恒压供水一拖三控制图纸
变频恒压供水系统主电路和控制线路图
![变频恒压供水系统主电路和控制线路图](https://img.taocdn.com/s3/m/411c46a083c4bb4cf6ecd143.png)
变频恒压供水系统主电路和控制线路图变频恒压供水系统主电路和控制线路图:控制原理简述如下:系统由变频器、plc和两台水泵构成。
利用了变频器控制电路的PID等相关功能,和PLC配合实施变频一拖二自动恒压力供水。
具有自动/手动切换功能。
变频故障时,可切换到手动控制水泵运行。
控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。
当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC控制停掉1#工频泵,由2#泵实施恒压供水。
至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。
如此循环不已。
需要明说一下的是:变频器必须设置好PID运行的相关参数,和配合PLC控制的相关工作状态触点输出。
详细调整,参见东元M7200的明说书。
在本例中,须大致调整以下几个参数。
1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID运行方式,压力设定值由AUX端子进入。
反馈信号由VIN端子进入;4、对变频器控制端子——输出端子的设置。
设定RA、RC为变频故障时,触点动作输出;设定R2A、R2C为变频零速时,触点动作输出;设定DO1、DOG为变频器全速(频率到达)时,触点动作输出。
上图为PLC控制接线图。
水泵和变频器的故障信号未经PLC处理,而是汇总给继电器KA2。
其手动/自动的切换控制继电器KA1来切换。
变频/工频的运行由接触器触点来互锁,以提高运行安全性。
可以看出,R2A和DO1是PLC的两个关键输入信号。
在PLC的控制动作输出中,对变频到工频的切换是通过DO1(变频器零速信号)来进行的;对工频到变频的切换是通过R2A(变频器频率到达信号)来进行的。
4款一拖三软启动器控制电路图
![4款一拖三软启动器控制电路图](https://img.taocdn.com/s3/m/476f33cab04e852458fb770bf78a6529647d358a.png)
4款一拖三软启动器控制电路图电路图简介:软起动是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。
软起动主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。
本文详细的介绍了四款一拖三软启动器控制电路图。
一拖三软启动器控制图(一)1.适用范围NJR2-G一拖多台软起动控制柜是为用户节省设备投资、降低成本、有效利用控制柜的占地面积设计制造的。
它以单台软起动器为控制主体,内配控制相应台数电动机的旁路接触器。
首先通过软起动器控制第一台电机进行软起,等完成起动后用相应旁路接触器使第一台电机直通接到电网。
同理可通过软起动器控制第二、第三台电机进行软起。
由于内置软起动器为自然风冷,而每次起动时都会产生一定热量。
因此每台电机起动间隔时间应大于5分钟为宜,以保证在整个起动过程中不出现过热保护,提高产品的可靠性。
2、型号含义本产品内部核心部件为NJR2-D软起动器。
3、主要参数及技术性能3.1电源电压:三相交流AC380V(±15%),50Hz/60Hz(±2%)3.2起动电流:从0.5~5倍的起动电流限制3.3斜坡下降时间:0s~60s3.4软起基值电压:30%Ue~70%Ue3.5突跳起动时间:0.1s3.6环境要求:环境温度在-10℃40℃之间;40以上每升高1,电流降低2%;相对湿度不超过95%无凝露、无易燃、易爆气体、无导电尘埃、通风良好。
海拔超过1000米,应相应降低容量使用,1000米以上每增加100米电流降低0.5%4、原理图一拖三主电路图一拖三主电路图一拖三软启动器控制图(二)软起动是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。
软起动主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。
运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。
某标准型号恒压供水系统接线电气控制原理设计CAD图纸
