数字信号处理第三版(姚天任、江太辉) 答案 第三章-unprotected

合集下载

数字信号处理课后第三章习题答案

数字信号处理课后第三章习题答案

第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
题3解图
第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
4. 证明DFT的对称定理, 即假设X(k)=DFT[x(n)], 证明 DFT[X(n)]=Nx(N-k) 证: 因为
kn X (k ) x(n)WN n 0 N 1
1 x(n) N
所以
DFT[ X (n)] X (n)W
n 0
N 1
N 1
kn N
N 1 mn kn x(m)WN WN n 0 m 0
N 1
n ( m k ) x(m)WN m 0 n 0
N 1
第3章
由于
离散傅里叶变换(DFT)及其快速算法 (FFT)

n 0
N 1
n( m k ) WN
N 0
m N k m N k , 0≤ m ≤ N 1
k=0, 1, …, N-1
所以 DFT[X(n)]=Nx(N-k)
5. 如果X(k)=DFT[x(n)], 证明DFT的初值定理
证: 由IDFT定义式
1 N 1 x(0) X (k ) N k 0
- j mn - j kn 1 j N mn 2π kn (6) X (k ) cos mn WN (e e N )e N 2 N n 0 n 0

N 1

N 1



1 e 2 n 0
N 1
j
2π ( mk ) n N
1 e 2 n 0
1knnknnnnknnnnknnwkx2j2j102j10e1e1e1??????????????????????12100nkkn?离散傅里叶变换dft及其快速算法fft第3章211001011nnknnnnxknwnkn????????????30010010011nknnnnknknnnxknnwwnnwkn?????????????00nnn??1j10sin1e1sinkmmmkknnnnnknnmkwnxkwrkwkn??????????????????????4离散傅里叶变换dft及其快速算法fft第3章52j2j102j102je1eekmnkmnnnnkmnknnnnmnnwkx??????????????je1kmn?????????mkmkn00kn1离散傅里叶变换dft及其快速算法fft第3章6knnnnnnmnnmnnknnwmnnkx2j10102j2jeee212cos????????????????2211jj0011ee22nnmknmknnnnn?????????????????????????????????2j2j2j2je1e1e1e121kmnnkmnkmnnkmn离散傅里叶变换dft及其快速算法fft第3章20nkmknmkmknm????????????0kn170002j211jj71eeeknnnnknnknnnxkw?????????????072j00ee1enknnnxkw???????0210j202sin2e0112sin2nknnknknkn???????????????????????离散傅里叶变换dft及其快速算法fft第3章或110e1e12jj700??????nkkxknn????8解法一直接计算

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)
T[ax1(n)+bx2(n)]=ax1(n) sin(ωn)+bx2(n) sin(ωn) =aT[x1(n)]+bT[x2(n)] 故系统是线性系统。
第 1 章
时域离散信号和时域离散系统
6. 给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明
理由。
1 N 1 N k 0 (2) y(n)=x(n)+x(n+1)
第 1 章
(2) 令输入为
x(n-n0) 输出为
Байду номын сангаас
时域离散信号和时域离散系统
y′(n)=2x(n-n0)+3
y(n-n0)=2x(n-n0)+3=y′(n)
故该系统是非时变的。 由于 T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
m


第 1 章
时域离散信号和时域离散系统
题7图
第 1 章
时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章
解法(二)
时域离散信号和时域离散系统
采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
n n0 k n n0
|x(k)|≤|2n0+1|M, 因
此系统是稳定的; 假设n0>0, 系统是非因果的, 因为输出

数字信号处理(姚天任江太辉第三版)课后习题答案 清晰版

数字信号处理(姚天任江太辉第三版)课后习题答案 清晰版

k n0
x1(k ) ,y2(n)= x 2(k ) ,由于
k n 0 k n0
n
y(n)=T[ax1(n)+ bx2(n)]=
[ax (k ) bx (k )]
1 2
n
= a
k n0
x1(k ) +b x 2(k ) =ay1(n)+by2(n)
k n 0
n
n
故该系统是线性系统。 因 y(n-k)=

