2013恩施州中考数学试题

合集下载

中考数学一次函数应用题

中考数学一次函数应用题

2013中考一次函数应用题1、(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25B.途中加油21升C.汽车加油后还可行驶4小时D.汽车到达乙地时油箱中还余油6升2、(2013哈尔滨)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是( ).(A)1个 (B)2个 (C)3个 (D) 4个3、(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.4、(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.5、(2013•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型30 45B型50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?6、(13年安徽省8分、18)我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点。

2013年湖北省恩施州中考数学试卷(含答案)

2013年湖北省恩施州中考数学试卷(含答案)

湖北省恩施州2013年中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,恰有一项是符合要求的。

)1.(3分)(2013•恩施州)的相反数是()2.(3分)(2013•恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记3.(3分)(2013•恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()4.(3分)(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是()8.(3分)(2013•恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()9.(3分)(2013•恩施州)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物10.(3分)(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()=11.(3分)(2013•恩施州)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:×12.(3分)(2013•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x 轴围成的面积为()++二、填空题(本大题共有4小题,每小题3分,共12分。

不要求写出解答过程,请把答案直接填写在相应的位置上)13.(3分)(2013•恩施州)25的平方根是±5.14.(3分)(2013•恩施州)函数y=的自变量x的取值范围是x≤3且x≠﹣2.15.(3分)(2013•恩施州)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为6+π.扇形的弧长为:16.(3分)(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.三、解答题(本大题共有8个小题,共72分。

湖北省恩施州中考数学试题

湖北省恩施州中考数学试题

湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分)1.9的相反数是()A.﹣9 B.9 C.D.【解析】9的相反数是﹣9,故选A.2.恩施州2013年建筑业生产总值为36900万元,将数36900用科学记数法表示为()A.3.69×105B.36.9×104C.3.69×104D.0.369×105【解析】36900=3.69×104;故选C.3.下列图标中是轴对称图形的是()A.B.C.D.【解析】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.4.下列计算正确的是()A.2a3+3a3=5a6B.(x5)3=x8C.﹣2m(m﹣3)=﹣2m2﹣6m D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【解析】A、原式=5a3,错误;B、原式=x15,错误;C、原式=﹣2m2+6m,错误;D、原式=9a2﹣4,正确,故选D5.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°【解析】如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故选C.6.函数y=的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠2 C.x≠±2 D.x>﹣1且x≠2【解析】根据题意得:,解得x≥﹣1且x≠2.故选:B.7.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.【解析】画树状图为:共有36种等可能的结果数,其中两次抽取的数字的积为奇数的结果数为9,所以随机抽取一张,两次抽取的数字的积为奇数的概率==.故选B.8.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字.如图是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是()A.恩B.施C.城D.同【解析】由题意可知和六相邻的是施、城、同、创,所以和六相对的是恩.因为和创相邻的是恩、施、六、城,所以和创相对的是同.故选D.9.关于x的不等式组恰有四个整数解,那么m的取值范围为()A.m≥﹣1 B.m<0 C.﹣1≤m<0 D.﹣1<m<0【解析】在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴﹣1≤m<0,故选C.10.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.18【解析】根据题意列方程得100×(1﹣x%)2=100﹣36解得x1=20,x2=180(不符合题意,舍去).故选:B.11.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm【解析】∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c >0;③5a﹣c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4【解析】①∵二次函数开口向上,∴a>0,∵二次函数与y轴交于正半轴,∴c>0,∵二次函数对称轴在y轴右侧,∴b<0,∴abc<0,所以此选项正确;②由图象可知:二次函数与x轴交于两点分别是(1,0)、(5,0),当x=1时,y=0,则a+b+c=0,所以此选项错误;③∵二次函数对称轴为:x=3,则﹣=3,b=﹣6a,代入a+b+c=0中得:a﹣6a+c=0,5a﹣c=0,所以此选项正确;④由图象得:当x<或x>6时,y1>y2;所以此选项正确.二、填空题(本题共有4个小题,每小题3分,共12分)13.因式分解:a2b﹣10ab+25b=.【解析】原式=b(a2﹣10a+25)=b(a﹣5)2,故答案为:b(a﹣5)214.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=.【解析】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2﹣2mn=﹣2×=,故答案为:.15.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.【解析】如图,∵GF∥HC,∴△AGF∽△AHC,∴==,∴GF=HC=,∴OF=OG﹣GF=2﹣=.同理MN=,则有OM=.=××=,∴S阴影=1﹣=.∴S△OFM故答案为:.16.观察下列等式:1+2+3+4+…+n=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3);则有:1+5+15+35+…n(n+1)(n+2)(n+3)=.【解析】∵1+2+3+4+…+n=n(n+1)=n(n+1);1+3+6+10+…+n(n+1)=n(n+1)(n+2)=n(n+1)(n+2);1+4+10+20+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3),∴1+5+15+35+…n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3)(n+4)=n (n+1)(n+2)(n+3)(n+4),故答案为:n(n+1)(n+2)(n+3)(n+4).三、解答题(本大题共有8个小题,共72分)17.先化简,再求值:÷(a+2),其中a=﹣3.【解析】原式=÷=•=,当a=﹣3时,原式==.18.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.19.在恩施州2016年“书香校园,经典诵读”比赛活动中,有32万名学生参加比赛活动,其中有8万名学生分别获得一、二、三等奖,从获奖学生中随机抽取部分,绘制成如下不完整的统计图表,请根据图表解答下列问题.获奖等级频数一等奖100二等奖a三等奖275(1)表格中a的值为125.(2)扇形统计图中表示获得一等奖的扇形的圆心角为72度.(3)估计全州有多少名学生获得三等奖?【解析】(1)∵抽取的获奖学生有100÷20%=500(人),∴a=500﹣100﹣275=125,故答案为:125;(2)扇形统计图中表示获得一等奖的扇形的圆心角为360°×20%=72°,故答案为:72;(3)8×=4.4(万人),答:估计全州有4.4万名学生获得三等奖.20.如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB 的高度.(结果精确到1米,参考数据:≈1.41,≈1.73)【解析】由题意可知∠BAD=∠ADB=45°,∴FD=EF=9米,AB=BD在Rt△GEH中,∵tan∠EGH==,即,∴BF=8,∴PG=BD=BF+FD=8+9,AB=(8+9)米≈23米,答:办公楼AB的高度约为23米.21.如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.【解析】(1)∵∠ACB=60°,∴∠AOQ=60°,∴tan60°==,设点A(a,b),则,解得:或(不合题意,舍去)∴点A的坐标是(2,2),∴点C的坐标是(﹣2,﹣2),∴点B的坐标是(2,﹣2),(2)∵点A的坐标是(2,2),∴AQ=2,∴EF=AQ=2,∵点P为EF的中点,∴PF=,设点P的坐标是(m,n),则n=∵点P在反比例函数y=的图象上,∴=,S△OPF=|4|=2,∴m=4,∴OF=4,∴S长方形DEFO=OF•OD=4×2=8,∵点A在反比例函数y=的图象上,∴S△AOD=|4|=2,∴S四边形AOPE =S长方形DEFO﹣S△AOD﹣S△OPF=8﹣2﹣2=4.22.(10分)在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?【解析】(1)设大车租x辆,则小车租(80﹣x)辆.由题意,解得39≤x≤44.5,∵x为整数,∴x=39或40或41或42或43或44.∴施工方共有6种租车方案.(2)设租车费用为w元,则w=1200x+900(80﹣x)=300x+7200,∵300>0,∴w随x增大而增大,∴x=39时,w最小,最小值为18900元.23.(10分)如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.(1)求证:DF是⊙O的切线;(2)求证:OC2=OE•OP;(3)求线段EG的长.【解答】(1)证明:连接OD,如图所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)证明:由(1)得:DF⊥OD,∴∠ODF=90°,∵AB⊥CD,∴由射影定理得:OD2=OE•OP,∵OC=OD,∴OC2=OE•OP;(3)解:∵AB⊥CD,∴DE=CE=4,∠OEC=90°,由相交弦定理得:DE2=AE×BE,即42=8×BE,解得:BE=2,∴CG=AB=AE+BE=8+2=10,∴OC=CG=5,∴cosC==,在△CEG中,由余弦定理得:EG2=CG2+CE2﹣2×CG×CE×cosC=102+42﹣2×10×4×=52,∴EG==2.24.(12分)如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD 折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA 上时,记为点G.(1)求点E,F的坐标;(2)求经过E,F,G三点的抛物线的解析式;(3)当点C的对应点落在直线l上时,求CD的长;(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【解析】(1)∵点E在直线l:y=﹣x+7上,∴设点E的坐标为(x,﹣x+7),∵OE=OC=5,∴=5,解得:x1=3,x2=4,∴点E的坐标为(3,4),点F的坐标为(4,3).(2)∵OG=OC=5,且点G在x正半轴上,∴G(5,0).设经过E,F,G三点的抛物线的解析式为y=ax2+bx+c,将E(3,4)、F(4,3)、G(5,0)代入y=ax2+bx+c中,得:,解得:,∴经过E,F,G三点的抛物线的解析式为y=﹣x2+6x﹣5.(3)∵BC∥x轴,且OC=5,∴设点D的坐标为(m,5)(m>0),则CD=m.∵ED=CD或FD=CD,∴=m或=m,解得:m=或m=.∴当点C的对应点落在直线l上时,CD的长为或.(4)假设存在,设点P的坐标为(n,﹣n2+6n﹣5),∵E(3,4),F(4,3),∴EF==,PE=,PF=.以E,F,P为顶点的直角三角形有三种情况:①当∠EFP为直角时,有PE2=PF2+EF2,即(n﹣3)2+(﹣n2+6n﹣9)2=2+(n﹣4)2+(﹣n2+6n﹣8)2,解得:n1=1,n2=4(舍去),此时点P的坐标为(1,0);②当∠FEP为直角时,有PF2=PE2+EF2,即(n﹣4)2+(﹣n2+6n﹣8)2=2+(n﹣3)2+(﹣n2+6n﹣9)2,解得:n3=2,n4=3(舍去),此时点P的坐标为(2,3);③当∠EPF为直角时,有EF2=PE2+PF2,即2=(n﹣3)2+(﹣n2+6n﹣9)2+(n﹣4)2+(﹣n2+6n﹣8)2,整理得:(n﹣4)(n﹣3)(n2﹣5n+7)=0,∵在n2﹣5n+7中△=(﹣5)2﹣4×7=﹣3<0,∴n2﹣5n+7≠0.解得:n5=3(舍去),n6=4(舍去).综上可知:在(2)中的抛物线上存在点P,使以E,F,P为顶点的三角形是直角三角形,点P的坐标为(1,0)或(2,3).第11 页。

