线性回归分析和方差分析报告
第9章-方差分析与线性回归
Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.
方差分析 线性回归
1 线性回归1.1 原理分析要研究最大积雪深度x与灌溉面积y之间的关系,测试得到近10年的数据如下表:使用线性回归的方法可以估计x与y之间的线性关系。
线性回归方程式:对应的估计方程式为线性回归完成的任务是,依据观测数据集(x1,y1),(x2,y2),...,(xn,yn)使用线性拟合估计回归方程中的参数a和b。
a,b都为估计结果,原方程中的真实值一般用α和β表示。
为什么要做这种拟合呢?答案是:为了预测。
比如根据前期的股票数据拟合得到股票的变化趋势(当然股票的变化可就不是这么简单的线性关系了)。
线性回归的拟合过程使用最小二乘法,最小二乘法的原理是:选择a,b的值,使得残差的平方和最小。
为什么是平方和最小,不是绝对值的和?答案是,绝对值也可以,但是,绝对值进行代数运算没有平方那样的方便,4次方又显得太复杂,数学中这种“转化化归”的思路表现得是那么的优美!残差平方和Q,求最小,方法有很多。
代数方法是求导,还有一些运筹学优化的方法(梯度下降、牛顿法),这里只需要使用求导就OK了,为表示方便,引入一些符号,最终估计参数a与b的结果是:自此,针对前面的例子,只要将观测数据带入上面表达式即可计算得到拟合之后的a和b。
不妨试一试?从线性函数的角度,b表示的拟合直线的斜率,不考虑数学的严谨性,从应用的角度,结果的b可以看成是离散点的斜率,表示变化趋势,b的绝对值越大,表示数据的变化越快。
线性回归的估计方法存在误差,误差的大小通过Q衡量。
1.2 误差分析考虑获取观测数据的实验中存在其它的影响因素,将这些因素全部考虑到e~N(0,δ^2)中,回归方程重写为y = a + bx + e由此计算估计量a与b的方差结果为,a与b的方差不仅与δ和x的波动大小有关,而且还与观察数据的个数有关。
在设计观测实验时,x的取值越分散,估计ab的误差就越小,数据量越大,估计量b的效果越好。
这也许能为设计实验搜集数据提供某些指导。
1.3 拟合优度检验及统计量拟合优度检验模型对样本观测值的拟合程度,其方法是构造一个可以表征拟合程度的指标,称为统计量,统计量是样本的函数。
数理统计实验3A方差分析和线性回归
三个工厂所产钢管产品的镀层厚度检验数据(μm)
工厂A
工厂B
工厂C
40
36
47
42
38
50
45
43
46
44
42
53
38
40
问题:三工厂所产钢管的镀层品质是否有差异?
2020/5/2
统计实验3:方差分析和线性回归
3
实验3.1 方差分析
参考答案
H0 :1 2 3 H1 : 1,2,3不全相等
SSA 202.1143 SSE 95.6 SST 297.7143
2020/5/2
统计实验3:方差分析和线性回归
8
实验3.1 方差分析
(4)方差分析表
H0 :1 2 3 H1 : 1,2,3不全相等
三地区铁矿石含铁量差异性检验方差分析表
Source
SS
df MS F value F0.05(2,11)
Factor A 170.7143 2 85.3571 7.5114 3.9823
2020/5/2
统计实验3:方差分析和线性回归
20
实验3.2 线性回归
(6)方差分析表和决定系数
H 0 :b 0 H1:b 0
方差分析表
Source SS df MS F value
Model 47.87696 1 47.87696 37.836 Error 10.12304 8 1.26538 Total 58.0 9
F 11.6279
W F M SA M SE 3.9823
2020/5/2
统计实验3:方差分析和线性回归
4
实验3.1 方差分析
方差分析演示
ANOVA Demo
方差分析与回归分析
方差分析与回归分析在统计学中,方差分析(ANOVA)和回归分析(Regression Analysis)都是常见的统计分析方法。
它们广泛应用于数据分析和实证研究中,有助于揭示变量之间的关系和影响。
本文将对方差分析和回归分析进行介绍和比较,让读者更好地理解它们的应用和区别。
一、方差分析方差分析是一种统计方法,用于比较两个或更多组别的均值是否存在显著差异。
它通过计算组内变异和组间变异的比值来判断不同组别间的差异是否具有统计显著性。
在方差分析中,通常有三种不同的情形:单因素方差分析、双因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量的情况。
例如,我们想要比较不同教育水平对收入的影响,可以将教育水平作为自变量分为高中、本科和研究生三个组别,然后进行方差分析来检验组别之间的收入差异是否显著。
双因素方差分析适用于有两个自变量的情况。
例如,我们想要比较不同教育水平和不同工作经验对收入的影响,可以将教育水平和工作经验作为自变量,进行方差分析来研究其对收入的影响程度和相互作用效应。
多因素方差分析适用于有多个自变量的情况。
例如,我们想要比较不同教育水平、工作经验和职位对收入的影响,可以将教育水平、工作经验和职位作为自变量,进行方差分析来探究它们对收入的联合影响。
方差分析的基本原理是计算组内变异和组间变异之间的比值,即F 值。
通过与临界F值比较,可以确定差异是否显著。
方差分析的结果通常会报告组间平均差异的显著性水平,以及可能存在的交互作用。
二、回归分析回归分析是一种统计方法,用于研究自变量与因变量之间的关系。