5 2 16 。因此 是有理数,所以 8 5
是周期序列。最小周期等于 N=
16 k 16(k取5) 。 5
(2)对照复指数序列的一般公式 x(n)=exp[ j ]n,得出 是周期序列。
1 2 。因此 16 是无理数,所以不 8
(3) 对照正弦型序列的一般公式 x(n)=Acos( n ), 又 x(n)=Asin( = Acos( N=
2 (n-k)+ ]| 3 6 2 =|x(n)|| sin[ (n-k)+ ]| 3 6
≤M|sin[
2 (n- k)+ ]|≤M 3 6
故系统是稳定系统。 因 y(n)只取决于现在和过去的输入 x(n),不取决于未来的输入,故该系统是因果系统。 (3)设 y1(n)=
k
(2)y(n)= x(n)sin[
2 n+ ] 3 6
(3)y(n)=
k
x(k )

(4)y(n)=
k n0
x(k )
n
(5)y(n)= x(n)g(n)
解 (1)设 y 1 (n)=2x 1(n)+3,y 2 (n)=2x 2 (n)+3,由于 y(n)=2[x 1(n)+x 2 (n)]+3 ≠y 1 (n)+ y 2 (n) =2[x 1(n)+x 2 (n)]+6 故系统不是线性系统。 由于 y(n-k)=2x(n-k)+3,T[x(n-k)]=2x(n-k)+3,因而 y(n-k) = T[x(n-k)] 故该系统是非移变系统。 设|x(n)|≤M,则有 |y(n)|=|2x(n)+3|≤|2M+3|<∞ 故该系统是稳定系统。 因 y(n)只取决于现在和过去的输入 x(n),不取决于未来的输入,故该系统是因果系统。 (2)设

数字信号处理(姚天任江太辉第三版)课后习题答案

数字信号处理(姚天任江太辉第三版)课后习题答案

第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n).解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=an-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

数字信处理课后习题答案

数字信处理课后习题答案

数字信号处理(姚天任江太辉)第三版课后习题答案第二章2.1判断下列序列是否是周期序列。

若是,请确定它的最小周期(1)x(n)二Acos( 5 n86)(2)x(n )= e j(- 8 )(3) x(n )=Asi n(3 n4 3)解(1)对照正弦型序列的-般公式x(n)二 Acos( n ),得出5。

因此82 16是有理数,所以是周期序列。

5 最小周期等于N=^k 16(k取5)。

5(2)对照复指数序列的般公式x(n)二exp[ j ]n,得出1。

因此2168是无理数,所以不是周期序列。

(3)对照正弦型序列的般公式x(n)二 Acos( 3n ),又x(n)二Asin( n ) =Acos(— .门—)=Acos( —n 丄),得出3。

因此2 8是有理数,所以2 434 6 4 3是周期序列。

最小周期等于N=-k38(k 取3)2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

解利用线性卷积公式y(n )= x(k)h( n k)k按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值(a) y(0)=x(0)h(0)=1y(l)=x(0)h(1)+x(1)h(0)=3y(n)=x(O)h( n)+x(1)h( n-1)+x(2)h( n-2)=4,n (b) x(n )=2 (n)- (n-1)h(n)=- (n)+2 (n-1)+ (n-2)y(n)=-2(n )+5(n-1)= (n-3)(c) y(n )=u(k)kn ka u(n k):n k 1 a n 1/ \=a = . a u(n)k i a2.3计算线性线性卷积(1) y(n )=u( n)*u( n)(2) y(n)= n u(n)*u(n)解:(1) y(n)二u(k)u(n k)ku(k)u(n k)=(n+1),n >0 k 0 即y(n)=(n+1)u(n)(2) y(n )=kku(k)u( n k)2.4图P2.4所示的是单位取样响应分别为 九(n)和h 2(n)的两个线性非移变系统的级联,已知 x(n)=u(n), h ^n)二(n)-(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出 y(n).解(n)=x( n)*h Jn)u(k)[(n-k)- (n-k-4)]k=u( n)-u( n-4)y(n)= (n)*h 2 (n)a k u(k)[u( n-k)-u( n-k-4)]k算线性卷积的方法,求系统的单位阶跃响应即 y(n)二ku(k)u(n1n 1——,n >n 1—u(n)2.5已知一个线性非移变系统的单位取样响应为h(n)二a n u(-n),0<a<1 用直接计2.6 试证明线性卷积满足交换率、结合率和加法分配率。

