MNQP是菱形,只要证MN=NQ,由已知条件________,MN∥EF--故只要证GM=FQ,即证△MGE≌△QFH,易证________,________,故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,________,即可得证.类型四过程开放与探索型问题例4(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD 到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN =45°,若BM=1,CN=3,求MN的长.【解后感悟】本题是几何综合题,通过观察、比较、分析、综合及猜想,运用正方形、全等三角形、等腰直角三角形以及勾股定理等几何图形的性质,经过归纳、类比、联想等推理的手段,得出正确的结论.5.(2015·河南)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连结PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为____________________;②连结OD,当∠PBA的度数为____________________时,四边形BPDO是菱形.6.(2017·绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=____________________°,β=____________________°;②求α,β之间的关系式;(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由【经验积累题】(2015·丽水)如图,在矩形ABCD 中,E 为CD 的中点,F 为BE 上的一点,连结CF 并延长交AB 于点M ,MN ⊥CM 交射线AD 于点N.(1)当F 为BE 中点时,求证:AM =CE ;(2)若AB BC =EF BF =2,求AN ND的值; (3)若AB BC =EF BF=n ,当n 为何值时,MN ∥BE?【方法与对策】本题是几何综合题,运用了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、同角的余角相等、三角形外角的性质等知识,本题三问的解题思路是一致的;即通过特殊到一般,利用全等三角形或相似三角形解决问题,这是中考常见的压轴题型.【考虑欠周,容易漏解】在一服装厂里有大量形状为等腰三角形的边角布料(如图).现找出其中的一种,测得∠C =90°,AC =BC =4,现要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在△ABC 的边上,且扇形与△ABC 的其他边相切.请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).参考答案第39讲 开放与探索型问题【例题精析】例1 (1)①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD 为平行四边形;①③可证明△ADO≌△CBO,进而得到AD =CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;①④可证明△ADO≌△CBO,进而得到AD =CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;故选:B .(2)如图在OA 、OB 上截取OE =OF =OP ,作∠MPN=60°.∵OP 平分∠AOB,∴∠EOP =∠POF =60°,∵OP =OE =OF ,∴△OPE ,△OPF 是等边三角形,∴EP =OP ,∠EPO =∠OEP=∠PON=∠MPN=60°,∴∠EPM =∠OPN,在△PEM 和△PON 中,⎩⎪⎨⎪⎧∠PEM =∠PON,PE =PO ,∠EPM =∠OPN,∴△PEM ≌△PON.∴PM =PN ,∵∠MPN =60°,∴△PMN 是等边三角形,∴只要∠MPN=60°,△PMN 就是等边三角形,故这样的三角形有无数个.故选D . 例2 (1)相等. 理由:连结AC ,在△ACD和△ACB 中,⎩⎪⎨⎪⎧AC =AC AD =AB CD =BC,∴△ACD ≌△ACB ,∴∠B =∠D.(2) 设AD =x ,BC =y ,当点C 在点D 右侧时,⎩⎪⎨⎪⎧x +2=y +5x +(y +2)+5=30,解得:⎩⎪⎨⎪⎧x =13y =10,当点C 在点D 左侧时,⎩⎪⎨⎪⎧y =x +5+2x +(y +2)+5=30,解得:⎩⎪⎨⎪⎧x =8y =15,此时AC =17,CD =5,AD =8,5+8<17,∴不合题意,∴AD =13cm ,BC =10cm .例3 (1)证明:如图1,正方形ABCD 和正方形AEFG 中,∵GF =EF ,AG =AE ,AD =AB ,∴DG =BE.又∵∠DGF=∠BEF=90°,∴△DGF ≌△BEF(SAS).∴DF=BF. (2)反例图形如图2: (3)不唯一,如点F 在正方形ABCD 内,或α<180°.例4 (1)证明:∠ABE=∠ADG,AD =AB ,在△ABE 和△ADG 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADG,BE =DG ,∴△ABE ≌△ADG(SAS),∴∠BAE =∠DAG,AE =AG ,∴∠EAG =90°,在△FAE 和△FAG 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠FAG=45°,AF =AF ,∴△FAE ≌△FAG(SAS),∴EF =FG ;(2)如图2,过点C 作CE⊥BC,垂足为点C ,截取CE ,使CE =BM ,连结AE 、EN ,∵AB =AC ,∠BAC =90°,∴∠B =∠ACB=45°,∵CE ⊥BC ,∴∠ACE =∠B=45°,在△ABM 和△ACE中,⎩⎪⎨⎪⎧AB =AC ,∠B =∠ACE,BM =CE ,∴△ABM ≌△ACE(SAS).