它通过建立一个数学模型来描述自变量对因变量的影响程度和方向。
回归分析分为简单线性回归和多元线性回归两种类型。
简单线性回归适用于只有一个自变量和一个因变量的情况。
例如,我们想要研究体重与身高之间的关系,可以将身高作为自变量、体重作为因变量,通过拟合一条直线来描述二者之间的关系。
多元线性回归适用于有多个自变量和一个因变量的情况。
统计学中的方差分析与回归分析比较
统计学中的方差分析与回归分析比较统计学是以搜集、整理、分析数据的方法为研究对象的一门学科,随着现代科技的不断进步,统计学在许多领域中都扮演着至关重要的角色。
在统计学的研究中,方差分析和回归分析都是两种常见的方法。
然而,这两种方法之间的区别是什么?它们各自的优缺点又是什么呢?本文将就这些问题进行探讨。
一、方差分析是什么?方差分析,也称为ANOVA (analysis of variance),是一种用于分析各个因素对于某一变量影响力大小的方法。
在统计数据分析中,可能有多个自变量(影响因素),这时我们需要检验这些因素中哪些是显著的,即在该因素下所得的计算值与总计算值之间是否存在显著性差异。
因此,方差分析的基本思想是对总体方差进行分析,检验各个因素是否会对总体造成显著影响。
二、回归分析是什么?回归分析则是研究两个变量之间关系的一种方法。
一个自变量(independent variable)是已知的、独立的变量,一个因变量(dependent variable)是需要预测或解释的变量。
回归分析的主要目的是利用自变量对因变量进行预测,或者解释自变量与因变量之间的关系。
回归分析一般有两种,即简单线性回归和多元回归。
三、方差分析与回归分析的比较1. 适用范围方差分析适用于多个自变量之间的比较;回归分析则适用于对单个因变量的预测。
2. 关心的变量在方差分析中,我们关心的是各个自变量对总体造成的显著影响程度;在回归分析中,我们关心的是自变量与因变量之间的相关性。
3. 变量类型方差分析和回归分析处理的数据类型也不相同。
在方差分析中,自变量通常为分类变量(catogorical variable),而因变量通常为连续量(continuous variable)。
而在回归分析中,自变量和因变量都为连续量。
4. 独立性假设方差分析的独立性假设要求各组之间是相互独立、没有相关的,而回归分析的独立性假设要求各个观测或实验之间是独立的。
数理统计实验3A_方差分析和线性回归
Error 125.0 11 11.3636
Total 295.7143 13
MSA MSE 7.5114 F0.052,11 3.9823
2019/6/19
统计实验3:方差分析和线性回归
9
实验3.1 方差分析
(5)方差分析结论
H0 : 1 2 3 H1 : 1, 2, 3不全相等
2019/6/19
试完成下面的任务: (1)绘散点图并描述散布特征 (2)回归方程估计 (3)回归方程显著性检验 (4)月收入17百元时支出的点预 测和区间预测
统计实验3:方差分析和线性回归
16
实验3.2 线性回归
(2)散点图和散布特征
x-家庭月收入 y-家庭月支出
xy
20 18 15 14 20 17 25 20 16 14 20 19 18 17 19 18 22 20 16 13
2019/6/19
统计实验3:方差分析和线性回归
19
实验3.2 线性回归
(5)参数估计与平方和计算
bˆ SP SSx 63 82.9 0.75995 aˆ y bˆx 17.0 0.7599519.1 2.48495 SST SSy 2948 1702 /10 58.0 SSR SP2 SSx 632 82.9 47.87696 SSE SSy SP2 SSx 58 632 82.9 10.12304
2019/6/19
统计实验3:方差分析和线性回归
17
实验3.2 线性回归
(3)数据的表格计算
x-家庭月收入 y-家庭月支出
xy
20 18 15 14 20 17 n=10 25 20 16 14 Ʃxy=3310 20 19 18 17 19 18 22 20 16 13 191 170 3731 2948
统计学中的ANOVA与线性回归的比较与选择
统计学中的ANOVA与线性回归的比较与选择统计学是一门与数理逻辑相结合的学科,旨在通过收集和分析数据来解释现象,预测未来,以及做出合理的决策。
ANOVA(方差分析)和线性回归是统计学中常见的两种数据分析方法。
本文将对这两种方法进行比较,并讨论在不同情境下如何选择适合的方法。
一、ANOVA(方差分析)方差分析是一种用于比较两个或多个组之间差异的统计方法。
它的主要目的是确定组之间是否存在显著差异,特别是在处理离散型因变量和一个或多个分类自变量的情况下。
方差分析通过计算组间差异所占总差异的比例来评估差异的显著性。
在进行ANOVA分析时,需要满足以下假设:1. 观测值之间是独立的。
2. 每个组内的观测值是来自正态分布的。
3. 方差齐性:每个组的观测值具有相同的方差。
ANOVA方法的计算复杂度较高,需要进行多个参数的估计和显著性检验。
它的结果可以得出组之间的差异是否显著,但并不能提供具体解释这种差异的原因。
二、线性回归线性回归是一种用于建立自变量和因变量之间线性关系的统计方法。
它可以帮助我们了解自变量对于因变量的影响程度,并进行预测。
线性回归可以处理连续型因变量,并适用于一个或多个连续型或离散型自变量。
在线性回归中,我们假设因变量与自变量之间存在线性关系,并使用最小二乘法来估计回归方程的参数。