![某标准型号恒压供水系统接线电气控制原理设计CAD图纸](https://img.taocdn.com/s3/m/2ee89039a517866fb84ae45c3b3567ec112ddc43.png)
恒压供水图纸
![恒压供水图纸](https://img.taocdn.com/s3/m/aca30212a216147917112898.png)
系统简介为改善生产环境,某公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。
根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。
同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。
鉴于以上特点,从技术可靠和经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递较经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。
系统方案系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。
抽水泵系统整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。
采用一台150KW和一台90KW的软起动150KW和90KW的电机。
当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。
一次主电路接线图如下:系统为每台电机配备电机保护器,是因为电机功率较大,在变频器的控制下稳定运行;当用水量大到变频器全速运行也在变频器的控制下稳定运行;当用水量大到变频器全速运行也不能保证管网的压和稳定时,控制器的压力下限信号与变频器的高速信号同时被PLC检测到,PLC自动将原工作在变频状态下泵投入到工频运行,以保持压力的连续性,同时将一台备用的泵用变频器起动后投入运行,以加大管网的供水量保证压力稳定。
若两台泵运转仍,则依次将变频工作状态下的泵投入到工频运行,而将另一台备用泵投入变频运行。
当用水量减少时,首先表现为变频器已工作在最低速信号有效,这时压力上限信号如仍出现,PLC首先将工频运行的泵停掉,以减少供水量。
ACS510恒压供水一拖三系统图及参数表
![ACS510恒压供水一拖三系统图及参数表](https://img.taocdn.com/s3/m/c097c281360cba1aa911da3e.png)
ACS510/550恒压供水一拖三接线及调试一、变频器接线图系统图参见ACS510手册P126、P127二、参数设置及说明此图的给定信号来自变频器内部9902=> 15(SPFC控制宏)9905=>电机额定电压9906=>电机额定电流(选取三电机中最大值)9907=>电机额定频率9908=>电机额定转速9907=>电机额定功率(选取三电机中最大值)1002=>6(DI6)1003=>1(FORW ARD)1102=>7(EXT2)1304=>如压力表是4~20mA,应设为41401、1402、1403=>31(PFC)1601=>2(DI2)4010=>194011=>定义内部给值8117=>2(辅机数量)8718=>自动切换间隔(>0才有效)8120=>38123=>2(循环软启)8127=>3(电机数量)8109(起动频率)、8112(停止频率)、8115(辅机起动延时时间)8115(辅机停止延时时间)=>说明:f最小 <8112<8109<f最大81组其余参数请结合ACS510手册及现场实际设置如需要睡眠功能:4022=>7(内部)4023=>说明:f最小<40234024、4026=>睡眠延时、唤醒延时4025=>唤醒偏差三、循环工作时序:1、ROI(继电器1)吸合,这样接触器K1也吸合,M1变频起动。
2、如果压力不够,准备将M2投入。
于是:●变频器暂时停机,RO1断开,K1断开;●RO2吸合,因此K2吸合,M2投入变频;●RO1吸合,因此K1.1吸合保持,M1投入工频。
3、如果压力还不够,准备将M3投入,于是:●变频器暂时停机,RO2断开,因此K2断开,K1.1保持,M1继续工频运行●RO3吸合,因此K3吸合,M3变频●RO2吸合,因此K2.1吸合并保持,M2投入工频4、如果此时M1、M2工频运行,M3变频,实际压力高于给定压力●RO1断开,这时K1.1掉电,M1停止工频运行5、如果实际压力仍高于给定压力●RO2断开,这时K2.1掉电,M2停止工频运行,只有M3变频运行6、如果此时压力又不够,这时:●RO3断开,K3断开停止变频器运行●RO1闭合,K1吸合,M1变频运行●RO闭合,K3.1吸合并保持,M3工频运行7、注意:在电机起动之前,可以随意将S1、S2和S3开关拨动零位和手动位,这样变频器就找不到该位的电机。