∴AM=AE ,∠BAM =∠CAE.∵∠BAC=90°,∠MAN =45°,∴∠BAM +∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN 中,⎩⎪⎨⎪⎧AM =AE ,∠MAN =∠EAN,AN =AN ,∴△MAN ≌△EAN(SAS).∴MN=EN.在Rt △ENC 中,由勾股定理,得EN 2=EC 2+NC 2.∴MN 2=BM 2+NC 2.∵BM =1,CN =3,∴MN 2=12+32,∴MN =10.【变式拓展】1.(1)-2 (2)838或910 2.B 3.①③4.(1)∵EH 平分∠BEF,∴∠FEH =12∠BEF ,∵FH 平分∠DFE,∴∠EFH =12∠DFE ,∵AB ∥CD ,∴∠BEF +∠DFE=180°,∴∠FEH +∠EFH=12(∠BEF+∠DFE)=12×180°=90°,∵∠FEH +∠EFH+∠EHF=180°,∴∠EHF =180°-(∠FEH+∠EFH)=180°-90°=90°,同理可得:∠EGF=90°,∵EG 平分∠AEF,∴∠FEG =12∠AEF ,∵EH 平分∠BEF,∴∠FEH =12∠BEF ,∵点A 、E 、B 在同一条直线上,∴∠AEB =180°,即∠AEF+∠BEF=180°,∴∠FEG +∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°,∴四边形EGFH 是矩形; (2)答案不唯一:由AB∥CD,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形,要证▱MNQP 是菱形,只要证MN =NQ ,由已知条件:FG 平分∠CFE,MN ∥EF ,故只要证GM =FQ ,即证△MGE≌△QFH,易证GE =FH 、∠GME=∠FQH.故只要证∠MGE =∠QFH,易证∠MGE=∠GEF,∠QFH =∠EFH,∠GEF=∠EFH,即可得证. 5.(1)∵PC=PB ,D 是AC 的中点,∴DP ∥AB ,DP =12AB ,∴∠CPD =∠PBO,∵BO =12AB ,∴DP =BO ,在△CDP 与△POB 中,⎩⎪⎨⎪⎧DP =BO ,∠CPD =∠PBO,PC =PB ,∴△CDP ≌△POB(SAS); (2)①当四边形AOPD 的AO 边上的高等于半径时有最大面积,(4÷2)×(4÷2)=2×2=4;②如图:∵DP∥AB,DP =BO ,∴四边形BPDO 是平行四边形,∵四边形BPDO 是菱形,∴PB =BO ,∵PO =BO ,∴PB =BO =PO ,∴∠PBA 的度数为60°.6.(1)①∵AB=AC ,∠ABC =60°,∴∠BAC =60°,∵AD =AE ,∠ADE =70°,∴∠DAE =180°-2∠ADE =40°,∴α=∠BAD=60°-40°=20°,∴∠ADC =∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC-∠ADE=10°,故答案为:20,10;②设∠ABC =x ,∠AED =y ,∴∠ACB =x ,∠ADE =y ,在△DEC 中,y =β+x ,在△ABD 中,α+x =y +β=β+x +β,∴α=2β; (2)存在;答案不唯一,如:①当点E 在CA 的延长线上,点D 在线段BC 上,如图1,设∠ABC=x ,∠ADE =y ,∴∠ACB =x ,∠AED =y ,在△ABD 中,x +α=β-y ,在△DEC 中,x +y +β=180°,∴α=2β-180°,②当点E 在CA 的延长线上,点D 在CB 的延长线上,如图2,同①的方法可得α=180°-2β.【热点题型】【分析与解】(1)∵F 为BE 的中点,∴BF =EF.∵AB∥CD,∴∠MBF =∠CEF,∠BMF =∠ECF.∴△BMF≌△ECF,∴MB =CE ,AB =CD ,CE =DE ,∴MB =AM.∴AM=CE. (2)设MB =a ,∵AB ∥CD ,∴△BMF ∽△ECF.∵EF BF =2,∴CE MB=2,∴CE =2a.∴AB=CD =2CE =4a ,AM =AB -MB =3a.∵AB BC =2,∴BC=AD =2a.∵MN⊥MC,∠A =∠ABC=90°,∴△AMN ∽△BCM.∴AN MB =AM BC,即AN a =3a 2a ,∴AN =32a ,ND =2a -32a =12a ,∴AN ND =32a 12a =3. (3)方法一:∵AB BC =EF FB =n ,设MB =a ,由(2)可得BC =2a ,CE =na ,AM =(2n -1)a.由△AMN∽△BCM,AN =12(2n -1)a ,DN =(2n -5)a 2,∵DH ∥AM ,DN AN =DH AM,DH =(2n -5)a ,∴HE =(5-n)a.∵MBEH 是平行四边形,∴(5-n)a =a ,∴n =4.方法二:∵AB BC =EF FB=n ,设MB =a ,由(2)可得BC =2a :CE =na.当MN∥BE 时,CM ⊥BE ,可证△MBC∽△BCE,∴MB BC =BC CE ,∴a 2a =2a na,∴n =4.【错误警示】。