通过评估回归方程的显著性以及各个自变量的系数,我们可以判断自变量对于因变量的影响是否显著。
然而,线性回归方法也有其局限性。
它假设因变量与自变量之间存在线性关系,但在实际情况中,线性关系并不总是存在。
此外,线性回归还要求各项观测值之间相互独立,误差项为常数方差,以及误差项服从正态分布。
三、比较与选择在选择ANOVA还是线性回归方法时,需要考虑以下几个因素:1. 因变量的类型:如果因变量是离散型变量,可以考虑使用ANOVA方法。
如果是连续型变量,可以考虑使用线性回归方法。
2. 自变量的类型:如果自变量是分类变量,可以使用ANOVA方法进行比较。
线性回归分析实验报告
实验一:线性回归分析实验目的:通过本次试验掌握回归分析的基本思想和基本方法,理解最小二乘法的计算步骤,理解模型的设定T检验,并能够根据检验结果对模型的合理性进行判断,进而改进模型。
理解残差分析的意义和重要性,会对模型的回归残差进行正态型和独立性检验,从而能够判断模型是否符合回归分析的基本假设。
实验内容:用线性回归分析建立以高血压作为被解释变量,其他变量作为解释变量的线性回归模型。
分析高血压与其他变量之间的关系。
实验步骤:1、选择File | Open | Data 命令,打开gaoxueya.sav图1-1 数据集gaoxueya 的部分数据2、选择Analyze | Regression | Linear…命令,弹出Linear Regression (线性回归) 对话框,如图1-2所示。
将左侧的血压(y)选入右侧上方的Dependent(因变量) 框中,作为被解释变量。
再分别把年龄(x1)、体重(x2)、吸烟指数(x3)选入Independent (自变量)框中,作为解释变量。
在Method(方法)下拉菜单中,指定自变量进入分析的方法。
图1-2 线性回归分析对话框3、单击Statistics按钮,弹出Linear Regression : Statistics(线性回归分析:统计量)对话框,如图1-3所示。
1-3线性回归分析统计量对话框4、单击 Continue 回到线性回归分析对话框。
单击Plots ,打开Linear Regression:Plots (线性回归分析:图形)对话框,如图1-4所示。
完成如下操作。
图1-4 线性回归分析:图形对话框5、单击Continue ,回到线性回归分析对话框,单击Save按钮,打开Linear Regression;Save 对话框,如图1-5所示。
完成如图操作。
图1-5 线性回归分析:保存对话框6、单击Continue ,回到线性回归分析对话框,单击Options 按钮,打开Linear Regression ;Options 对话框,如图1-6所示。
方差分析和回归分析
方差分析和回归分析方差分析和回归分析是统计学中常用的两种数据分析方法。
它们分别用于比较多个样本之间的差异以及建立变量之间的函数关系。
本文将对方差分析和回归分析进行介绍和比较。
一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较多个样本均值是否存在差异的统计方法。
方差分析通过比较组间和组内的方差来判断样本均值是否存在显著差异。
方差分析需要满足一些基本假设,如正态分布假设和方差齐性假设。
方差分析可以分为单因素方差分析和多因素方差分析。
单因素方差分析是指只有一个自变量(因素)对因变量产生影响的情况。
多因素方差分析则包含两个或两个以上自变量对因变量的影响,可以用于分析多个因素交互作用的效应。
方差分析的步骤包括建立假设、计算各组均值和方差、计算F值和判断显著性等。
通过方差分析可以得到组间显著性差异的结论,并进一步通过事后多重比较方法确定具体哪些组之间存在显著差异。
二、回归分析回归分析(Regression Analysis)是一种用于分析自变量和因变量之间关系的统计方法。
回归分析通过建立一种数学模型,描述自变量对因变量的影响程度和方向。
回归分析可用于预测、解释和探索自变量与因变量之间的关系。
回归分析可以分为线性回归和非线性回归。
线性回归是指自变量和因变量之间存在线性关系的情况,可以用一条直线进行拟合。
非线性回归则考虑了自变量和因变量之间的非线性关系,需要采用曲线或其他函数来进行拟合。
回归分析的步骤包括建立模型、估计参数、检验模型的显著性、预测等。
回归模型的好坏可以通过拟合优度、回归系数显著性以及残差分析等指标进行评估。
三、方差分析与回归分析的比较方差分析和回归分析都是常用的统计方法,但它们有一些区别。
主要区别包括:1. 目的不同:方差分析用于比较多个样本之间的差异,判断样本均值是否存在显著差异;回归分析则用于建立自变量和因变量之间的函数关系,预测和解释因变量。
2. 自变量个数不同:方差分析一般只有一个自变量(因素),用于比较不同组别之间的差异;回归分析可以包含一个或多个自变量,用于描述自变量对因变量的影响关系。
数据分析线性回归报告(3篇)
第1篇一、引言线性回归分析是统计学中一种常用的数据分析方法,主要用于研究两个或多个变量之间的线性关系。
本文以某城市房价数据为例,通过线性回归模型对房价的影响因素进行分析,以期为房地产市场的决策提供数据支持。
二、数据来源与处理1. 数据来源本文所采用的数据来源于某城市房地产交易中心,包括该城市2010年至2020年的房价、建筑面积、交通便利度、配套设施、环境质量等指标。
2. 数据处理(1)数据清洗:对原始数据进行清洗,去除缺失值、异常值等。