中考数学菱形专题练习

中考数学菱形专题练习

AC图5中考菱形专题 附参考答案1、(2012•泸州)如图,菱形 ABCD 的两条对角线相交于 O ,若 AC=6,BD=4,则菱 形 ABCD 的周长是( ) A .24 B .16 C .4 D .2DGO HB3 题图2、(2013 凉山州)如图,菱形 ABCD 中,∠B=60°,AB=4,则以 AC 为边长的正 方形 ACEF 的周长为( ) A .14 B .15 C .16 D .173、(2013•绵阳)如图,四边形 ABCD 是菱形,对角线 AC =8cm ,BD =6cm ,DH ⊥AB 于点 H ,且 DH 与 AC 交于 G ,则 GH =()A . 28 cm B . 21 cm C . 28 cm D . 25 cm252015214、(2013•内江)已知菱形 ABCD 的两条对角线分别为 6 和 8,M 、N 分别是边 BC 、 CD 的中点,P 是对角线 BD 上一点,则 PM+PN 的最小值= .DCAB DAPC (5 题)BE E FC5、(2013• 淄博)如图,菱形纸片 ABCD 中,∠ A =60 °,折叠菱形纸片 ABCD ,使点 C 落在 DP (P 为 AB 中点)所在的直线上,得到经过点 D 的折痕 DE .则∠DEC的大小为(A )78°(B )75°(C )60°(D )45° 6、(2013•黔西南州)如图 5 所示,菱形 ABCD 的边长为 4,且 AE ⊥ BC 于 E , AF ⊥ CD 于 F ,∠B=60°,则菱形的面积为_________。

7、(2013,河北).如图 4,菱形 ABCD 中,点 M ,N 在 AC 上,ME ⊥AD , NF ⊥AB . 若 NF = NM = 2,ME = 3,则 AN =8、(2013•安徽)如图,菱形 ABCD 的两条对角线分别长 6 和 8,点 P 是对角线AC 上的一个动点,点 M 、N 分别是边 AB 、BC 的中点,则 PM + PN 的最小值是___________.9、(2013•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接△E F,则AEF的面积是.DAPCMBN第8题图10、(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.10题图11、(2013•遂宁)如图,已知四边形A BCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(△1)ADE≌△CDF;(2)四边形ABCD是菱形.12、(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H 分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.13、(2013•常州)如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC 的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.14、(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(△1)求证:ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.15、(2013泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.16、(2013•乌鲁木齐)如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.17、(2013•临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.18、(2013•龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A O D和D A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记D D MN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.(第18题图)cm B . cm C . cmD . cmAC答案考点:菱形的性质;等边三角形的判定与性质;正方形的性质.分析:根据菱形得出 AB=BC ,得出等边三角形 ABC ,求出 AC ,长,根据正方形的性质得出 AF=EF=EC=AC=4,求出即可. 解答:解:∵四边形 ABCD 是菱形, ∴AB=BC , ∵∠B=60°,∴△ABC 是等边三角形, ∴AC=AB=4,∴正方形 ACEF 的周长是 AC+CE+EF+AF=4×4=16, 故选 C .(2013•绵阳)如图,四边形 ABCD 是菱形,对角线 AC =8cm ,BD =6cm ,DH ⊥AB 于点 H ,且DH 与 AC 交于 G ,则 GH =()A . 28 21 28 2525 20 15 21DGOH(2013•内江)已知菱形 ABCD 的两条对角线分别为 6 和 8,M 、N 分别是边 BC 、CD 的中点,BP 是对角线 BD 上一点,则 PM+PN 的最小值= 5 .10 题图考点:轴对称-最短路线问题;菱形的性质.分析:作 M 关于 BD 的对称点 Q ,连接 NQ ,交 BD 于 P ,连接 MP ,此时 MP+NP 的值最小,连接 AC ,求出 OC 、OB ,根据勾股定理求出 BC 长,证出 MP+NP=QN=BC ,即可得出答案.解答:解:作 M 关于 BD 的对称点 Q ,连接 NQ ,交 BD 于 P ,连接 MP ,此时 MP+NP 的值最小,连 接 AC ,∵四边形 ABCD 是菱形, ∴AC ⊥BD ,∠QBP=∠MBP , 即 Q 在 AB 上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,在△Rt BOC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.点评:本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.(2013•遂宁)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1△)ADE≌△CDF;(2)四边形ABCD是菱形.(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.N A Dt∴MP=t=3∵Sin∠ADO==∴MP=(70-t)17题图(2013龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、分别以每秒1个单位的速度从点、同时出发,分别沿A O D 和D A运动,当点N到达点A时,M、N同时停止运动.设运动时间为秒.(1)求菱形ABCD的周长;(2)记D D MN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.(第25题图).(1)在菱形ABCD中,∵AC⊥BD∴AD=302+402=50.∴菱形ABCD的周长为200.·····························4分(2)过点M作MP⊥AD,垂足为点P.①当0<t≤40∵Sin∠OAD=MP OD3==AM AD5351∴S=⨯DN•MP210t2························································································································6分②当40<t≤50时,∴MD=80-tMP AOMD AD452= - t 2 + 28t = - (t - 35)2 + 490 ··························································································8 分⎪⎪10 t ,0 < t ≤ 40则NF = ND • Sin ∠ODA = 30 ⨯ = = 24DF = ND • Cos ∠ODA = 30 ⨯ 30 = = 2 ····································································11 分 ∴FG = OF+ ON 12 + 12 5 1 + 5 tan ∠GOF == 1 +5 =∴ ∠DPK = ∠DPO = ∠DON = ∠FOG ··································································12 分∴PK = ···········································································································13 分∴存在两个点 P 到 OD 的距离都是 15( 5 + 1)∴ S ∆DMN = 1DN • MP2 25 5⎧ 3 2 ∴ S =⎨⎪- 2(t - 35)2 + 490,40 < t ≤ 50 ⎪⎩ 5当 0<t ≤40 时,S 随 t 的增大而增大,当 t =40 时,最大值为 480.当 40<t ≤50 时,S 随 t 的增大而减小,当 t =40 时,最大值为 480.综上所述,S 的最大值为 480. ····························································································· 9 分 (3)存在 2 个点 P ,使得∠DPO =∠DON .········································································ 10 分 方法一:过点 N 作 NF ⊥OD 于点 F ,40 12050 5,90= = 18.50 5∴OF =12,∴ tan ∠NOD =NF 24 OF 12作 ∠NOD 的平分线交 NF 于点 G ,过点 G 作 GH ⊥ON 于点 H . ∴ S ∆ONF 1= OF • NF = S2∆OGN + S ∆OFG 1 1 1 = OF • FG + ON • GH = (OF + ON ) • FG 2 2 2OF • NF 12 + 24 24= =24∴ GF 2 OF 12 1 + 5设 OD 中垂线与 OD 的交点为 K ,由对称性可知:1 12 2 ∴ DK 15 2tan ∠DPK == = PK PK 1 + 515( 5 + 1)2根据菱形的对称性可知,在线段 OD 的下方存在与点 P 关于 OD 轴对称的点 P ' .2.··························································14 分方法二:如图,作 ON 的垂直平分线,交 EF 于点 I ,连结 OI ,IN.过点 N 作 NG ⊥OD ,NH ⊥EF ,垂足分别为 G ,H. 当 t =30 时,DN =OD =30,易知△DNG ∽△DAO ,∴即DN NG DG= = . DA AO OD 30 NG DG= = . 50 40 30⎪⎪∴PE=PI+IE=15+155.····························································································13分∴存在两个点P,到OD的距离都是.∴NG=24,DG=18.·······································································································10分∵EF垂直平分OD,∴OE=ED=15,EG=NH=3.······················································································11分设OI=R,EI=x,则在△Rt OEI中,有R2=152+x2①在△Rt NIH中,有R2=32+(24-x)2②⎧15x=2由①、②可得:⎨⎪R=155⎪⎩22根据对称性可得,在BD下方还存在一个点P'也满足条件.15(5+1)2(2013△?常州)如图,在ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.(2013•南京)如图,将菱形纸片ABCD折迭,使点A恰好落在菱形的对称中心O处,折痕为EF。