2018年河北省初中毕业生升学文化课考试 一 数学

 2018年河北省初中毕业生升学文化课考试 一 数学

2018年河北省初中毕业生升学文化课考试 一数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷总分120分,考试时间120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 计算|-7|的结果为( )A. 7B. -7C. 17D.-172. 下列计算正确的是( )A. 4×10-4=-160B. 3xy +2x =5x 2yC. 4a 2×3a =12a 2D. (34x 3y)2=916x 6y 23. 将一个正方形纸片对折两次后,再打出一个心形小孔,将其展开铺平后的图案如图1所示,则其对应的对折方式及打心形小孔位置正确的是( )图1ABCD4. 若方程组⎩⎪⎨⎪⎧2a -3b =13 3a +5b =29的解是⎩⎪⎨⎪⎧a =8b =1,则方程⎩⎪⎨⎪⎧2(x +2)-3(y -1)=133(x +2)+5(y -1)=29的解是( ) A. ⎩⎪⎨⎪⎧x =8y =1 B.⎩⎪⎨⎪⎧x =10y =1 C.⎩⎪⎨⎪⎧x =6y =2 D. ⎩⎪⎨⎪⎧x =10y =0 5. 如图2-1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2-2是其简化结构图,当雪球夹闭合时,测得∠AOB =60°,OA =OB =14 cm ,则此款雪球夹从O 到直径AB 的距离为( )A .14 cm B. 14 3 cm C. 7 cm D. 7 3 cm图2-1 图2-26. 将图3所示的正方体的展开图进行折叠后可以围成正方体,则正方体中EF 的位置正确的是( )图37. 点P 、Q 、M 在数轴上的位置如图4所示,则点P 、Q 、M 所表示的数分别可能是( )图4A. -321,21,13 B. -3212,8,19 C. -3213,11,18 D. 3213,15,178.如图5,在4×4网格图中,A、B、C是三个格点,每个小正方形的边长为1,则△ABC的内心可能是()图5A. M点B. N点C. P点D. Q点9. 若(a-2)2+|3-b|=0,则代数式-a2-3ab+b2的值为()A. 7B. 11C. -13D. -610. 如图6,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,则S△ABE∶S△ECF等于()图6A. 1∶2B. 1∶4C. 2∶1D. 4∶111. “共享单车”是指在公共服务区提供单车共享服务,是共享经济的一种新形态.若某城区有四辆共享单车,其位置及对应序号如图7所示,任取两辆共享单车(既可以是相邻也可以是相对两辆)相互交换它们的位置,交换一次后能使①、②两辆共享单车在相对位置上的概率是( )图7A. 13B. 12C. 23D. 3412. m 2+2m m 2-4÷m 2m 2-4m +4的值可能等于( ) A. -1 B. 0 C. 1 D. 213. 如图8,在平面直角坐标系中,点P 是反比例函数y =2x (x>0)图象上一点,过点P 作垂线,与x 轴交于点Q ,直线PQ 交反比例函数y =k x (k ≠0)于点M ,若PQ =4MQ ,则k 的值为( )图8A. ±4B. -12 C. 4 D. ±1214. 如图9,有一张菱形纸片的对角线长分别为2和4,将它们分别沿着虚线剪开后,得到四个三角形,现在甲、乙两个同学要用这四个三角形各拼一个与原来面积相等的几何图形,甲、乙两个同学观点如下:图9甲:既可以拼成一个正方形也可以拼成一个六边形;乙:既可以拼成一个矩形(非正方形)也可以拼成一个直角三角形.对于两人的观点,下列说法正确的是()A. 甲、乙两人都对B. 甲对,乙不对C. 甲不对,乙对D. 甲、乙两人都不对15. 已知过原点的抛物线y=ax2+23ax与x轴的另一个交点为A,顶点D在x轴上方,对称轴与x轴交于点E,若∠ADE=12∠DOE,则a的值为()A. -1B. -2C. -3D. -416. 如图10-1,已知∠AOB=30°与线段a,依下列步骤尺规作图,并保留作图痕迹,如图10-2.(1)以O为圆心,线段a为半径画弧,分别交OA,OB于点M,N;(2)在弧MN上任取一点P,以点M为圆心,MP为半径画弧,交弧MN于点C;(3)以点N为圆心,NP为半径画弧,交弧MN于点D;(4)连接CD,MN,OC,OD,OP.