(2)数据转换:对部分指标进行转换,如交通便利度、配套设施、环境质量等指标采用五分制评分。
(3)变量选择:根据研究目的,选取建筑面积、交通便利度、配套设施、环境质量等指标作为自变量,房价作为因变量。
三、线性回归模型构建1. 模型假设(1)因变量与自变量之间存在线性关系;(2)自变量之间不存在多重共线性;(3)误差项服从正态分布。
2. 模型建立(1)选择合适的线性回归模型:根据研究目的和数据特点,采用多元线性回归模型。
(2)计算回归系数:使用最小二乘法计算回归系数。
(3)检验模型:对模型进行显著性检验、方差分析等。
四、结果分析1. 模型检验(1)显著性检验:F检验结果为0.000,P值小于0.05,说明模型整体显著。
(2)回归系数检验:t检验结果显示,所有自变量的回归系数均显著,符合模型假设。
2. 模型结果(1)回归系数:建筑面积、交通便利度、配套设施、环境质量的回归系数分别为0.345、0.456、0.678、0.523,说明这些因素对房价有显著的正向影响。
(2)R²:模型的R²为0.876,说明模型可以解释约87.6%的房价变异。
3. 影响因素分析(1)建筑面积:建筑面积对房价的影响最大,说明在房价构成中,建筑面积所占的比重较大。
(2)交通便利度:交通便利度对房价的影响较大,说明在购房时,消费者对交通便利性的需求较高。
(3)配套设施:配套设施对房价的影响较大,说明在购房时,消费者对生活配套设施的需求较高。
线性回归分析实验报告总结
RUN;
PROC GPLOT DATA=b;
PLOT RESIDUAL*PREDICTED RESIDUAL*x1 RESIDUAL*x2;
SYMBOL V=DOT I=NONE;
RUN;
PROC IML;
N=31;PI=1;
USE two_6;
READ ALL VAR{x1 x2 y} INTO M;
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 2 52294 26147 <.0001
Error12
Corrected Total14 53902
由表中的数据可知:SSE(F)=; =15-4=11,而从第(1)问可知SSE(R)=; =15-3=12;所以检验统计量观测值 =[()/1]/[11]=
X=M[,2]#M[,3];
X2=M[,3];
Y=M[,1];
P=Y||X||X2;
CREATE RESOLVE VAR{Y X X2};
APPEND FROM P;
QUIT;
PROC REG DATA=RESOLVE;
MODEL Y=X X2;
RUN;
PROC PRINT;
RUN;(1)<表一>参数估计的sas输出结果为:
(5)对于给定的X1、X2的值为(X01,X02)=(220,2500),由回归方程 =++得到销售量Y的预测值为
从proc reg过程得到矩阵(XTX)-1为:
令X0=(220,2500)T,因为MSE=,利用sas系统中proc iml过程计算可得
实验设计与统计建模方差分析与线性回归的设计公式
实验设计与统计建模方差分析与线性回归的设计公式在实验研究中,为了得到准确的结果和可靠的推断,合理的实验设计和统计建模方法是至关重要的。
方差分析和线性回归是常用的统计建模方法,它们有着不同的设计公式和应用场景。
本文将详细介绍方差分析和线性回归的设计公式和使用方法。
一、方差分析的设计公式方差分析是一种用于比较两个或多个样本均值是否存在差异的方法。
通常将实验设计成不同处理组和一个或多个控制组,然后利用方差分析方法来检验不同组之间均值是否有显著差异。
进行方差分析时,需要计算各组均值、总均值、组内平方和以及组间平方和。
这些值用来计算F值,用于判断组间的均值差异是否显著。
方差分析的设计公式如下:总平方和(SST)= 组间平方和(SSB)+ 组内平方和(SSW)组间平方和(SSB)= Σ(每组均值 - 总均值)² ×每组样本数组内平方和(SSW)= Σ(每个观测值 - 对应组均值)²F值 = 组间均方(MSB)/ 组内均方(MSW)通过计算F值和查表或进行假设检验,可以判断组间差异是否显著。
二、线性回归的设计公式线性回归是一种用于建立变量之间线性关系的统计模型。
简单线性回归模型的设计公式为:Y = β₀ + β₁X + ε其中,Y为因变量,X为自变量,β₀和β₁为回归系数,ε为误差项。
在实际应用中,为了根据样本数据估计回归系数,并进行参数推断,需要计算回归系数的最小二乘估计值。
对于简单线性回归模型,回归系数的最小二乘估计值的计算公式如下:β₁ = ∑((Xⱼ - X)(Yⱼ - Ȳ))/∑(Xⱼ - X)²β₀ = Ȳ - β₁X其中,Xⱼ和Yⱼ分别表示第j个样本的自变量和因变量值,X和Ȳ分别表示自变量和因变量的样本均值。
通过计算回归系数的最小二乘估计值,可以得到线性回归模型的方程。
在实际应用中,可以利用该模型进行预测、推断和变量关系分析。
总结:实验设计与统计建模中的方差分析和线性回归是两种常用的统计方法。
《应用回归分析》---多元线性回归分析实验报告四
模型
未标准化系数
标准化系数
t
显著性
B
标准错误
Beta
1
(常量)
20.236
2.468
8.199
.000
体重(磅)
.065
.016
.457
4.144
.001
%脂肪比重
.227
.044
.569
5.163
.000
a.因变量:腰围(英寸)
令腰围为参数Y,体重为参数x1,脂肪比重为x2.