一拖三恒压供水项目PLC[19.11.15]
![一拖三恒压供水项目PLC[19.11.15]](https://img.taocdn.com/s3/m/5cac8f16af45b307e87197f9.png)
C O M 2 (R S -4 8 5) 送 信 要 求
K 10
BM O V
D 1050
D 60
K 10
M o d b u s 通 讯2 # 变 频 接 收
指 令 数 据 处数 据 : 速 度
理 , P LC 系
统会自动将 R ST
M 1129
C O M 2 (R S -4 8 5 )接 受 完 成
M O D R D K1
SET H4
M 1122
C O M 2 (R S -4 8 5) 送 信 要 求
K 10
BM O V
D 1050
D 50
K 10
M o d b u s 通 讯1 # 变 频 接 收
指 令 数 据 处数 据 : 速 度
理 , P LC 系
统会自动将
R ST
M 1129
C O M 2 (R S -4 8 5 )接 受 完 成
C O M 2 (R S -4 8 5 )M O D R D / M O D W R /M O D R W 指令参数错 M 1142
V F D -A 便 利 指令数据接 收错误
M 1127
C O M 2 (R S -4 8 5) 通 讯 指 令数据传送 接收完毕, S 12
1# 变 频 发 送 写数据
计时
间
>=
D 90
K3
设置变频泵 编号
=
D 90
K0
设置变频泵 编号
=
D 90
K1
设置变频泵 编号
= M 107
D 90
K2
设置变频泵 编号
供水变频器 启动
T 10
变频器暂停
TVFE9恒压供水变频柜图纸
![TVFE9恒压供水变频柜图纸](https://img.taocdn.com/s3/m/4132b25a3c1ec5da50e27040.png)
SB1
KM2 SB2
KM4 SB3
KM6 SB4
KM1 KM2 KM3 KM4 KM5 KM6 KM7 KM8 KM8
12 CM2 N B1 B2 B3 G1 G2 G3 B4 G4 15 16 17 18 19 20 21 22
自手 动动
TA KM3
KM4
KM5
KM6
2B401
3B401
电
流
1TA 1PA A 2TA 2PA A 3TA 3PA A 测
量
1N401
2N401
3N401
回
路
接触器运行控制
工频手动 工频手动 工频手动
启停 启停
启停
备注:1、变频器需要设置参数:P0.03=1(频率给定通道选择为:AI1模拟量给定(0~10V);P0.01=1:运行命令通道选择为:端子运行命令通道; 2、恒压供水控制器可以通过设置参数P03(泵的工作方式)设置为两泵循环和两泵通过设置定时换泵交替运行;也可以单独设定1#泵运行或者2#泵 运行,具体参数见恒压供水控制器说明书; 3、二次线线径为1.5BVR,一次回路根据变频柜功率大小不同,选择不同的线径;远传压力表的信号线请使用屏蔽线连接;
,一次回路根据变频器的功率
01
大小不同,选择不同线径。
由于远传压力表大部分都是工作电压 ,
N
电阻
,所以接变频器 需要串一
03
个
左右的电阻。
05
07 变频器端子说明:
A1 ,B1, C1---多功能接点输出。
X1---正转信号输入。 B401
CM----公共端子。 +10V----+10V电源。 AI1----模拟量(电压信号)输入端子。 AI2----模拟量(电流信号)输入端子。 GND----+10V电源公共接点输入端子。 接
一拖三恒压供水方案
![一拖三恒压供水方案](https://img.taocdn.com/s3/m/827bc75158eef8c75fbfc77da26925c52cc59137.png)
一拖三恒压供水方案一拖三恒压供水方案是一种高效、便捷、节能的供水系统解决方案。
它的设计理念是通过将一个水泵与三个恒压变频器相结合,实现对三个不同水压需求区域的供水控制,确保每个区域的供水需求得到满足。
本文将详细介绍一拖三恒压供水方案的原理、优势和适用场景。
一、方案原理一拖三恒压供水方案采用了恒压变频技术,通过调节水泵的转速来实现恒压供水。
具体而言,方案将一个主水泵与三个恒压变频器相连接,每个变频器控制一个区域的供水。
当某个区域的供水需求发生变化时,相应的变频器会自动调节水泵的转速,以保持该区域的水压恒定。