下列叙述正确的是()A. ∠COM=∠DONB. CD∥MNC. MN=12a D. △COD是等边三角形图10-1图10-2二、填空题(本大题有3个小题,共10分.17~18小题各3 分;19小题有2个空,每空2分.把答案写在题中横线上)17. 计算9+(2-1)0=________.18. 如图11,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠F=________度.图11图1219. 如图12,A、B是直线MN上两点,直线l1、l2与直线MN 重合,将l1绕点A顺时针以每秒10°的速度旋转,将l2绕点B逆时针以每秒5°的速度旋转,且两条直线从重合位置同时开始旋转,设旋转时间为n秒(n是正整数),当n=1时,设l1、l2的交点为C1;当n=2时,设l1、l2的交点为C2; 当n=3时,设l1、l2的交点为C3,…,当n =1时,l1、l2相交所得的钝角是________,当C n落在MN上方时,n 的最小值是________.二、解答题(本大题有7个小题,共68分,解答题应写出文字说明、证明过程或演算步骤)20. (本小题满分9分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a,如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若(a +12☆3)=8,求a 的值.21. (本小题满分9分)如图13,在△ABC 中,∠ACB =90°,D 为AC 上一点,DE ⊥AB于点E ,BC =3,cos ∠ADE =35.(1)求AC 的长;(2)当DE =DC 时,求AD 的长.图1322. (本小题满分9分)在春季运动会上,某学校教工组和学生组进行定点投篮比赛,每组均派五名选手参加,每名选手投篮十次,投中记1分,不中记零分,3分以上(含3分)视为合格,比赛成绩绘制成条形统计图如下:投篮成绩条形统计图图14(1)请你根据条形统计图中的数据填写表格:(2)如果小亮认为教工组的成绩优于学生组,你认为他的理由是什么?小明认为学生组成绩优于教工组,他的理由又是什么?(3)若再让一名体育教师投篮后,六名教师成绩平均数大于学生组成绩的中位数,设这名体育教师命中m分,求m的值.23. (本小题满分9分)如图15,已知一次函数y=kx+3-2k(k≠0), 点A(-2,1),点B(1,-3),点C(-2,-3).(1)求证:点M(2,3)在直线y=kx+3-2k(k≠0)上;(2)当直线y=kx+3-2k(k≠0)经过点C时,P是直线y=kx+3-2k(k≠0)上一点,若S△BCP=2S△ABC,求P点的坐标;(3)当直线y=kx+3-2k(k≠0)与△ABC有公共点时,直接写出k 的取值范围.24. (本小题满分10分)如图,在菱形ABCD中,∠BAD=60°,△AEF为等边三角形,且点B在直线EF上运动.(1)如图16-1,当点B在线段EF上时,∠ADF-∠BAF的度数为________;(2)如图16-2,当点B在EF的延长线上时,写出∠ADF,∠BAF,∠AFE之间的数量关系,并说明理由;(3)在(2)的条件下,求线段BF、AB、BE之间的数量关系.25. (本小题满分10分)某企业计划研发和生产某种产品,根据调研得到如下信息:该产品的每件成本为100元,售价可达130元,月销售量为2000件;实际实施时,为了满足市场需要,该产品每件成本增加比例为x(0<x<1),售价、月销售量也相应增加,设月利润为y(元).(1)若售价相应提高比例为0.7x ,月销售量相应提高的比例为0.5x. ①请写出x 与y 的函数关系式;②求当x 为何值,y 取最大值,最大值是多少?(2)若月销售量提高的比例和售价提高的比例相同,都是成本增加比例的0.5倍,请通过计算说明此时月利润能否提高到原计划的0.5倍.【注:月利润=(每件产品的售价-每件产品的成本)×月销售量】26. (本小题满分12分)如图17-1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为AB ︵,P 是半径OB 上一动点,Q 是AB ︵上的一动点,连接PQ.发现:∠POQ =________时,PQ 有最大值,最大值为________;思考:(1)如图17-2,若P 是OB 中点,且QP ⊥OB 于点P ,求BQ︵的长;(2)如图17-3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B′恰好落在OA 的延长线上,求阴影部分面积;探究:如图17-4,将扇形OAB 沿PQ 折叠,使折叠后的弧QB′恰好与半径OA 相切,切点为C ,若OP =6,求点O 到折痕PQ 的距离.。