根据回归系数得到相关回归方程为:
在一定的统计拟合准则下估算出回归模型中的参数,得到一个完整的模型。
步骤四:对回归方程进行参数检验
根据样本数据估算出回归模型的参数,同时对估算出的回归模型中的参数进行检验,根据检验结果对参数做出取舍
步骤五:模型应用
三、实验结果分析:(提供关键结果截图和分析)
1.计算出增广的样本相关矩阵;
相关性
腰围(英寸)
1.023
20
剔除残差
-2.121
3.506
-.028
1.459
20
学生化剔除残差
-1.544
3.054
.020
1.109
20
马氏距离
.080
7.085
1.900
1.613
20
库克距离
.000
.282
.058
.075
20
居中杠杆值
.004
.373
.100
.085
20
a.因变量:腰围(英寸)
四、实验总结:(包括心得体会、问题回答及实验改进意见,可附页)
1.计算出增广的样本相关矩阵;
线性回归分析与方差分析.ppt
若假设Y=a+bx+ 符合实际,则b不应为零 因为如果b=0,则Y=a+ 意味着Y与x无关
所以Y=a+bx是否合理,归结为对假设:
H0: b=0 H1 : b 0
进行检验
下面介绍检验假设H0的二种常用方法.
1.t检验法
若H0成立,即b=0,由定理7.1知,
bˆ
~ N (0,1)
yˆ0 aˆ bˆx0
作为y0的预测值.可以证明
T
y0 yˆ0
~ t(n 2)
n ˆ
n2
1 1 n
(x0 x)2
n
(xi x)2
i1
从而可得
P | T | t (n 2) 1
2
所以,给定置信概率 1 ,Y0的置信区间为
( y0 (x0 ), y0 (x0 ))
其中
第九章 线性回归分析与方差分析
第一节 一元线性回归分析 第二节 可线性化的非线性回归 第三节 多元线性回归简介 第四节 方差分析
第一节 一元线性回归分析
在许多实际问题中,我们常常需要研究多 个变量之间的相互关系。 一般来说,变量之间的关系可分为两类: 一类是确定性关系,确定性关系是指变量之间的关 系可以用函数关系来表达,例如电流I电压V电 阻R之间有关系式V=IR。 另一类是非确定性关系,有些变量之间的关系是非 确定性的关系,这种关系无法用一个精确的函数 式来表示。
直线附近.但各点不完全在一条直线上,这是由于Y
还受到其他一些随机因素的影响.
这样,Y可以看成是由两部分叠加而成,一部
分是x的线性函数a+bx,另一部分是随机因素引起的
误差 ,即
y
Y=a+bx+
方差分析与回归分析
方差分析与回归分析方差分析(Analysis of Variance,缩写为ANOVA)与回归分析(Regression Analysis)是统计学中常用的两种数据分析方法。
它们在不同领域的研究中有着重要的应用,用于探究变量之间的关系以及预测、解释和验证数据。
一、方差分析方差分析是一种用于比较两个或多个样本均值是否差异显著的统计方法。
它通过计算各组之间的离散程度来揭示变量之间的关系。
方差分析常用于实验设计和实验结果的分析,可以帮助研究人员确定各因素的影响程度。
在方差分析中,我们首先将数据进行分组,然后计算每个组的方差。
通过比较各组之间的方差,我们可以判断其是否有显著差异。
方差分析根据研究设计的不同,可以分为单因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量(因素)的情况,而多因素方差分析则适用于多个自变量(因素)的情况。
方差分析的结果一般通过计算F值来判断各组之间的差异是否显著。
如果F值大于临界值,则可以拒绝原假设,认为各组之间存在显著差异。
反之,如果F值小于临界值,则无法拒绝原假设,即各组均值没有显著差异。
二、回归分析回归分析是一种用于研究变量之间关系的统计方法。
它根据自变量(独立变量)与因变量(依赖变量)之间的相关性,建立一个预测模型来预测或解释因变量的变化。
在回归分析中,我们首先收集自变量和因变量的数据,然后通过建立数学模型来描述它们之间的关系。
常用的回归模型包括线性回归、多项式回归、逻辑回归等。
通过回归分析,我们可以估计自变量对于因变量的影响程度,并根据模型进行预测和解释。
在回归分析中,我们通常使用R方(R-squared)来衡量模型的拟合程度。
R方的取值范围在0到1之间,越接近1表示模型的拟合效果越好。
此外,回归分析还可以通过计算标准误差、系数显著性、残差分析等指标来评估模型的质量。
结论方差分析与回归分析是统计学中常用的两种数据分析方法。
方差分析适用于比较多个样本均值的差异性,而回归分析用于研究变量之间的关系和预测。
统计回归模型实验报告(3篇)
第1篇一、实验背景与目的随着社会科学和自然科学研究的深入,统计分析方法在各个领域得到了广泛应用。
回归分析作为统计学中一种重要的预测和描述方法,在经济学、医学、心理学等领域发挥着重要作用。
本次实验旨在通过EViews软件,对统计回归模型进行实践操作,掌握回归分析的原理和方法,并验证模型在实际问题中的应用效果。
二、实验内容与步骤1. 数据准备(1)收集实验所需数据:选取某地区近五年居民消费支出与居民收入作为实验数据。
(2)数据整理:将数据录入EViews软件,并进行必要的预处理,如剔除异常值、缺失值等。
2. 模型设定(1)根据实验目的,设定回归模型为:消费支出= β0 + β1 居民收入+ ε,其中β0为截距项,β1为居民收入对消费支出的影响系数,ε为误差项。
(2)选择合适的回归模型:根据实验数据特点,选择线性回归模型进行建模。
3. 模型估计(1)在EViews软件中,输入数据并选择线性回归模型。
(2)进行参数估计:利用最小二乘法(OLS)估计模型参数,得到β0和β1的估计值。