数字信号处理第三版(姚天任、江太辉) 答案 第三章

数字信号处理第三版(姚天任、江太辉) 答案 第三章
第三章 离散傅里叶变换及其快速算法习题答案参考
3.1 图 P3.1 所示的序列 x(n) 是周期为 4 的周期性序列。请确定其傅里叶级数的系数 X (k) 。
∑ ∑ ∑ 解: X (k)
=
N −1
x(n)WNnk
=
N −1
x(−n)WNnk
=
−( N −1)
x(n)WN−nk
=
X (−k)
解:图 P3.5_1 所示的是计算这两个序列的周期卷积 x3 (n) 的过程,可以看出,x3 (n) 是 x1 (n) 延时 1 的结果, 即 x3(n) = x1(n −1) 。
3.6 计算下列序列的N点DFT:
(1) x(n) = δ (n)
(2) x(n) = δ [(n − n0 )]N * RN (n), 0 < n0 < N
总计需要时间: (105 + 21)s = 126s
用 FFT 计算 DFT:
复数乘法:
N 2
log2
N
=
5120次, 5120 ×100μ s

0.512s
复数加法: N log2 N = 10240次,10240× 20μs ≈ 0.2048s
总计需要时间: (0.512 + 0.2048)s = 0.7168s
(2) x2 (n) = x ⎡⎣(2 − n)⎤⎦4 R4 (n)
解: x1(n) 和 x2 (n) 的图形如图 P3.7_1 所示:
3.8 图 P3.8 表示一个 4 点序列 x(n) 。 (1)绘出 x(n) 与 x(n) 的线性卷积结果的图形。 (2)绘出 x(n) 与 x(n) 的 4 点循环卷积结果的图形。 (3)绘出 x(n) 与 x(n) 的 8 点循环卷积结果的图形,并将结果与(1)比较,说明线性卷积与循环卷

数字信号处理第三版(姚天任、江太辉) 答案 第三章

数字信号处理第三版(姚天任、江太辉) 答案 第三章

第三章离散傅里叶变换及其快速算法习题答案参考3.1 图P3.1所示的序列(xn 是周期为4的周期性序列。

请确定其傅里叶级数的系数(X k。

解:(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.2 (1设(xn 为实周期序列,证明(x n 的傅里叶级数(X k 是共轭对称的,即*((X k X k =− 。

(2证明当(xn 为实偶函数时,(X k 也是实偶函数。

证明:(1 111**((([(]((N nk N n N N nk nkNNn n Xk x n W Xk x n W xn W X−−=−−−==−=−===∑∑∑ k(2因(xn 为实函数,故由(1知有 *((Xk X k =− 或*((X k X k −= 又因(xn 为偶函数,即((x n x n =− ,所以有(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.3 图P3.3所示的是一个实数周期信号(xn 。

利用DFS 的特性及3.2题的结果,不直接计算其傅里叶级数的系数(Xk ,确定以下式子是否正确。

(1,对于所有的k; ((10Xk X k =+ (2((Xk X k =− ,对于所有的k; (3; (00X=(425(jkX k eπ,对所有的k是实函数。

解:(1正确。

因为(x n 一个周期为N =10的周期序列,故(X k 也是一个周期为N=10的周期序列。

(2不正确。

因为(xn 一个实数周期序列,由例3.2中的(1知,(X k 是共轭对称的,即应有*((Xk X = k −,这里(X k 不一定是实数序列。

(3正确。

因为(xn (0n ==在一个周期内正取样值的个数与负取样值的个数相等,所以有 10(0N n Xx −=∑ (4不正确。

数字信号处理课后习题答案完整版

数字信号处理课后习题答案完整版

数字信号处理课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数字信号处理(姚天任江太辉)第三版课后习题答案第二章判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥3已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