2013年中考数学试卷分类汇编5--2:实数运算

2013年中考数学试卷分类汇编5--2:实数运算

考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0 3、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

新-79.与圆有关的计算

新-79.与圆有关的计算

【答案】 5 π 3
12. 【易】(湖北省宜昌市初中毕业生学业考试)如图,艳军中学学术报告厅门的上沿是 圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100° ,则弧长是________ 米.( π ≈ 3 )
2/59
PDF pdfFactory Pro

【答案】3
=
π (90 −
90
y)
R
,故选
B.
29. 【易】(2011 罗湖区初三第二次联考)露露从纸上剪下一个圆形和一个扇形的纸片
(如图),用它们恰好能围成一个圆锥模型,若圆的半径为 1,扇形的圆心角等于
120° ,则此扇形的半径为( )
A. 3
B. 6
C.3
D.6
【答案பைடு நூலகம்C
30. 【易】(朝阳区 2011-2012 学年九年级第一学期期末统一考试)如图,在纸上剪下一 个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若该圆的半径为 1,扇形 的圆心角等于 60° ,则这个扇形的半径 R 的值是________.
34. 【易】(东城二模)如图,扇形 OAB 是一个圆锥的侧面展开图,若小正方形方格的边 长为 1,则这个圆锥的底面半径为( )
∠ECD = y° , eB 的半径为 R ,则 D»E 的长度是( )
A. π (90 − x) R
90
B. π (90 − y) R
90
C. π (180 − x) R
180
D. π (180 − y) R
180
B E
D A
C P
【答案】B 根据题意,由切线长定理可知: PC = PD = PE , 即点 C 、 D 、 E 在以 P 为圆心, PC 长为半径的⊙ P 上, 由圆周角定理得:∠ DPE =2∠ ECD = 2 y . 如图,连接 BD 、 BE ,则∠ BDP =∠ BEP =90°,

恩施州2013年初中毕业学业考试-答案

恩施州2013年初中毕业学业考试-答案

恩施州2013年初中毕业学业考试【答案】一、客观题1. B2. D3. D4. A5. A6. C7. D8. C9. B 10. D11. B 12. B二、主观题13. (1)宪法。

财产权、继承权、受赠权、知识产权、著作权、署名权、专利权、商标权、发明权、发现权、技术改进权、合理化建议权、人身权、生命健康权、姓名权、肖像权、名誉权、荣誉权、债权等。

(答出任意四个即可)(2)情景一:为保人身安全,可先把钱物如数交出,同时记清不法分子特征,脱身后拨打“110”报警。

情景二:控制情绪,冷静下来,开诚布公地谈一谈,向班干部或老师、家长反映。

情景三:与父亲沟通,请求他人劝说,请求相关部门调解。

14. ①德是立身之本。

德是成就事业的基石,是人的精神追求,也是一种修养,更是人格的光彩。

一个有美德的人能活得更加愉快,更有价值,是一个人的做人之本。

如尽职尽责、战胜挫折、关爱他人、服务社会等传统美德。

传统美德是一个国家富强,一个民族振兴的凝聚力,是社会文明的标志。

②保护生态环境。

环境形势严峻是我国的基本国情,植被遭到破坏,大气污染严重,生态系统退化,我国的环境污染严重。

如雾霾,PM2.5浓度超标,空气质量级别“严重污染”。

人与自然需要和谐,我国在现代化建设中必须实施可持续发展战略,树立科学发展观,坚持保护环境的基本国策,建设生态文明。

③培养美德和保护环境两方面,能联系实际,决心从身边的小事做起,从我做起,从现在做起。

15. (1)如目标引领成长奋斗铸就辉煌。

(2)开辟了中国特色社会主义道路,形成了中国特色社会主义理论体系。

(3)①我国是人民民主专政的社会主义国家,人民是国家的主人。

②让人民过上更加幸福更加有尊严的生活。

人格尊严无比珍贵,是一个人立于天地之间的精神根基,人要活得更加有尊严。

(4)计划生育、保护环境、节约资源、对外开放等,科教兴国、人才强国、可持续发展、西部大开发、创新驱动发展、统筹城乡发展、依法治国等。

湖北省恩施州2013年中考数学模拟试题

湖北省恩施州2013年中考数学模拟试题

2013年恩施州中考数学模拟试题姓名______________ 分数__________________一、选择题(每小题3分,共36分) 1.-5的倒数是( )A .-5B .5C .- 15D .152.人民网北京1月18日电:今天,国家统计局局长马建堂介绍2012年国民经济运行情况,初步核算,全年国内生产总值519322亿元,按可比价格计算,比上年增长7.8%。

这个数据用科学记数法表示(保留3位有效数字)正确的是( )A .51019.5⨯B .61019.5⨯C .5102.5⨯D .6102.5⨯3.已知⊙O 1、⊙O 2的半径分别为5cm 、8cm ,且它们的圆心距为6cm ,则⊙O 1与⊙O 2的位置关系为( )A .外离B .相交C .相切D .内含4.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( )A.①②B.②③C. ②④D. ③④5.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或806. 如图,图中的小正方形的边长均为1,则图中的阴影三角形与△ABC 相似的是( ):7. 已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( ) A .该方程有两个相等的实数根 B .该方程有两个不相等的实数根 C .该方程无实数根 D .该方程根的情况不确定 8.2011年5月份,我市市区一周空气质量报告中某项污染指数的数据是: 31 35 31 34 30 32 31,这组数据的中位数、众数分别是( )A .32,31B .31,32C .31,31D .32,359.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角α(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为( )A . 7 2°B .108°或14 4°C .144°D . 7 2°或144°10. 如图是一个圆锥形冰淇淋,已知它的母线长是5cm ,高是4cm ,则这个圆锥形冰淇淋的底面面积是( )A .210cm πB .29cm πC .220cm πD .2cm π①正方体②圆柱③圆锥④球第11题图FEDBAC第12题图第10题图11.如图是一张矩形纸片ABCD ,cm AD 10=,若将纸片沿DE 折叠,使DC落在DA上,点C 的对应点为点F ,若cm BE 6=,则DC 的长是( )A .cm 4B .cm 6C .cm 8D .cm 1012.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则S 四边形ADCE ∶S 正方形ABCD 的值为( )二、填空题(每小题3分,共18分) 13. 方程2132=-xx 的解是 ;14.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _;15.如图等边三角形ABC 中,AB =3,D 、E 是BC 上的两点,AD 、AE 把△ABC 分割成周长相等的三个三角形,则CD = ;16.如图,已知Rt △ABC ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E n ,分别记△BCE 1、△BCE 2、△BCE 3···△BCE n 的面积为S 1、S 2、S 3、…S n . 则S n = S △ABC (用含n 的代数式表示).三、解答题(共8个小题,第17、19、20、21题各8分,第18题6分,第22题10分,第23、24题各12分,共72分)17.已知a 是一元二次方程2320x x +-=的实数根,求代数式2352362a a a a a -⎛⎫÷+- ⎪--⎝⎭的值.18.如图:把一张给定大小的矩形卡片ABCD 放在宽度为10mm 的横格纸中,恰好四个顶 点都在横格线上,已知α=25°,求长方形 卡片的周长。