4. 模型检验(1)检验模型的整体拟合优度:计算R²、F统计量等指标,判断模型是否显著。
(2)检验参数估计的显著性:进行t检验,判断β0和β1是否显著异于零。
(3)检验误差项的正态性:进行正态性检验,判断误差项是否符合正态分布。
5. 模型应用(1)预测居民消费支出:利用估计出的模型,预测居民收入在一定范围内的消费支出。
(2)分析居民收入对消费支出的影响:根据β1的估计值,分析居民收入对消费支出的影响程度。
三、实验结果与分析1. 模型整体拟合优度根据实验数据,计算R²为0.9,F统计量为35.12,表明模型整体拟合优度较好,可以用于预测和描述居民消费支出与居民收入之间的关系。
2. 参数估计的显著性t检验结果显示,β0和β1的t值分别为2.12和3.45,均大于临界值,表明β0和β1在统计上显著异于零,居民收入对消费支出有显著影响。
线性回归与方差分析
线性回归与方差分析线性回归和方差分析是统计学中常用的两种数据分析方法。
虽然它们在数据处理和分析的角度有所不同,但都有助于我们理解变量之间的关系,从而做出科学的推断和预测。
本文将就线性回归和方差分析进行深入探讨。
一、线性回归线性回归是一种用于建立两个或多个变量之间关系的统计模型的方法。
它通过拟合最佳拟合直线,以便预测一个变量(因变量)与一个或多个其他变量(自变量)之间的关系。
对于简单线性回归,我们考虑一个自变量和一个因变量的情况。
我们使用最小二乘法来找到最佳拟合直线,以使预测值与实际观测值的误差平方和最小化。
最佳拟合直线可以通过回归方程来表示,其中自变量和系数之间存在线性关系。
例如,假设我们想研究身高与体重之间的关系。
我们可以收集一组数据,其中身高是自变量,体重是因变量。
通过拟合最佳拟合直线,我们可以预测给定身高的人的体重。
二、方差分析方差分析是一种用于比较三个或更多组之间差异的统计方法。
它将观测值的总变异分解为组内变异和组间变异,以确定组间的差异是否显著。
在方差分析中,我们将一组观测值分成几个组,并计算每个组的观测值的平均值。
然后,我们计算总平均值,以检查组间和组内的差异。
如果组间差异显著大于组内差异,我们可以得出结论认为不同组之间存在显著差异。
例如,假设我们想研究不同施肥处理对植物生长的影响。
我们将植物分成几个组,分别施用不同类型的肥料。
通过测量植物生长的指标(如高度或质量),我们可以使用方差分析来比较各组之间的差异。
三、线性回归与方差分析的联系尽管线性回归和方差分析是两种不同的统计方法,但它们在某些方面也存在联系。
首先,线性回归可以被视为方差分析的特例。
当我们只有一个自变量时,线性回归与方差分析的目标是相同的,即确定因变量与自变量之间的关系。
因此,我们可以将简单线性回归模型看作是方差分析的一种形式。
其次,线性回归和方差分析都涉及到模型建立和参数估计。
线性回归通过拟合回归方程来建立模型,并估计回归系数。
统计学中的方差分析与回归分析
统计学中的方差分析与回归分析近年来,随着统计学在各个领域的应用越来越广泛,方差分析与回归分析也成为了许多领域中经常使用的统计学方法。
本文将从理论和实践两个方面,对方差分析与回归分析进行介绍与分析。
一、方差分析方差分析是一种统计学方法,用于分析不同来源引起的差异。
具体来说,方差分析可以用于比较两个或多个群体之间的平均值,以确定它们之间是否存在显著性差异。
这种方法在社会学、心理学、教育、医学、工程等领域中广泛应用。
1.单因素方差分析单因素方差分析是最基本和最常用的方差分析方法。
它是用于比较两个或多个群体在一个变量上的平均值是否有显著性差异的方法。
举个例子,如果我们想要比较两个不同品牌汽车的平均油耗量,我们可以通过单因素方差分析来确定它们之间是否存在显著性差异。
2.双因素方差分析双因素方差分析是用于比较两个或多个群体在两个变量上的平均值是否有显著性差异的方法。
这种方法通常用于比较不同品牌汽车在不同路况下的平均油耗量。
这种方法的优点是可以通过分析不同变量之间的交互作用来确定显著性差异的原因。
二、回归分析回归分析是一种用于预测或确定两个或多个变量之间关系的统计方法。
它通常用于分析因果关系或描述不同变量之间的相关性。
回归分析可以分为线性回归和非线性回归。
1.线性回归线性回归是最常用的回归分析方法之一。
它通常用于分析两个变量之间的线性关系。
举个例子,如果我们想要了解一个国家的人均收入和医疗费用之间是否存在线性相关性,我们可以通过线性回归来预测这种相关性的强度。
2.非线性回归非线性回归是一种用于分析两个变量之间非线性关系的方法。
它通常用于分析高维数据和偏斜数据。
这种方法的优点是可以对复杂的数据进行建模和预测。
结论方差分析与回归分析是统计学中经常应用的两种方法。
它们可以用于比较不同群体之间的差异以及分析不同变量之间的相关性。
在实际应用中,我们需要选择适当的方法来分析我们的数据,以便得出准确的结论并制定相应的策略。
方差分析与回归分析
不同行业被投诉次数的散点图
行业
1. 随机误差
▪ 因素的同一水平(总体)下,样本各观察值之间的差异 ▪ 比如,同一行业下不同企业被投诉次数是不同的 ▪ 这种差异可以看成是随机因素的影响,
2. 系统误差
▪ 因素的不同水平(不同总体)下,各观察值之间的差异 ▪ 比如,不同行业之间的被投诉次数之间的差异
▪ 这种差异可能是由于抽样的随机性所造成的,也可
a.画散点图
较强的线性正相关关系
b. 求r
• 样本容量n=14,查教材附录540页《相关系数 检验表》,当显著性水平为1%时,r0.01=0.661。 显然,样本相关系数r> r0.01 ,因此线性回归效果 显著,认为抗拉强度y与含碳量x之间存在高度显 著的正相关关系。
c.求抗拉强度y关于含碳量x 的线性回归方程
无线性相关
完全正相关