河南地区2018年中考数学总复习:专题检测(1)数与式(word版,有答案)

河南地区2018年中考数学总复习:专题检测(1)数与式(word版,有答案)

章节检测卷1 数与式(建议时间:45分钟 总分:100分)一、选择题(本大题共11个小题,每小题2分,共22分) 1.下列四个数中最大的数是( A )A .0B .-1C .-2D .-3 2.-8的绝对值是( A )A .8B .-8 C.18 D .-183.计算:1-(-13)=( C )A.23 B .-23 C.43 D .-434.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( D ) A .a =4 B .a >4 C .a <4 D .a ≠45.“一带一路”倡议提出以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4 000 000 000美元,将4 000 000 000用科学记数法表示为( C ) A .0.4×109 B .0.4×1010 C .4×109D .4×10106.生物学家发现了一种病毒,其长度约为0.000 000 32 mm ,数据0.000 000 32用科学记数法表示正确的是( C ) A .3.2×107 B .3.2×108 C .3.2×10-7 D .3.2×10-87.在实数-227,9,π,38中,是无理数的是( C ) A .-227 B.9 C .π D.388.二次根式x -1中,x 的取值范围是( A )A.x≥1 B.x>1 C.x≤1 D.x<1 9.下列运算正确的是( C )A.x3+x5=x8B.x3·x5=x15C.(x+1)(x-1)=x2-1 D.(2x)5=2x510.下列运算正确的是 ( D )A.a2·a3=a6 B.3+2= 5C.(a+b)2=a2+b2D.(a2)3=a611.下列说法中,正确的是( B )A.若a≠b,则a2≠b2B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b二、填空题(本大题共8个小题,每小题2分,共16分)12.当x= 5 时,分式x-52x+3的值为零.13.计算:(2-23)2=16-8 3 .14.已知2a-3b=7,则8+6b-4a=-6 .15.若代数式x2+kx+25是一个完全平方式,则k=±10. 16.分解因式:3x2-18x+27=3(x-3)2.17.化简:(xx-3+23-x)·x-3x-2= 1 .18.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=-1,那么(1+i)·(1-i)= 2 .19.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=14[a2b2-a2+b2-c222].现已知△ABC的三边长分别为1,2,5,则△ABC的面积为 1 .三、解答题(本大题共9个小题,共62分)20.(6分)计算:(2-3)0+(-12)-2-|-2|-2cos 60°.解:原式=1+4-2-2×12=1+4-2-1=2.21.(7分)计算:-12-|3-10|+25sin 45°-( 2 017-1)0.解:原式=-1+3-10+25×22-1 =-1+3-10+10-1 =1.22.(7分)先化简,再求值:(2+x )(2-x )+(x -1)(x +5),其中x =32.解:原式=4-x 2+x 2+4x -5=4x -1. 当x =32时,原式=6-1=5.23.(7分)先化简:(1-1x -1)÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选一个适当的数代入求值. 解:原式=x -1-1x -1·x +x -x -2=x -2x -1·x +x -x -2=x +1x -2. 解不等式2x -1<6,得x <72.∴该不等式的正整数解为1,2,3. ∵x 不能取±1,2, ∴x =3.当x =3时,原式=3+13-2=4. 24.(7分)先化简,再求值:(1-2x -1)÷x 2-5x +6x -1,其中x 从0,1,2,3四个数中适当选取.解:原式=x -3x -1·x -1x -x -=1x -2.∵x 不能取1,2,3, ∴x =0.当x =0时,原式=-12.25.(7分)先化简,再求值:x -2x 2+2x ÷x 2-4x +4x 2-4-12x ,其中x = 3. 解:原式=x -2x x +·x +x -x -2-12x=1x -12x =12x. 当x =3时,原式=123=36. 26.(7分)先化简,再求值:(2-2x x +1+x -1)÷x 2-x x +1,其中x =(12)-1+(-3)0.解:原式=2-2x +x 2-1x +1·x +1x x -=x -2x +1·x +1x x -=x -1x.∵x =(12)-1+(-3)0=2+1=3,∴当x =3时,原式=3-13=23.27.(7分)先化简,再求值:(1-2x )÷x -2x +2-x +4x +2,其中2x 2+4x -1=0.解:原式=x -2x ·x +2x -2-x +4x +2=x +2x -x +4x +2 =4x x +.∵2x 2+4x -1=0,∴x 2+2x =x (x +2)=12,∴原式=8.28.(7分)先化简,再求值:(a -2a a +1)÷(a 2-2a +1a 2-1),其中a 满足a 2-3a +2=0. 解:原式=a a -a +1÷a -2a -a +=a a -a +1·a -a +a -2=a .a 2-3a +2=0可化为(a -1)(a -2)=0, 解得a =1或a =2. ∵a 不能取1,-1, ∴a =2.当a =2时,原式=2.。