这种供水方案能够根据实际需求实时调整水泵的运行状态,提高供水系统的稳定性和效率。
二、方案优势1. 灵活性:一拖三恒压供水方案适用于各种不同水压需求的场景。
通过调整恒压变频器的参数,可以实现对不同区域的精准控制,保证每个区域的供水压力恒定。
2. 节能环保:方案采用变频调速技术,可以根据实际需求调整水泵的转速,避免了传统方法中常见的频繁启停现象,降低了能耗。
同时,恒压供水方案能够减少供水过程中的压力波动,降低了水泵的能耗,有利于保护环境。
3. 维护成本低:一拖三恒压供水方案的设备维护成本相对较低。
恒压变频器具有自动报警、故障诊断等功能,可以提前预警并自动记录故障信息,减少了维护人员的巡检和维护时间,降低了运维成本。
4. 稳定可靠:采用了一拖三的供水方案,即一台水泵供水给三个区域,并配备相应的恒压变频器,使得整个供水系统更加稳定可靠。
即使其中一个区域的水泵故障,其他区域的供水依然能够正常进行,大大提高了供水系统的可靠性。
三、适用场景一拖三恒压供水方案适用于各类供水系统,特别是在以下场景中有显著优势:1. 大型住宅小区:大型住宅小区通常包含多个楼栋和不同水压需求的住户。
通过采用一拖三恒压供水方案,可以根据不同楼栋、不同住户的供水需求,实现精确的水压控制,提高居民的供水质量和舒适度。
2. 商业综合体:商业综合体中常常包含商场、写字楼等多个区域,每个区域的供水需求不同。
恒压供水(一拖一)
![恒压供水(一拖一)](https://img.taocdn.com/s3/m/e4e1f96b011ca300a6c390d2.png)
恒压供水节能方案(一拖一)一、公司介绍深圳市德瑞斯电气技术有限公司是由一群多年从事电力电子技术研究、开发与产业化的专业人士创立的高新技术企业。
拥有一支经验丰富、勇于实践、不断创新的高素质的开发、科研团队。
主要从事电气传动、工业自动化领域内的变频调速以及电子节能等高科技产品的开发、生产与销售。
公司已独立自主开发DRS1000面向客户设计的特制变频器、DRS2000高性能交流通用变频调速器、DRS2800高集成高性能通用变频调速器、DRS3000交流矢量变频调速器四大系列100多个规格产品,完全拥有自主知识产权,可满足不同行业不同客户的需求。
其良好的性能、可靠的品质深得用户的信赖与赞赏,表现出了德瑞斯变频器独有的技术特点。
公司秉承客户第一、信誉第一、质量第一的原则。
时刻跟随世界技术的发展。
不断推出更先进、性价比更好的产品,为客户的发展提供更有力的产品和技术保障。
二、供水系统节能分析在供水系统中,最基本的控制对象是流量,供水系统的基本任务就是要满足用户对流量的需求。
目前,常见的流量控制方式有阀门控制和转速控制两种。
1. 阀门控制即通过调节阀门开度来控制流量。
此时,供水系统的管道阻力将随阀门开度的改变而改变,而扬程特性保持不变。
在供水系统设计时,其水泵扬程及供水流量都是以满足用户的最大可能需求而选定的,且留有一定余量。
而实际应用当中,系统在大部分时间里都是非满负荷运行的,这就必须要减小阀门开度,调整供水流量。
这样,管道阻力随之增大,从而产生大量的截流损失。
这种控制方式不仅会浪费许多电机输出功率,而且因为管阻特性的改变,整个系统的供水效率也会大为降低。
2. 转速控制即通过改变水泵的转速来调节流量,而阀门的开度保持不变(一般保持最大开度)。
当水泵转速改变时,供水系统的扬程特性随之改变,而管阻特性不变。
在这种控制方式下,通过变频调速技术改变水泵电机的转速,水泵的供水流量可随着用水流量的改变而改变,达到真正的供需平衡,在节能的同时,也可使整个系统达到最佳工作效率。
恒压供水一拖三控制图纸
![恒压供水一拖三控制图纸](https://img.taocdn.com/s3/m/5053a06e2af90242a895e5a4.png)
/1.7 TC
13
12
14
13 N.W
12 11 10 9
8
INV.A A/M OVERLOAD3 OVERLOAD2 OVERLOAD1
-U3
4-20mA
压力变送器 P
24+
7 COM
6 AI2
0V P(0-10V)
10V
远传压表
5
4
3
VI1 10V 24V
1
-F9
5A 2
1
2
-T1
220V/15V
1#泵
135
-F3
/2.2 2 4 6
U1 V1 W1
-M2
M 3~
PE
PE
2#泵
135
-F4
/2.2
2
4
6
U1 V1 W1
-M3
M 3~
PE
PE
3#泵
修改
日期
姓名
日期 2013-1-3 校对. FUPENGHUA 审核 原始项目
