第5章高频局部放电检测技术.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电网设备状态检修技术(带电检测分册)》
第五章高频局部放电检测技术
目录
第1节高频局部放电检测技术概述 (2)
1.1 发展历程 (2)
1.2 技术特点 (3)
1.2.1 技术优势及局限性 (3)
1.2.1 局限性 (3)
1.2.3 适用范围 (4)
1.3 应用情况 (4)
第2节高频局部放电检测技术基本原理 (4)
2.1 罗氏线圈基本知识 (4)
2.2 高频局部放电检测基本原理 (6)
2.3 高频局部放电检测装置组成及原理 (7)
第3节高频局部放电检测及诊断方法 (9)
3.1 检测方法 (9)
3.1.1 电力电缆 (9)
3.1.2 其他电力设备 (10)
3.2 诊断方法 (11)
第四节典型高频局部放电案例分析 (14)
4.1 110kV 电缆GIS终端内部气隙局部放电缺陷案例 (14)
参考文献 (16)
第1节高频局部放电检测技术概述
1.1 发展历程
高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。
高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT)具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。
罗格夫斯基线圈(Rogowski coils,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20世纪90年代被英国的公立电力公司(CEGB)用在名为“El-Cid”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显著的成果。如法国ALSTHOM公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80年代英国Rocoil公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20世纪60年代兴起,在80年代取得突破性进展,并有多种样机挂网试运行,90年代开始进入实用化阶段。尤其进入21世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的G.C. Montanari
和A. Cavallini等人及TECHIMP公司成功研制了高频局部放电检测仪,并被广泛应用。
近几年国内的一些科研院所和企业均开始研制基于罗氏线圈传感器以及高频局放检测装置,虽然起步比较晚,有些技术还处于跟踪国外大公司的水平,但随着发展罗氏线圈电子式传感器的时机逐渐成熟,国内如清华大学、西安交通大学、上海交通大学、华北电力大学等对于罗氏线圈传感器进行了深入的研究和探索,并取得了大量成果[4]。
1.2 技术特点
1.2.1 技术优势及局限性
高频局放检测技术的技术优势及局限性主要表现在以下几个方面:
(1)可进行局部放电强度的量化描述。由于高频局放检测技术应用高频电流传感器,与传统的脉冲电流法具有类同的检测原理,若传感器及信号处理电路相对确定的情况下,可以对被测局部放电的强度进行理化描述,以便于准确评估被检测电力设备局部放电的绝缘劣化程度。
(2)具有便于携带、方便应用、性价比高等优点。高频电流传感器作为一种常用的传感器,可以设计成开口CT的安装方式,在非嵌入方式下能够实现局放脉冲电流的非接触式检测,因此具有便于携带、方便应用的特点。
(3)检测灵敏度较高。高频电流传感器一般由环形铁氧体磁芯构成,铁氧体配合经磁化处理的陶瓷材料,对于高频信号具有很高灵敏度。局部放电发生后,放电脉冲电流将沿着接地线的轴向方向传播,即会在垂直于电流传播方向的平面上产生磁场,电感型传感器是从该磁场中耦合放电信号。除此之外利用HFCT进行测量,还具有可校正的优点。
1.2.1 局限性
(1)高频电流传感器的安装方式也限制了该检测技术的应用范围。由于高频电流传感器为开口CT的形式,这就需要被检测的电力设备的接地线或末屏引下线具有引出线,而且其形状和尺寸能够卡入高频电流传感器。而对于变压器套管、电流互感器、电压互感器等容性设备来说,若其末屏没有引下线,则无法应用高频局放检测技术进行检测。
(2)抗电磁干扰能力相对较弱。由于高频电流传感器的检测原理为电磁感应,周围及被测串联回路的电磁信号均会对检测造成干扰,影响检测信号的识别及检测结果的准确性。这就需要从频域、时域、相位分布模式等方面对干扰信号进行排除。
1.2.3 适用范围
高频法仅适用于具备接地引下线电力设备的局部放电检测,主要包括电力电缆、变压器铁心及夹件、避雷器、带末屏引下线的容性设备等。
1.3 应用情况
随着高频局部放电检测技术的不断成熟,国网公司在高频局部放电检测应用实践上积累了大量的宝贵经验,发现了大量潜在缺陷,目前该方法已广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备局部放电检测。随着状态检修工作的不断深入,高频局部放电检测技术已列入状态检修试验规程,成为提前发现电力设备潜在缺陷的重要手段。
国家电网公司在推广应用高频局部放电检测技术方面做了大量卓有成效的工作。2010年,在充分总结部分省市电力公司试点应用经验的基础上,结合状态检修工作的深入开展,国家电网公司颁布了《电力设备带电检测技术规范(试行)》和《电力设备带电检测仪器配置原则(试行)》,在国家电网公司范围内统一了高频局部放电检测的判据、周期和仪器配置标准,初步建立起完整的高频局部放电检测技术标准体系,高频局部放电检测技术在国家电网公司范围全面推开。
第2节高频局部放电检测技术基本原理
2.1 罗氏线圈基本知识
罗格夫斯基线圈(Rogowski coils),简称罗氏线圈,又被称为磁位计,最早被用于磁路的测量。一般情况下罗氏线圈为圆形或矩形,线圈骨架可以选择空心或磁性骨架,导线均匀绕制在骨架上。罗氏线圈的结构示意图如图5-所示。