2013年全国数学中考试卷分类汇编:规律探索题

2013年全国数学中考试卷分类汇编:规律探索题

2013中考全国100份试卷分类汇编规律探索题1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33……分别计作a1,a2,a3,a4,a5……a n,a n表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……a n = a n-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46, A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32<n<33, 2013在第32组,但不是第32组的第一个数,a32=1923, (2013-1923)÷2+1=46.(注意区别a n和A n)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2 B.cm2 C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A.B.C.D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;答:第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.159考点:规律型:图形的变化类.分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8B.9C.16 D.17考点:规律型:图形的变化类.分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解解:∵5﹣1=4,答:12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200.考点:规律型:数字的变化类.分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x 轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。

湖北省恩施州2014年中考数学试题(解析)

湖北省恩施州2014年中考数学试题(解析)

湖北省恩施州2014年中考数学试题(解析)
一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,恰有一项是符合要求的。


1.(3分)(2013•恩施州)的相反数是()
C.3D.﹣3
A.B.

考点:相反数.
分析:根据只有符号不同的两个数互为相反数求解后选择即可.
解答:
解:﹣的相反数是.
故选A.
点评:本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.
2.(3分)(2013•恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)()
A.3.93×104B.3.94×104C.0.39×105D.394×102
考点:科学记数法与有效数字.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39360有5位,所以可以确定n=5﹣1=4.
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.
用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.
解答:解:39360=3.936×104≈3.94×104.
故选:B.
点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.
3.(3分)(2013•恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()
A.70°B.80°C.90°D.100°
考点:平行线的判定与性质.。

2013恩施中考数学试题及答案

2013恩施中考数学试题及答案

2013恩施中考数学试题及答案一、选择题1. 设函数y = f(x)在区间[1, 5]上是增函数,则f(4)可能等于:A) 1 B) 2 C) 3 D) 4【答案:A】2. 设等差数列{an}的公差为3,如果a1 + a2 + ... + a10 = 55,则a10的值为:A) 7 B) 10 C) 16 D) 18【答案:C】3. 若根据某份调查数据制作条形统计图,发现18个人比156厘米高,那么绘制此调查数据的统计图时纵轴1个单位代表的数值应为:A) 1 B) 3 C) 9 D) 18【答案:D】4. 在平面直角坐标系中,若点A(1, 2)关于x轴镜像得到点B,关于y轴镜像得到点C,关于原点镜像得到点D,则四边形ABCD的坐标为:A) A(1, 2), B(1, -2), C(-1, -2), D(-1, 2)B) A(-1, 2), B(1, -2), C(-1, -2), D(-1, 2)C) A(1, 2), B(1, -2), C(-1, 2), D(-1, -2)D) A(-1, 2), B(1, -2), C(-1, 2), D(-1, -2)【答案:A】5. 下图是一块圆形的田地,记田地的周长为C,半径为r,则C与r 的关系是:A) C = 2πr B) C = πr^2 C) C = π/2r D) C = 1/r【答案:A】二、填空题6. 已知数列{an}的通项公式为an = n^2 - n,则a10 = _______。