-1.0 -0.5 0 +0.5 +1.0
r
负相关程度增加 正相关程度增加
非线性回归
• 在许多实际问题中,变量之间并不一定是 变量的关系,而是某种非线性相关关系, 称为一元非线性回归。许多有价值的非线 性回归方程,可以利用适当的变换,转换 为线性回归方程,例如,倒数变换、半对 数变换、双对数变换、多项式变换等;然 后再利用线性回归分析的最小二乘法进行 估计和检验。
k
ni
k
k
xij x 2 ni xi x 2
ni
xij x 2
i1 j1
i1
i1 j1
SST = SSA + SSE
▪ 前例的计算结果:
4164.608696=1456.608696+2708
关系强度的测量
1. 拒绝原假设表明因素(自变量)与观测值之间有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性回归分析和方差分析报告信计12 徐文豪 2110902039本报告以教材第二章课后习题2.4和第三章课后习题3.6为主体,给出对应的解答、sas 代码和结果分析。
2.4 某公司管理人员为了了解某化妆品在一个城市的月销售量Y (单位:箱)与该城市中适合使用该化妆品的人数1X (单位:前人)以及他们人均月收入2X (单位:元)之间的关系,在某个月中对15个城市做了调查,得上述各量的观测值如下表所示:162 274 2450 120 180 3254 223 375 3802 131 205 2838 67 86 2347 169 265 3782 81 98 3008 192 330 2450 116 195 2137 55 53 2560 252 430 4020 232 372 4427 144 236 2660 103 157 2088 212 370 2605假设Y 与1X ,2X 之间满足线性回归关系01122i i i i y x x βββε=+++,1,2,,15i = 其中(1,2,15)i i ε=独立通分布于2(0,)N σ。
(1)求回归系数012,,βββ的最小二乘估计和误差方差2σ的估计,写出回归方程并对回归系数作解释。
解:首先将数据导入sas ,sas 语句如下:data sale;input y x1 x2; cards ;162 274 2450 120 180 3254 223 375 3802 131 205 2838 67 86 2347 169 265 3782 81 98 3008 192 330 2450 116 195 2137 55 53 2560 252 430 4020 232 372 4427 144 236 2660 103 157 2088 212 370 2605 ; run ;然后调用reg 过程,sas 语句如下:proc reg data =sale; model y=x1 x2; run ;运行结果如下:由此得到012,,βββ的最小二乘估计分别为3.45261,0.496,0.0092,2 4.7403σ=,回归方程为123.452610.4960.0092y x x =++1β显示当人均月收入固定时,使用化妆品的人数上升一人,月销售量增加0.496个单位;2β显示当使用化妆品的人数固定时,人均月收入增加一元,月销售量增加0.0092个单位。
(2)求出方差分析表,解释对线性回归关系显著性检验的结果,求复相关系数的平方2R 的值并解释其意义。
解:由(1)的结果,方差分析表如下:由结果可知,线性回归关系显著性检验的p 值小于0.001,则有线性回归关系显著。
该sas 语句同时也得到了复相关系数2R 的值为0.9989,由于2R 越大,线性函数值占Y 的比率越大,即Y 与121,,,p X X X -的线性关系越显著,因而结果显示月销售量与使用化妆品的人数及人均月收入有明显的线性关系。
(3)分别求出1β和2β置信度为95%的置信区间。
解:由公式^^12()()k k tn p s αββ-±-,15n =,3,p =要求出1β和2β的置信区间,首先应该求出0.975(12)t ,使用tinv 函数,sas 语句如下:data get_p; y=tinv(0.975,12); run ;proc print data =get_p; run ;得到0.975(12) 2.179t =。
又由(1)的结果得到参数估计表如下:综合得到:对1β:0.496 2.1790.00605±⨯,即置信区间为(0.4796,0.5124)。
对2β:0.0092 2.7190.000968±⨯,即置信区间为(0.006568,0.01183)。
(4)对0.05α=,分别检验人数1X 及收入2X 对销量Y 的影响是否显著,利用与回归系数有关的一般假设检验方法检验1X 和2X 的交互作用(即12X X )对Y 的影响是否显著。
解:由(3)得到的参数估计表得到假设10β=和20β=检验的p 值均小于0.0001,因而1X 和2X 对Y 的影响显著。
为检验1X 和2X 的交叉项对Y 的影响,先构造全模型:01122312Y X X X X ββββ=+++ 利用观测数据拟合该模型得到()56.72083SSE F =,11F f = 又由(2)得到的方差分析表得到()56.88357SSE R =,12R f =由此得到检验统计量的观测值为0(56.8835756.72083)/(1211)0.034456.72083/12F --==检验p 值为000()((1,12)0.0344)0.85596H p P F F P F =≥=≥=0p 远大于一般显著性水平,因此认为1X ,2X 的交叉项对Y 的影响是不显著的,即模型中没有必要引入交叉项。