广州炜尔
WE-L23X-0一拖三恒恒压供水
替换
替换人
广州炜尔电子有限公司
电源变压器 3
4
2
1
POWER
3#泵工频 3#泵变频 2#泵工频 2#泵变频 1#泵工频 1#泵变频 变频运行信号地 变频运行信号 变频模拟地 变频速度给定
COM
PUMP321 20
PUMP1 19 18
INV.STAR ACM/GND A0 17 16 15 14
11
-KM6
2 /1.6 1 4 /1.6 3
2 /1.3 1 4 /1.3 3
2 /1.4 1 4 /1.4 3
变频恒压供水系统主电路和控制线路图
![变频恒压供水系统主电路和控制线路图](https://img.taocdn.com/s3/m/411c46a083c4bb4cf6ecd143.png)
变频恒压供水系统主电路和控制线路图变频恒压供水系统主电路和控制线路图:控制原理简述如下:系统由变频器、plc和两台水泵构成。
利用了变频器控制电路的PID等相关功能,和PLC配合实施变频一拖二自动恒压力供水。
具有自动/手动切换功能。
变频故障时,可切换到手动控制水泵运行。
控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。
当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC控制停掉1#工频泵,由2#泵实施恒压供水。
至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。
如此循环不已。
需要明说一下的是:变频器必须设置好PID运行的相关参数,和配合PLC控制的相关工作状态触点输出。
详细调整,参见东元M7200的明说书。
在本例中,须大致调整以下几个参数。
1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID运行方式,压力设定值由AUX端子进入。
反馈信号由VIN端子进入;4、对变频器控制端子——输出端子的设置。
设定RA、RC为变频故障时,触点动作输出;设定R2A、R2C为变频零速时,触点动作输出;设定DO1、DOG为变频器全速(频率到达)时,触点动作输出。
上图为PLC控制接线图。
水泵和变频器的故障信号未经PLC处理,而是汇总给继电器KA2。
其手动/自动的切换控制继电器KA1来切换。
变频/工频的运行由接触器触点来互锁,以提高运行安全性。
可以看出,R2A和DO1是PLC的两个关键输入信号。
在PLC的控制动作输出中,对变频到工频的切换是通过DO1(变频器零速信号)来进行的;对工频到变频的切换是通过R2A(变频器频率到达信号)来进行的。
西门子S7200PLC+变频一拖三恒压供水全套工艺图
![西门子S7200PLC+变频一拖三恒压供水全套工艺图](https://img.taocdn.com/s3/m/2cf392ceaeaad1f346933f44.png)
西门子S7-200型PLC一拖三变频恒压供水电气图设计:彭作珩版权所有人:彭作珩系统控制工艺要求1.供水压力恒定,波动要小,尤其是在换泵时.2.三台泵根据压力的设定采用先开先停的原则.3.能实行自动按时轮换切换泵,防止某一台泵长时间运行而烧坏及防止某一台泵长时间不用而锈死.4.要保护和报警功能5..为了检修方便,设手动功能.6.要水池防抽空功能.7.为防止系统给变频器反送电,造成变频器烧毁,KM1与KM2,KM3与KM4,KM5与KM6必须进行机械互锁.选型1.PLC: 采用西门子S7-200型,CPU224,2.变频器:ABB/ACS400型7.5KW,3.PID:选具有压力显示的PID调节器.工作原理:1.利用变频器的两个可编程继电器输出端口,RO1和RO2进行功能设定,当变频器达到最高频率时,RO1的常开触点RO1B-RO1C闭合, 当变频器达到最低频率时,RO2的常开触点RO2B-RO2C闭合,可以作为CPU224的输入信号,判断是否进行加泵和切泵2.为了节省成本,不采用模拟模块EM235,而采用PID调节器,由于采用了PID调节器,而不用变频器内部的PID,设置变频器时将FACTORY设置成0就可以了3..变频器的运行要根据PLC输出Q1.0 (DCOMI-DI2) 是否闭合来确定,变频器的停止要根据PLC输出Q0.7 (DCOMI-DI1) 是否闭合来确定,设置变频器时将变频器的内部继电器RO1,RO2设置成频率到达就可以了PLC1.201接变频器的DCOM1.202,203接变频器的DI1,DI2.变频器的RO1的常开触点接到PLC的I0.0,RO2 变频器的RO2的常开触点接到PLC的I0.12.KA为自动/手动中间继电器, 中间继电器KA的常开触点接I0.3.3.主程序含调节程序和电机切换程序,加机程序及减机程序,4.子程序实际是清零程序,在PLC上电时,先将VD200,VD201,VD260赋值为零,作为中继的M复位.5.在主程序中T56,T57为变频器的频率上下限到达滤波时间继电器,用于稳定系统,VB200为变频泵的泵号,VB201为工频泵运行的总台数,VD260为倒泵时间存储器.版权所有人:彭作珩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-F4