【答案:90】7. 若直线y = 2x - 3与直线y = kx + 5平行,则k = _______。

【答案:2】8. 甲、乙两个数的乘积为12,若用甲减去乙并将差的两倍再加上乙的结果等于37,则甲的值是 _______。

【答案:9】9. 设a和b是正整数,a^2 + b^2 = 65,则a + b = _______。

【答案:13】10. 设函数y = f(x)在区间[-1, 2]上是增函数,则f(-1) + f(2) =_______。

湖北省恩施州中考数学试卷

湖北省恩施州中考数学试卷

湖北省恩施州中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)7的绝对值是()A.﹣7 B.7 C.D.2.(3分)大美山水“硒都•恩施”是一张亮丽的名片,八方游客慕名而来,今年“五•一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为()A.0.145×106B.14.5×105C.1.45×105D.1.45×1063.(3分)下列计算正确的是()A.a(a﹣1)=a2﹣a B.(a4)3=a7C.a4+a3=a7 D.2a5÷a3=a24.(3分)下列图标是轴对称图形的是()A.B.C.D.5.(3分)小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.B.C.D.6.(3分)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠47.(3分)函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤38.(3分)关于x的不等式组无解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.﹣1<m≤0 D.﹣1≤m<09.(3分)中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗10.(3分)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.811.(3分)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.1212.(3分)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S=5,四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.2二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)16的平方根是.14.(3分)分解因式:3ax2﹣6axy+3ay2=.15.(3分)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC 于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2,则图中阴影部分的面积为.(结果不取近似值)16.(3分)如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:÷﹣,其中x=.18.(8分)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC 与AE交于点P.求证:∠AOB=60°.19.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的a=,b=;(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;(3)全校有多少名学生选择参加乒乓球运动?20.(8分)如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)21.(8分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点,求△OBC的面积.22.(10分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?23.(10分)如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C 的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.24.(12分)如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x 轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.2017年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•恩施州)7的绝对值是()A.﹣7 B.7 C.D.【分析】根据绝对值的定义即可解题.【解答】解:∵正数的绝对值是其本身,∴|7|=7,故选B.【点评】本题考查了绝对值的定义,熟练掌握是解题的关键.2.(3分)(2017•恩施州)大美山水“硒都•恩施”是一张亮丽的名片,八方游客慕名而来,今年“五•一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为()A.0.145×106B.14.5×105C.1.45×105D.1.45×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1450000用科学记数法表示为1.45×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•恩施州)下列计算正确的是()A.a(a﹣1)=a2﹣a B.(a4)3=a7C.a4+a3=a7 D.2a5÷a3=a2【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=a2﹣a,符合题意;B、原式=a12,不符合题意;C、原式不能合并,不符合题意;D、原式=2a2,不符合题意,故选A【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.4.(3分)(2017•恩施州)下列图标是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)(2017•恩施州)小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.B.C.D.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性.6.(3分)(2017•恩施州)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠4【分析】先根据题意得出AD∥BC,再由平行线的性质即可得出结论.【解答】解:∵∠A+∠ABC=180°,∴AD∥BC,∴∠2=∠4.故选D.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.7.(3分)(2017•恩施州)函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣3≠0,解得x≥1且x≠3,故选:B.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零是解题关键.8.(3分)(2017•恩施州)关于x的不等式组无解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.﹣1<m≤0 D.﹣1≤m<0【分析】分别求出每一个不等式的解集,根据不等式组无解,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了可得答案.【解答】解:解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组无解,∴m≤﹣1,故选:A【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9.(3分)(2017•恩施州)中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“猪”相对的字是“羊”;“马”相对的字是“狗”;“牛”相对的字是“鸡”.故选:C.【点评】本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.10.(3分)(2017•恩施州)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.8【分析】根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:200×﹣80=80×50%,解得:x=6.故选B.【点评】本题考查了一元一次方程的应用,根据利润=售价﹣进价,列出关于x 的一元一次方程是解题的关键.11.(3分)(2017•恩施州)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.12【分析】由DE∥BC可得出∠ADE=∠B,结合∠ADE=∠EFC可得出∠B=∠EFC,进而可得出BD∥EF,结合DE∥BC可证出四边形BDEF为平行四边形,根据平行四边形的性质可得出DE=BF,由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质可得出BC=DE,再根据CF=BC﹣BF=DE=6,即可求出DE的长度.【解答】解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故选C.【点评】本题考查了相似三角形的判定与性质、平行线的性质以及平行四边形的判定与性质,根据相似三角形的性质找出BC=DE是解题的关键.12.(3分)(2017•恩施州)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);=5,⑤S四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.2【分析】根据直线l1的解析式求出A(1,0),B(0,3),根据关于y轴对称的两点坐标特征求出E(﹣1,0).根据平行于x轴的直线上任意两点纵坐标相同得出C点纵坐标与B点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=﹣x2+2x+3,进而判断各选项即可.【解答】解:∵直线l1:y=﹣3x+3交x轴于点A,交y轴于点B,∴A(1,0),B(0,3),∵点A、E关于y轴对称,∴E(﹣1,0).∵直线l2:y=﹣3x+9交x轴于点D,过点B作x轴的平行线交l2于点C,∴D(3,0),C点纵坐标与B点纵坐标相同都是3,把y=3代入y=﹣3x+9,得3=﹣3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c过E、B、C三点,∴,解得,∴y=﹣x2+2x+3.①∵抛物线y=ax2+bx+c过E(﹣1,0),∴a﹣b+c=0,故①正确;②∵a=﹣1,b=2,c=3,∴2a+b+c=﹣2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD是平行四边形,=BC•OB=2×3=6≠5,故⑤错误.∴S四边形ABCD综上可知,正确的结论有3个.故选C.【点评】本题考查了抛物线与x轴的交点,一次函数、二次函数图象上点的坐标特征,关于y轴对称的两点坐标特征,平行于x轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)(2017•恩施州)16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.(3分)(2017•恩施州)分解因式:3ax2﹣6axy+3ay2=3a(x﹣y)2.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)(2017•恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2,则图中阴影部分的面积为3﹣π.(结果不取近似值)【分析】根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF求出答案.【解答】解:如图所示:设半圆的圆心为O,连接DO,过D作DG⊥AB于点G,过D作DN⊥CB于点N,∵在Rt△ABC中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF是等边三角形,∵在Rt△ABC中,∠BAC=30°,BC=2,∴AC=4,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3,DC=AC﹣AD=,故DN=DC•sin60°=×=,则S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF=×2×6﹣×3×﹣﹣××=3﹣π.故答案为:3﹣π.【点评】此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.16.(3分)(2017•恩施州)如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=2.【分析】粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.【解答】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4不能在第四列,2不能在第五列,而2不能在第六列;所以2只能在第六行第四列,即a=2;则b 和c有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5不能在第六列,所以5在第五列的第一行;4和6在第六列的第一行和第二行,不确定,分两种情况:①当4在第一行时,6在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4不能在第三行,所以4在第五行,则1在第三行,如下:观察上图可知:第五行缺少1和2,1不能在第1列,所以1在第五列,则2在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1和2,1不能在第三行,则在第四行,所以2在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1不能在第一列,所以1在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4不能在第三行,所以4在第四行,则3在第三行,如下:观察上图可知:第二列缺少5和6,5不能在第四行,所以5在第三行,则6在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6在第一行,4在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2不能在第三列,所以2在第2列,4在第三列,如下:观察上图可知:第三列缺少数字1和6,6不能在第五行,所以6在第三行,则1在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3和6,6不能在第三行,所以6在第四行,则3在第三行,如下:观察上图可知:第六列缺少数字1和2,2不能在第四行,所以2在第三行,则1在第四行,如下:观察上图可知:第三行缺少数字1和5,1和5都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.【点评】本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)(2017•恩施州)先化简,再求值:÷﹣,其中x=.【分析】先化简分式,然后将x的值代入即可求出答案.【解答】解:当x=时,∴原式=÷﹣=×﹣=﹣==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.【分析】利用“边角边”证明△ACD和△BCE全等,可得∠CAD=∠CBE,然后求出∠OAB+∠OBA=120°,再根据“八字型”证明∠AOP=∠PCB=60°即可.【解答】证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠APC=∠BPO,∴∠BOP=∠ACP=60°,即∠AOB=60°.【点评】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.(8分)(2017•恩施州)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的a=24,b=48;(2)在扇形统计图中,“排球”所在的扇形的圆心角为72度;(3)全校有多少名学生选择参加乒乓球运动?【分析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【解答】解:(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=48.故答案是:24,48;(2)“排球”所在的扇形的圆心角为360°×=72°,故答案是:72;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).【点评】本题考查读扇形统计图获取信息的能力,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•恩施州)如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)【分析】作OC⊥AB于C,由已知可得△ABO中∠A=60°,∠B=45°且OA=80m,要求OB的长,可以先求出OC和BC的长.【解答】解:由题意可知:作OC⊥AB于C,∠ACO=∠BCO=90°,∠AOC=30°,∠BOC=45°.在Rt△ACO中,∵∠ACO=90°,∠AOC=30°,∴AC=AO=40m,OC=AC=40m.在Rt△BOC中,∵∠BCO=90°,∠BOC=45°,∴BC=OC=40m.∴OB==40≈40×2.45≈82(米).答:小华家到学校的距离大约为82米.【点评】本题考查了解直角三角形的应用,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.(8分)(2017•恩施州)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点,求△OBC的面积.【分析】(1)把A(﹣1,a)代入反比例函数y=﹣得到A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;(2)求的直线AO的解析式为y=﹣2x,设直线MN的解析式为y=﹣2x+b,得到直线MN的解析式为y=﹣2x+10,解方程组得到C(1,8),于是得到结论.【解答】解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解得,或,∴C(1,8),∴△OBC的面积=S△OMN ﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=15.【点评】本题考查了一次函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.22.(10分)(2017•恩施州)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【点评】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.23.(10分)(2017•恩施州)如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.【分析】(1)由BE∥CD知∠1=∠3,根据∠2=∠3即可得∠1=∠2;(2)连接EC、AC,由PC是⊙O的切线且BE∥DC,得∠1+∠4=90°,由∠A+∠2=90°且∠A=∠5知∠5+∠2=90°,根据∠1=∠2得∠4=∠5,从而证得△PBC∽△PCE即可;(3)由PC2=PB•PE、BE﹣BP=PC=4求得BP=2、BE=6,作EF⊥CD可得PC=FE=4、FC=PE=8,再Rt△DEF≌Rt△BCP得DF=BP=2,据此得出CD的长即可.【解答】解:(1)∵BE∥CD,∴∠1=∠3,又∵OB=OC,∴∠2=∠3,∴∠1=∠2,即BC平分∠ABP;(2)如图,连接EC、AC,∵PC是⊙O的切线,∴∠PCD=90°,又∵BE∥DC,∴∠P=90°,∴∠1+∠4=90°,∵AB为⊙O直径,∴∠A+∠2=90°,又∠A=∠5,∴∠5+∠2=90°,∵∠1=∠2,∴∠5=∠4,∵∠P=∠P,∴△PBC∽△PCE,∴=,即PC2=PB•PE;(3)∵BE﹣BP=PC=4,∴BE=4+BP,∵PC2=PB•PE=PB•(PB+BE),∴42=PB•(PB+4+PB),即PB2+2PB﹣8=0,解得:PB=2,则BE=4+PB=6,∴PE=PB+BE=8,作EF⊥CD于点F,∵∠P=∠PCF=90°,∴四边形PCFE为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°,∵BE∥CD,∴=,∴DE=BC,在Rt△DEF和Rt△BCP中,∵,∴Rt△DEF≌Rt△BCP(HL),∴DF=BP=2,则CD=DF+CF=10,∴⊙O的半径为5.【点评】本题主要考查切线的性质、相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握平行线的性质、切线的性质、圆周角定理、相似三角形的判定与性质及全等三角形的判定与性质等知识点是解题的关键.24.(12分)(2017•恩施州)如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.【分析】(1)利用待定系数法求抛物线解析式;(2)设B(x,x2+1),而F(0,2),利用两点间的距离公式得到BF2=x2+(x2+1﹣2)2=,再利用配方法可得到BF=x2+1,由于BC=x2+1,所以BF=BC;(3)如图1,利用菱形的性质得到CB=CF=PF,加上CB=FB,则可判断△BCF为等边三角形,所以∠BCF=60°,则∠OCF=30°,于是可计算出CF=4,所以PF=CF=4,从而得到自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,先解方程组得B(1+,3+),=S△EQF+S△EQB=•(1+)设Q(t,t2+1),则E(t,t+2),则EQ=﹣t2+t+1,则S△QBF•EQ=•(1+)•)(﹣t2+t+1),然后根据二次函数的性质解决问题.【解答】解:(1)把点(﹣2,2),(4,5)代入y=ax2+c得,解得,所以抛物线解析式为y=x2+1;(2)BF=BC.理由如下:设B(x,x2+1),而F(0,2),∴BF2=x2+(x2+1﹣2)2=x2+(x2﹣1)2=(x2+1)2,∴BF=x2+1,∵BC⊥x轴,∴BC=x2+1,∴BF=BC;(3)如图1,m为自然数,则点P在F点上方,∵以B、C、F、P为顶点的四边形是菱形,∴CB=CF=PF,而CB=FB,∴BC=CF=BF,∴△BCF为等边三角形,∴∠BCF=60°,∴∠OCF=30°,在Rt△OCF中,CF=2OF=4,∴PF=CF=4,∴P(0,6),即自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,当k=1时,一次函数解析式为y=x+2,解方程组得或,则B(1+,3+),设Q(t,t2+1),则E(t,t+2),∴EQ=t+2﹣(t2+1)=﹣t2+t+1,=S△EQF+S△EQB=•(1+)•EQ=•(1+))(﹣t2+t+1)=﹣(t﹣∴S△QBF2)2++1,当t=2时,S有最大值,最大值为+1,此时Q点坐标为(2,2).△QBF【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和菱形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.黑龙江省绥化市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB ∥CD的是()A.∠2=35° B.∠2=45°C.∠2=55°D.∠2=125°2.(3分)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为()A.0.7×106B.7×105C.7×104D.70×1043.(3分)下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a34.(3分)正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形5.(3分)不等式组的解集是()A.x≤4 B.2<x≤4 C.2≤x≤4 D.x>26.(3分)如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:97.(3分)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.。