2018年中考数学复习课件+练习数学文化讲堂(1)

2018年中考数学复习课件+练习数学文化讲堂(1)

第二单元方程(组)与不等式(组)第六课时一次方程(组)及其应用数学文化讲堂◆《九章算术》—方程材料一《九章算术》大约于东汉初年(公元一世纪)成书,汇总了战国和西汉时期的数学成果,是几代人共同劳动的结晶.书中收集了246个应用问题和其他问题的解法,它的出现标志着中国古代数学形成了完整的体系.1.“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从南海和北海同时起飞,经过x 天相遇,可列方程为()A .(9-7)x =1B .(9+7)x =1C .(17-19)x =1D .(17+19)x =12.“今有客马日行三百里,客去忘持衣,日已三分之一,主人乃觉.持衣追及与之而还,至家,视日四分之三.问主人马不休,日行几何?”(注:在我国古代白天的开始是卯初(即现今5时整),白天的终了是酉初(即现今17时整),因此从卯初至酉初12小时为1日)题中讲到的主人马速日行多少里()A .540里B .720里C .780里D .960里3.“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为____________________.◆《孙子算经》材料二《孙子算经》成书于公元四、五世纪左右,共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法.卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”.4.100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为()A .+y =100+3y =100B .+y =100+3y =100C .+y =100+13y =100D .+y =100+y =1005.“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡和兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?《算法统宗》材料三《算法统宗》全称《新编直指算法统宗》,程大位著,是一部以珠算为主要计算工具的应用数学书,它评述了珠算规则,完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变.从流传的长久,广泛和深入程度来讲,是任何一部数学著作不能与其相比的.6.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x 尺,根据题意列方程,正确的是()A .3(x +4)=4(x +1)B .3x +4=4x +1C .3(x -4)=4(x -1)D .x 3-4=x 4-17.有一题其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)答案1.D2.C 【解析】首先可以求出往返所用的时间为34-13=512日,则主人追及客人所用时间为524日,则客人所用时间为13+512=1324日,与主人行驶524日的路程相等,设主人的马日行x 里,由题意,得12(34-13)x =300[12(34-13)+13]解得:x =780.3.+2y =10+5y =84.C 【解析】根据已知条件“1匹大马能拉3片瓦,3匹小马能拉1片瓦”得方程3x +13y =100;根据马的总数列出方程:x +y =100.故选C .5.解:设鸡有x 只,兔有y 只,根据题意得+y =35+4y =94=23=12.答:有鸡23只,兔12只.6.A 【解析】根据将绳三折测之,绳多四尺,则绳长为:3(x +4),根据绳四折测之,绳多一尺,则绳长为:4(x +1),列方程得3(x +4)=4(x +1).7.46【解析】设所分的银子共有x 两,共有y -7y =4-8=x ,解得=46=6,故所分银子共有46两.。