/1.5 98
-F3
/1.3 98
-F2
/1.1 98
-U2
/1.7 TC
-S2
1 2
13 14 P(0-10V)
0V
远传压表
-T1
220V/15V 电源变压器 3 4
10V
13 N.W
12
OVERLOAD3
11
OVERLOAD2
10
OVERLOAD1
9
8
7 COM
6 AI2
5 VI1
4 10V
3 24V
2
1 POWER
INV.A A/M
COM 24
PUMP3 23 22
3#泵工频 3#泵变频
PUMP2 21 20
2#泵工频 2#泵变频
PUMP1 19 18
1#泵工频 1#泵变频
INV.STAR 17 16
变频运行信号地 变频运行信号
ACM/GND
15
变频模拟地
A0 14
变频速度给定 A0
WE-2014-1-3-001
= +
页数 页数 2 2
修改
日期
姓名
WE-2014-1-3-001
= +
页数 页数 1 2
修改
日期
姓名
0
1
2
3
4
5
6
7
8
9
1.8 / L1-00 1.8 / N-00
/ /
变频器故障信号
自动手动转换
3#泵热保护
2#泵热保护
1#泵热保护
缺水保护
-U3
4-20mA 压力变送器 P 24+
1
-F9
5A 2 1 2
13
97
97
97
TB
-S1
1.7
11
11
11
11
11
11
-KM6
/2.3 12 A1
-KM5
/2.2 12 A1
-KM4
/2.4 12 A1
-KM3
/2.4 12 A1
-KM2
/2.5 12 A1
-KM1
/2.5 12 A1
-KM5
A2
-KM6
A2
-KM3
A2
-KM4
A2
-KM1
A2
-KM2
A2
INV
1.6
STAR
1.6
GND
2.0 / N-00
-KM1
/2.5 2 4 6
-KM2
/2.5 2 4 6
-KM3
/2.4 2 4 6
-KM4
/2.4 2 4 6
-KM5
/2.2 2 4 6
-KM6
/2.3 2 4 6
1
3 4 V1
5
1
3 4 V1
5
1
3 4 V1
5 6 W1
-F2
/2.3 2 U1 6 W1
-F3
/2.2 2 U1 6 W1
2 4 6 12
/1.1 /1.1 /1.2 /2.5
1 3 5 11
2 4 6 12
/1.2 /1.2 /1.2 /2.5
WE-L23X-0一拖三恒压供水二次图
1
日期 2013-1-3 校对. FUPENGHUA 审核 原始项目
广州炜尔 WE-L23X-0一拖三恒恒压供水
替换 替换人
广州炜尔电子有限公司
-F4
/2.2 2 U1
-M1
M 3~
PE
-M2
M 3~
PE
-M3
M 3~
PE
PE
PE
PE
1#泵
2#泵
3#泵
2.
5
1
3
5
1
3
5
1
3
5
1
3
5
2
日期 2013-1-3 校对. FUPENGHUA 审核 原始项目
广州炜尔 WE-L23X-0一拖三恒恒压供水
替换 替换人
广州炜尔电子有限公司
1.7
1 3 5 11
2 4 6 12
/1.5 /1.5 /1.5 /2.3
1 3 5 11
2 4 6 12
/1.6 /1.6 /1.6 /2.2
1 3 5 11
2 4 6 12
/1.3 /1.3 /1.3 /2.4
1 3 5 11
2 4 6 12
/1.4 /1.4 /1.4 /2.4
1 3 5 11
0
1
2
3
4
5
6
7
8
9
A
B
C
N
PE
WE-L23X-0一拖三恒压供水主回路图
1 3 5 PE
-F1
2 4 6
R 1 3 5 1 3 5 1 3 5
S
T
1
3
-F6
2 4 6
-F7
2 4 6
-F8
2 4 6 U V W
-U1
变频器 RUN DCM VI ACM TB TC
-F5
2
4
-U2
/2.4 2.6 / STAR 2.6 / INV 2.8 / A0 2.7 / GND / COM1 / INV.A