2012年湖北省恩施州中考数学试题及答案

2012年湖北省恩施州中考数学试题及答案

1.(2012•恩施州)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.2.(2012•恩施州)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.3.已知:如图,ABC ∆内接于⊙O ,AB 为直径,弦CE AB ⊥于F ,C 是AD 的中点,连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q . (1)求证:P 是ACQ ∆的外心; (2)若3tan ,84ABC CF ∠==,求CQ 的长; (3)求证:2()FP PQ FP FG +=.4.(10分)(2012•襄阳)如图,PB 为⊙O 的切线,B 为切点,直线PO 交⊙于点E 、F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF . (1)求证:直线PA 为⊙O 的切线;(2)试探究线段EF 、OD 、OP 之间的等量关系,并加以证明; (3)若BC=6,tan ∠F=,求cos ∠ACB 的值和线段PE 的长.5.(12分)(2012•襄阳)如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处.分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线y=ax 2+bx+c 经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P 、Q 、C 为顶点的三角形与△ADE 相似? (3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由6.(10分)(2013•恩施州)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C 作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA 的长7.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.8.已知△ABC内接于⊙O,BT与⊙O相切于点B,点P在直线AB上,过点P作BC的平行线交直线BT于点E,交直线AC于点F.(1)如图,当点P在线段AB上时,求证:PA·PB=PE·PF;(2)当点P在BA延长线上时,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)若AB=42,cos∠EBA=13,求⊙O的半径.9.己知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DF ⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)若⊙O的半径为5,AF=152,求tan∠ABF的值.B10.如图,在锐角△ABC 中,AC 是最短边,以AC 中点O 为圆心,12AC 长为半径作⊙O ,交BC于E ,过O 作OD ∥BC 交⊙O 于D ,连结AE 、AD 、DC . (1)求证:D 是AE ︵的中点;(2)求证:∠DAO =∠B +∠BAD ; (3)若S △CEF S △OCD=12,且AC =4,求CF 的长.11.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作EF ⊥AC 于点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)如果∠A =60º,则DE 与DF 有何数量关系?请说明理由;(3)如果AB =5,BC =6,求tan ∠BAC 的值.12.如图,AB 是⊙O 的直径,BC 切⊙O 于点B ,连接CO 并延长,交⊙O延长,交BC 于点F .(1)试判断∠CBD 与∠CEB 是否相等,并证明你的结论; (2)求证:BDBE=CDBC;(3)若BC =32AB ,求tan ∠CDF 的值.C。