2018年河北省初中毕业生升学文化课考试数学试卷

2018年河北省初中毕业生升学文化课考试数学试卷

2018年河北省初中毕业生升学文化课考试数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500用科学记数法表示为108.155510⨯,则原数中“0”的个数为( )A .4B .6C .7D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l4.将29.5变形正确的是( )A .2229.590.5=+B .29.5(100.5)(100.5)=+- C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A. B.C. D.6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是( ) A . B . C. D .8.已知:如图4,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点CB .过点P 作PC AB ⊥于点C 且AC BC =C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A .2个B .3个 C. 4个 D .5个11.如图6,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30︒B .北偏东80︒C.北偏西30︒ D .北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222n n n n+++=,则n =( )A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简:(2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围. 24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值. 25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值;(2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系;(3)若线段PQ 的长为12.5,直接..写出这时x 的值. 26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用t 表示h ;(2)设5v =.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接..写出t 的值及v 乙的范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学文化专题练习卷
1.数学家哥德巴赫通过研究下面一系列等式,作出了一个著名的猜想.
4=2+2;12=5+7;
6=3+3; 14=3+11=7+7;
8=3+5; 16=3+13=5+11;
10=3+7=5+5; 18=5+13=7+11;

通过这组等式,你发现的规律是____________________________.(请用文字语言表述)
2.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部加上它的七分之一,其和等于19.”此问题中“它”的值为________.
3.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1,S2,S3.若正方形EFGH的边长为2,则S1+S2+S3=________.
图1
图2
4.古希腊数学家把数1,3,6,10,15,21,…叫作三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…,第n个三角形数记为x n,则x n+x n+1=________.
5.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问:葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,故该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是________尺.
6.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,
π≈L d =6r 2r =3,那么当n =12时,π≈L
d
=________.(结果精确到0.01,参考数据:sin15°=cos75°≈0.259)
7.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫作正数与负数.若气温为零上10 ℃记作+10 ℃,则-3 ℃表示气温为( )
A .零上3 ℃
B .零下3 ℃
C .零上7 ℃
D .零下7 ℃
8.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( )
A .黄金分割
B .垂径定理
C .勾股定理
D .正弦定理
9.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )
A .x 2
-6=(10-x )2
B .x 2
-62
=(10-x )2
C .x 2
+6=(10-x )2
D .x 2
+62
=(10-x )2
10.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了6天才到达目的地,则此人第六天走的路程为( )
A .24里
B .12里
C .6里
D .3里
11.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )
A .演绎
B .数形结合
C .抽象
D .公理化
12.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A .84
B .336
C .510
D .1 326
13.在探索“尺规三等分角”这个数学名题的过程中,曾利用了上图.该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,∠ACF =∠AFC ,∠FAE =∠FEA .若∠ACB =21°,则∠ECD 的度数是( )
A .7°
B .21°
C .23°
D .24°
14.如图所示,若∆ABC 内一点P 满足∠PAC =∠PBA =∠PCB ,则点P 为∆ABC 的布洛卡点.三角形的布洛卡点(Brocard Point)是法国数学家和数学教育家克洛尔(A.L.Crelle ,1780—1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845—1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF =90°,若点Q 为∆DEF 的布洛卡点,DQ =1,则EQ +FQ 等于( )
A .5
B .4
C .3+ 2
D .2+ 2
15.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G ·Pick ,1859—1942)证明了格点多边形的面积公式S =a +1
2b -1,其中a 表示多边形内部的格点数,b 表示
多边形边界上的格点数,S 表示多边形的面积.如图甲,a =4,b =6,S =4+1
2
×6-1=6.
(1)请在图乙中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积;(2)请在图丙中画一个格点三角形,使它的面积为7
2
,且每条边上除顶点外无其他格点.
图甲
图乙
图丙
16.某数学兴趣小组研究我国古代数学名著《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?。

相关文档
最新文档