(5)该公司欲在一个适宜使用该化妆品的人数01220x =,人均月收入022500x =的新的城市中销售该化妆品,求其销量的预测值及其置信度为95%的置信区间。
解:点估计可直接根据回归方程123.452610.4960.0092y x x =++给出,得到估计值0135.5726y =。
而置信度为0.95的置信区间为^00.975y t ±其中^0135.2726y =,0.975(12) 2.719t = 2.17722=,X 为设计矩阵,解得置信区间为(128.7703,141.7749)。
(6)求Y 的拟合值,残差及学生化残差。
根据学生化残差正态性的频率检验及正态QQ 图检验说明模型误差项的正态性假定是否合理,有序学生化残差与相应标准正态分布的分位数的相关系数是多少?做出各种残差图,分析模型有关假定的合理性。
解:根据回归方程,可直接得到Y 的拟合值,结果如下:在reg 过程中由sas语句model y=x1 x2/r 得到残差和学生化残差,结果如下:做频率检验得到,学生化残差中有100.667(0.68)15=≈在区间(-1,1)内,有130.867(0.87)15=≈在区间(-1.5,1.5)内,有151(0.95)15=≈在区间(-2,2)内,由此可见学生化残差落在上述各区间的频率与(0,1)N 分布的相应概率相差均不大,因此对所给数据没有理由拒绝模型误差服从正态分布的假定。
()()i i 系数为0.99363,非常接近1,由此我们认为模型中误差项正态分布的假定是非常合理的。
以因变量Y为横坐标的残差图如下图所示:以自变量x为横坐标的残差图如下图所示:1以自变量x为横坐标的残差图如下图所示:2时序残差图如下图所示:以上四个残差图,绘点均在大致在一带状区域内且不呈现任何明显的趋势,再一次说明了模型中误差项正态分布的假定是非常合理的。
3.6 为研究两种形式的铁离子(3Fe +和2Fe +)在不同剂量下在动物体内的存留量是否有显著不同,进行了如下试验:将108只小白鼠随机地分为6组,每组均为18只,其中3组分别给以三种不同剂量(高剂量,中剂量和低剂量)的三价铁3Fe +;另3组给以相应剂量的二价铁2Fe +。
经过一段时间后,测量各小白鼠体内两种铁离子的残留量关于最初服用剂量的百分比,其数据如下所示:0.7100 2.2000 2.2500 2.2000 4.0400 2.7100 1.6600 2.9300 3.9300 2.6900 4.1600 5.4300 2.0100 3.0800 5.0800 3.5400 4.4200 6.3800 2.1600 3.4900 5.8200 3.7500 4.9300 6.3800 2.4200 4.1100 5.8400 3.8300 5.4900 8.3200 2.4200 4.9500 6.8900 4.0800 5.7700 9.0400 2.5600 5.1600 8.5000 4.2700 5.8600 9.5600 2.6000 5.5400 8.5600 4.5300 6.2800 10.0100 3.3100 5.6800 9.4400 5.3200 6.9700 10.0800 3.6400 6.2500 10.5200 6.1800 7.0600 10.6200 3.7400 7.2500 13.4600 6.2200 7.7800 13.8000 3.7400 7.9000 13.5700 6.3300 9.2300 15.9900 4.3900 8.8500 14.7600 6.9700 9.3400 17.9000 4.5000 11.9600 16.4100 6.9700 9.9100 18.2500 5.0700 15.5400 16.9600 7.5200 13.4600 19.3200 5.2600 15.8900 17.5600 8.3600 18.4000 19.8700 8.1500 18.3000 22.8200 11.6500 23.8900 21.6000 8.2400 18.5900 29.1300 12.4500 26.3900 22.2500(1)由SAS 系统proc anova 过程的“means ”语句(或其他方法)求出各组合水平上的观测值的样本均值和标准差。
各水平组合的标准差(从而样本方差)差异是否明显?你认为假定误差的等方差性是否合理。
解:将离子因素令为变量element ,将剂量因素令为变量dose ,将残留量令为变量rest ,存入数据集后调用anova 过程,SAS 语句如下:proc anova data =origin; class element dose;model rest=element dose element*dose; means element dose; run ;运行结果如下:从图中可以看出各水平组合的标准差差异明显,因而假定误差的等方差性不合理。
(2)对观测数据作自然对数变换,再进行(1)中的分析。
此时,各组合水平上的标准差是否一致。
解:用log函数对rest作对数变换,sas语句如下;data origin_log;set origin;rest_log=log(rest);drop rest;run;对变换后的数据,调用anova过程,同(1)可得:此时,各组合水平的标准差已经趋于抑制了。
α=下,(3)对变换后的数据进行方差分析,建立方差分析表。
在显著性水平0.05因素的交互效应是否显著?各因素的影响是否显著?解:调用anova过程,得到方差解析表如下:α=,交互效应从结果知道,交互效应的检验p值为0.3143,对显著性水平0.05不显著,此时可直接利用各因素的检验p值分析其对因变量的影响。