湖北省恩施州年中考数学试卷及答案解析版

湖北省恩施州年中考数学试卷及答案解析版

湖北省恩施州2015 年中考数学试卷一、选择题(本题共12小题,每小题3分,满分36 分,中每小题给出的四个选项中,只有一项符合题目要求的,请将正确选则项请的字母代号填涂在答题卷相应位置上)15的绝对值是()A. —5B.—C.D. 5考点:绝对值. 分析:利用绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.解答:解:根据负数的绝对值是它的相反数,得| —5|=5,故选D.点评:此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.2. 恩施气候独特,土壤天然含硒,盛产茶叶,恩施富硒茶叶201 3年总产量达64000 吨,将64000 用科学记数法表示为()3 54 5A. 64X 10B. X 10C. X 10D. X 10 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a x 10n的形式,其中K |a| v 10, n为整数.确定n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:64000=X10 3 4,故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a x 10n的形式,其中1w|a| v 10, n为整数,表示时关键要正确确定a的值以及n的值.考点:分析:平行线的性质.延长ED交BC于F,根据平行线的性质求出/ MFC M B=70°,求出/ FDC=40,根据三角形外角性质得出/ C=Z MFO Z MDC代入求出即可.3(3 分)(2015?恩施州)如图,已知AB// DE / ABC=70,/ CDE=140,则/ BCD 的值为()A. 20°B. 30°C. 40D. 70°解答:解:延长ED交BC于F,•/ AB// DE / ABC=70 ,•••/ MFC M B=70°,•••/ CDE=140 ,•••/ FDC=180 - 140°=40°,•••/ C=Z MF G/ MDC=7° - 40°=30°, 故选B.点评:本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出/MFC 的度数,注意:两直线平行,同位角相等.4. ( 3分)(2015?恩施州)函数 y=+x - 2的自变量x 的取值范围是( ) A . x >2B. x >2C. x ^2D. x <2考点:函 数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于 0,分母不等于 0,可以求 出 x 的范围.解答:解:根据题意得:x - 2>0且x - 2工0,解得: x > 2. 故选: B .点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;( 2)当函数表达式是分式时,考虑分式的分母不能为0;( 3)当函数表达式是二次根式时,被开方数非负. 5. ( 3 分) ( 2 0 1 5?恩施州)下列计算正确的是()3264372510A . 4x ?2x =8xB . a +a =aC . ( - x ) =- x 考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式. 专题:计 算题. 分析:A 、原式利用单项式乘单项式法则计算得到结果,即可做出判断;B 、 原式不能合并,错误;C 、 原式利用幕的乘方与积的乘方运算法则计算得到结果,即可做出判断;D 原式利用完全平方公式化简得到结果,即可做出判断. 解答:解:A 、原式=8x 5,错误; B 、 原式不能合并,错误;10C 、 原式=-x ,正确;D 原式=a 2- 2ab+b 2,错误, 故选 C点评:此题考查了单项式乘单项式, 合并同类项, 幂的乘方与积的乘方, 以及完全平方公式, 熟练掌握公式及法则是解本题的关键.6 . ( 3分) ( 2 0 1 5?恩施州)某中学开展“眼光体育一小时”活动,根据学校实际情况,如图 决定开设“A :踢毽子,B :篮球,C :跳绳,D :乒乓球”四项运动项目(每位同学必须选择 一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结 果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为( )A . 240B . 120C . 80D . 40考点:条 形统计图;扇形统计图.分析:根据A 项的人数是80,所占的百分比是40%即可求得调查的总人数,然后李用总人数 减去其它组的人数即可求解.解答:解:调查的总人数是:80- 40%=200(人),2 2 2D . ( a - b ) =a - b则参加调查的学生中最喜欢跳绳运动项目的学生数是:200 - 80 - 30 - 50=40 (人).故选D.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.(3 分)(2015?恩施州)如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“ 1”;“学”相对的字是“ 2”;“5”相对的字是“ 0”.故选:A.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.& ( 3分)(2015?恩施州)关于x的不等式组的解集为x v 3,那么m的取值范围为()A. m=3B. m>3C. m v 3D. m>3考点:解一元一次不等式组.专题:计算题.分析:不等式组中第一个不等式求出解集,根据已知不等式组的解集确定出m的范围即可. 解答:解:不等式组变形得: ,由不等式组的解集为x v3,得到m的范围为m^3,故选D点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.9. (3分)(2015?恩施州)如图,在平行四边形ABCD中, EF// AB交AD于E,交BD于F, DE EA=3: 4, EF=3,则CD的长为()A. 4B. 7C. 3D. 12考点相似三角形的判定与性质;平行四边形的性质.分析由EF/ AB根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.解答解:•/ DE EA=3 4,••• DE DA=3: 7•/ EF// AB•,解得:AB=7,•••四边形ABCD是平行四边形,•C D=AB=.7故选B.点评:此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.10. (3分)(2015?恩施州)如图,AB是OO的直径,弦CD交AB于点E,且E为OB的中点, / CDB=30,CD=4,则阴影部分的面积为()A. nB. 4 nC. nD. n考点:扇形面积的计算.分析:首先证明OE=OC=QB则可以证得△ OEC^A BED贝U S阴影=半圆-S扇形OCB利用扇形的面积公式即可求解.解答:解:I/ COB=2CDB=60 ,又••• CDL AB•/ OCB=3°0 ,CE=DE,•O E=OC=OB=2OC=4.•O E=BE则在△ OEC和厶BED中,•△OEC2A BED•S阴影=半圆-S 扇形OCB=.故选D.点评:本题考查了扇形的面积公式,证明△ OE QA BED得到S阴影=半圆-S扇形OCB是本题的关键.11. (3分)(2015?恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%现售价为b元,则原售价为()A. (a+b)元B. (a+b)元C. (b+a)元D. (b+a)元考点:列代数式.分析:可设原售价是x元,根据降价a元后,再次下调了20%后是b元为相等关系列出方程,用含a,b 的代数式表示x 即可求解.解答:解:设原售价是x 元,则(x- a)(1 - 20% =b,解得x=a+b,故选A.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断 a 与0的关系,由抛物线与 y 轴的交点判断c 与0的关系, 然后根据对称轴及抛物线与 x 轴交点情况进行推理,进而对所得结论进行判断.解答:解:•••抛物线的开口方向向下,a v 0;•••抛物线与x 轴有两个交点,2 2.b - 4ac >0, 即卩 b >4ac ,故①正确由图象可知:对称轴 x= - = - 1, 2a — b=0, 故②错误;•••抛物线与y 轴的交点在y 轴的正半轴上, • c > 0由图象可知:当 x=1时y=0, • a+b+c=0; 故③错误;由图象可知:当 x= - 1时y > 0,•••点B (-, y 1)、C (-, y 2)为函数图象上的两点,贝U y 1 v y 2, 故④正确. 故选B点评:此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与 x 轴交点的个数确定.二、填空题(共4小题,每小题3分,满分12分,不要求写出解答过程,请把答案直接填 写在答题卷相应位置上)13. ( 3分)(2015?恩施州)4的平方根是 ±2 . 考点:平方根. 专题:计算题.分析:根据平方根的定义,求数 a 的平方根,也就是求一个数 x ,使得x 2=a ,则x 就是a 的 平方根,由此即可解决问题.2解答:解:•(土 2) =4,•4的平方根是土 2.12. ( 3分)(2015?恩施州)如图是二次函数 0),对称轴为直线 x=- 1,给出四个结论: ①b > 4ac ;②2a+b=0;③a+b+c > 0;④若点 则 y i < y 2, 其中正确结论是( ) A .②④B.①④y=ax 2+bx+c 图象的一部分,图象过点 A (- 3,B (-, y i )、C (-, y 2)为函数图象上的两点,C.①③D.②③故答案为:土2.点评:本题考查了平方根的定义•注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2 314. (3 分)(2015?恩施州)因式分解:9bx y - by = by (3x+y)(3x- y)•考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取by,再利用平方差公式分解即可.. , 2 2解答:解:原式=by (9x - y )=by (3x+y)(3x - y),故答案为:by (3x+y)(3x- y)点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)(2015?恩施州)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b, 然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于5n .考点:弧长的计算;旋转的性质.分析:根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.解答:解:由图形可知,圆心先向前走OO的长度即圆的周长,然后沿着弧OC2旋转圆的周长,则圆心O运动路径的长度为:X 2nX 5+X 2nX 5=5 n, 故答案为:5 n.点评:本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.16. (3 分)(2015?恩施州)观察下列一组数:1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,…其中每个数n都连续出现n次,那么这一组数的第119个数是15 .考点:规律型:数字的变化类.分析:根据每个数n都连续出现n次,可列出1+2+3+4+- +x=119+1,解方程即可得出答案. 解答:解:因为每个数n都连续出现n次,可得:1+2+3+4+…+x=119+1,解得:x=15,所以第119个数是15.故答案为:15.点评:此题考查数字的规律,关键是根据题目首先应找出哪哪些部分发生了变化,是按照什么规律变化的.三、解答题(本大题共8小题,满分72分,请在大题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. (8分)(2015?恩施州)先化简,再求值:?-,其中x=2 - 1.考点:分式的化简求值.专题:计算题.分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把x 的值代入计算即可求出值.解答:解:原式=?-=-=-,当x=2 - 1时,原式=-=-.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18. ( 8分)(2015?恩施州)如图,四边形ABCD BEFG匀为正方形,连接AG CE( 1 )求证:AG=CE;(2)求证:AGL CE考点:全等三角形的判定与性质;正方形的性质. 专题:证明题.分析:(1)由正方形的性质得出AB=CB / ABC d GBE=90 , BG=BE得出/ ABG M CBE由SAS证明△CBE得出对应边相等即可;(2)由厶CBE得出对应角相等/ BAG M BCE由/BAG# AMB=90 ,对顶角 / AMB M CMN 得出/ BCE# CMN=9° ,证出/ CNM=9° 即可.解答:(1)证明:•••四边形ABCD BEFG均为正方形,••• AB=CB M ABC# GBE=90 , BG=BE•••/ ABG# CBE在厶ABG和厶CBE中,,•△ABG^A CBE( SAS ,• AG=C;E(2)证明:如图所示:•••△ ABG^^ CBE•# BAG=# BCE,•••# ABC=90 ,•# BAG+# AMB=9°0 ,•••# AMB# CMN•# BCE+# CMN=9°0 ,•# CNM=9°0 ,• AG L CE.点评:本题考查了正方形的性质、全等三角形的判定与性质、垂线的证法;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.19. (8 分)(2015?恩施州)质地均匀的小正方体,六个面分别有数字“ 1”、“2”、“3”、“4”、“5”、“6”,同时投掷两枚,观察朝上一面的数字.(1)求数字“ 1”出现的概率;( 2 )求两个数字之和为偶数的概率.考点:列表法与树状图法. 专题:计算题.分析:(1)列表得出所有等可能的情况数,找出数字“ 1”出现的情况数,即可求出所求的概率;(2)找出数字之和为偶数的情况数,即可求出所求的概率.解答:解:(1)列表如下:1234561(1,1) ( 2,1) ( 3,1) ( 4,1) ( 5,1) ( 6,1)2(1,2) ( 2,2) ( 3,2) ( 4,2) ( 5,2) ( 6,2)3(1,3) ( 2,3) ( 3,3) ( 4,3) ( 5,3) ( 6,3)4(1,4) ( 2,4) ( 3,4) ( 4,4) ( 5,4) ( 6,4)5(1,5) ( 2,5) ( 3,5) ( 4,5) ( 5,5) ( 6,5)6(1,6) ( 2,6) ( 3,6) ( 4,6) ( 5,6) ( 6,6)所有等可能的情况有36 种,其中数字“ 1”出现的情况有11 种,则P (数字“ 1”出现)=;(2)数字之和为偶数的情况有18 种,则P (数字之和为偶数)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20. (8分)(2015?恩施州)如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:~)考点:解直角三角形的应用-方向角问题.分析:过点C作CDL AB于点D,则若该船继续向西航行至离灯塔距离最近的位置为CD的长度,利用锐角三角函数关系进行求解即可.解答:解:如图,过点C作CDLAB于点D,AB=20< 仁20 (海里),•••/ CAF=60,/ CBE=30 ,•••/ CBA d CBE k EBA=120,/ CAB=90 -/ CAF=30 ,•••/ C=180 -Z CBA-Z CAB=30 ,•••/ C=Z CAB•B C=BA=2(0 海里),Z CBD=90 -Z CBE=60°,• CD=BC?si Z CBD= 17 (海里). 点评:此题主要考查了方向角问题,熟练应用锐角三角函数关系是解题关键.21. (8分)(2015?恩施州)如图,已知点A、P在反比例函数y= (k v 0)的图象上,点B、Q 在直线y=x - 3的图象上,点B的纵坐标为-1, AB Lx轴,且S MA=4,若P、Q两点关于y 轴对称,设点P 的坐标为(m,n).(1 )求点 A 的坐标和k 的值;(2)求的值.考点:反比例函数与一次函数的交点问题.分析:(1)先由点B在直线y=x - 3的图象上,点B的纵坐标为-1,将y= - 1代入y=x- 3, 求出x=2,即B (2,- 1).由AB丄x轴可设点A的坐标为(2, t),利用S ZA B=4列出方程(-1 - t )X 2=4,求出t= - 5,得到点A的坐标为(2,- 5);将点A的坐标代入y=,即可求出k的值;(2)根据关于y轴对称的点的坐标特征得到Q( m n),由点P (m, n)在反比例函数y=-的图象上,点Q在直线y=x - 3的图象上,得出mn=- 10, m+n=- 3,再将变形为,代入数据计算即可.解答:解:(1)v点B在直线y=x - 3的图象上,点B的纵坐标为-1, •••当y= - 1 时,x - 3= - 1,解得x=2,二 B (2,- 1).设点A的坐标为(2, t ),则t V- 1, AB=- 1 - t .TS △OA=4,•••(- 1 - t )X 2=4,解得t= - 5 ,•••点A的坐标为(2,- 5).•••点A在反比例函数y= (k V 0)的图象上,•- 5=,解得k=- 10;(2)T p、Q两点关于y轴对称,点P的坐标为(m n),•Q(- m,n ),•••点P在反比例函数y=-的图象上,点Q在直线y=x - 3的图象上,•n=-,n=- m- 3,•mn=- 10, m+n=- 3,点评:本题考查了反比例函数与一次函数的交点问题, 反比例函数与一次函数图象上点的坐标特征,三角形的面积,关于y轴对称的点的坐标特征,代数式求值,求出点A的坐标是解决第(1)小题的关键,根据条件得到mn=- 10, m+n=-3是解决第(2)小题的关键.22.(10 分)(2015?恩施州)某工厂现有甲种原料360 千克,乙种原料290 千克,计划用这两种原料全部生产A B两种产品共50件,生产A B两种产品与所需原料情况如下表所示:原料型号甲种原料(千克)乙种原料(千克)A 产品(每件)9 3B 产品(每件) 4 10(1)该工厂生产A、 B 两种产品有哪几种方案(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设工厂可安排生产x件A产品,则生产(50 - x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.解答:解:(1)设工厂可安排生产x件A产品,则生产(50 - x)件B产品由题意得:解得:30W x w 32的整数.•••有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30 件,B,20 件时,20X 120+30X 80=4800 (元).方案(二)A,31 件,B,19 件时,19X 120+31X 80=4760(元).方案(三)A,32 件,B,18 件时,18X 120+32X 80=4720(元).故方案(一)A,30 件,B,20 件利润最大.点评:本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解.23. (10分)(2015?恩施州)如图,AB是OO的直径,AB=6,过点O作OHL AB交圆于点H, 点C 是弧AH上异于A、B的动点,过点C作CD L OA CE L OH垂足分别为 D E,过点C的直线交OA 的延长线于点G,且/ GCD M CED(1)求证:GC是OO的切线;(2 )求DE的长;(3)过点C作CF L DE于点F,若/ CED=30,求CF的长.考点:圆的综合题.分析:(1)先证明四边形ODC區矩形,得出/ DCE=90 , DE=OC MC=M,得出 / CED#MDC=9° ,Z MDC W MCD 证出/ GCD乂MCD=9°,即可得出结论;(2)由(1)得:DE=OC=AB即可得出结果;(3)运用三角函数求出CE再由含30°角的直角三角形的性质即可得出结果.解答:(1)证明:连接OC交DE于M,如图所示:•/ OHL AB CD L OA CEL OH•# DOE#= OEC#= ODC=9°0•四边形ODCE是矩形,•# DCE=9°0 DE=OC MC=MD•# CED+# MDC=9°0 ,# MDC#= MCD,•••/ GCD# CED•# GCD#+ MCD=9°0即GC L OC•GC是OO的切线;( 2)解:由( 1)得:DE=OC=AB=;3(3)解:I / DCE=90 , / CED=30 ,•CE=DE?co#s CED=X3 =,••• CF=CE=点评:本题是圆的综合题目,考查了切线的判定、矩形的判定与性质、等腰三角形的判定与性质、三角函数、含30°角的直角三角形的性质等知识;本题有一定难度,综合性强,特别是(1)中,需要证明四边形是矩形,运用角的关系才能得出结论.24. (12分)(2015?恩施州)矩形AOCD绕顶点A( 0, 5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2 CM=4( 1 )求AD 的长;(2)求阴影部分的面积和直线AM的解析式;(3)求经过A B、D三点的抛物线的解析式;(4)在抛物线上是否存在点P,使S A PA=若存在,求出P点坐标;若不存在,请说明理由.考点:几何变换综合题.专题:综合题.分析:(1)作BP丄AD于P, BQLMC于Q 如图1,根据旋转的性质得AB=AO=5 BE=OC=AJD / ABE=90 ,利用等角的余角相等得/ ABP2 MBQ 可证明Rt△ ABP^Rt△ MBQ得到==, 设BQ=PD=x AP=y,则AD=x+y,所以BM=x+y- 2,利用比例性质得到PB?MQ=xy而PB -MQ=DQ MQ=DM=1利用完全平方公式和勾股定理得到52- y2- 2xy+(x+y - 2)- x2=1,解得x+y=7,则BM=5 BE=BM+ME=7所以AD=7;(2)由AB=BM可判断Rt△ ABP^Rt△ MBQ 贝U BQ=PD=-AP, MQ=AP 利用勾股定理得到(7-MQ 2+M Q=52,解得MQ=4(舍去)或MQ=3则BQ=4根据三角形面积公式和梯形面积公式,利用S 阴影部分=S 梯形ABQD- S A BQM进行计算即可;然后利用待定系数法求直线AM的解析式;(3)先确定B(3, 1),然后利用待定系数法求抛物线的解析式;(4)当点P在线段AM的下方的抛物线上时,作PK//y轴交AM于K,如图2设P (x,2 2 2x - x+5),则K( x, - x+5),则KP=- x +x,根据三角形面积公式得到?(- x +x)?7=, 解得X1=3, X2=,于是得到此时P点坐标为(3, 1)、(,);再求出过点(3, 1)与(,)的直线I的解析式为y= -x+,则可得到直线l与y轴的交点A'的坐标为(0,),所以AA =,然后把直线AM向上平移个单位得到I ',直线l '与抛物线的交点即为P 点,由于A〃(0,),则直线l '的解析式为y= - x+,再通过解方程组得P点坐标.解答:解:(1)作BP丄AD于P, B(QLMC于Q 如图1,•••矩形AOCD绕顶点A (0, 5)逆时针方向旋转得到矩形ABEF• AB=AO=5 BE=OC=AP / ABE=90 ,•••/ PBQ=90 ,•••/ ABP2 MBQ• Rt △ ABP^ Rt △ MBQ・ ?设BQ=PD=x AP=y,则AD=x+y, BM=x+y- 2,• ==,• PB?MQ=xy•/ PB- MQ=DQ MQ=DM=1•(PB- MQ)2=1 ,即PB2- 2PB?MQ+M2=Q1 ,2 2 2 2•••5 - y - 2xy+ (x+y - 2)- x =1,解得x+y=7,/• BM=5•B E=BM+ME=5+2,=7•A D=7;(2)v AB=BM• Rt △ ABP^ Rt △ MBQ• BQ=PD=-7 AP,MQ=AP,•/ B S+M Q=B M,•••( 7 - MQ 2+M Q=52,解得MQ=4(舍去)或MQ=3• BQ=7- 3=4,•S阴影部分=S 梯形ABQ- S^BQM=X(4+7)X 4-X 4X3=16;设直线AM的解析式为y=kx+b ,把A(0,5),M(7,4)代入得,解得,•直线AM的解析式为y= - x+5;2(3)设经过A、B D三点的抛物线的解析式为y=ax +bx+c,■/ AP=MQ=3 BP=DQ=4• B(3, 1 ),而A(0,5),D(7,5),•,解得,2•经过A、B、D三点的抛物线的解析式为y=x - x+5;(4)存在.当点P在线段AM的下方的抛物线上时,作PK//y轴交AM于K,如图2,2设P (x, x - x+5),贝U K (x, - x+5),2 2• KP=- x+5-(x - x+5)=- x +x,•「S △ PAI=,• ?(- x2+x)?7=,整理得7x2- 46x+75,解得X i=3, x?=,此时P点坐标为(3, 1)、(,),求出过点(3, 1)与(,)的直线I的解析式为y= - x+,则直线I与y轴的交点A 的坐标为(0 ,),• AA =5 -=,把直线AM向上平移个单位得到I ',贝U A〃(0,),贝U直线I '的解析式为y= - x+, 解方程组得或,此时P点坐标为(,)或(,),综上所述,点P的坐标为(3, 1)、(,)、(,)、(,).点评:本题考查了几何变换综合题:熟练掌握旋转的性质、矩形的性质和三角形全等于相似的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会进行代数式的变形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档