数字信号处理第三版(姚天任、江太辉) 答案 第五章-unprotected

数字信号处理第三版(姚天任、江太辉) 答案 第五章-unprotected
E[x(i)x( j)] −
2
N −1 N −1
E[x(i)x( j)]
N n=0
N2 i=0 j=0
N2 i=0 j=0
∑ ∑∑ =
1 N
N −1
E[x2 (n)] −
n=0
1 N2
N −1 N −1
E[x(i)x( j)]
i=0 j=0
∑ ∑ ∑∑ =
1
N −1
E[x2 (n)] −
1
N −1
N −1 N −1
∫ = 1
q
0 −q
xdx
=
1 2q
x2
|0−q =

q 2

∫ mx2 = E[x2 ] = −∞ xpx2 (x)dx
∫ = 1
q
q/2 −q/2
xdx
=
1 2q
x2
|−q
/2 q/
2
=
0

∫ mx3 = E[x3 ] = −∞ xpx3 (x)dx
∫ = 1

2π 0
xdx =
1 4π
x2
|02π = π
∞ −∞
(x

mx2
)2
px2
( x)dx
∫ = 1 q
q/2 −q / 2
x2dx
=
1 3q
x3
|q / 2
−q/
2
=
q2 12
∫ σ 2 x3
=
E[( x3
− mx3 )2 ] =
∞ −∞
(x

mx3
)2
px3
( x)dx
∫ = 1

2π 0

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)


第 1 章
时域离散信号和时域离散系统

4. 对题1图给出的x(n)要求:
(1) 画出x(-n)的波形;
1 (2) 计算xe(n)= [x(n)+x(-n)], 并画出xe(n)波形; 2 1 [x(n)-x(-n)], 并画出x (n)波形; (3) 计算xo(n)= o 2
(4) 令x1(n)=xe(n)+xo(n), 将x1(n)与x(n)进行比较, 你能得 到什么结论?
奇数偶数202110863时域离散信号和系统的频域分析ft令nnn202110864时域离散信号和系统的频域分析202110865时域离散信号和系统的频域分析ft令knm202110866时域离散信号和系统的频域分析202110867时域离散信号和系统的频域分析对该式两边求导得到202110868时域离散信号和系统的频域分析ft令n2n202110869时域离散信号和系统的频域分析取偶数202110870时域离散信号和系统的频域分析ft利用5题结果202110871时域离散信号和系统的频域分析202110872时域离散信号和系统的频域分析如果单位脉冲响应hn为实序列试证明输入xnacosnj的稳态响应为202110873时域离散信号和系统的频域分析n系统单位脉冲响应为hn则系统输出为上式说明当输入信号为复指数序列时输出序列仍是复指数序列频率相同但幅度和相位取决于网络传输函数
第 1 章
时域离散信号和时域离散系统
1.4 习题与上机题解答
1. 用单位脉冲序列δ(n)及其加权和表示题1图所示的序列。
题1图
第 1 章
时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)

数字信号处理课后第三章习题答案

数字信号处理课后第三章习题答案

1 e j 0 N
2 j(0 k ) N 1 e
k 0, 1, , N 1
(8) 解法一
直接计算:
1 j 0 n x8 (n) sin(0 n) RN (n) [e e j 0 n ] R N ( n ) 2j
X 8 (n)

n 0
N 1
kn x8 (n)WN
k 0, 1, , N 1
(4)
X (k ) WNkn
n 0
m1
π j ( m1) k 1 WNkm N e 1 WNk
π sin mk N R (k ) N π sin k N
第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
所以
DFT[ X (n)] X (n)W
n 0
N 1
N 1
kn N
N 1 mn kn x(m)WN WN n 0 m 0
N 1
n ( m k ) x(m)WN m 0 n 0
N 1
第3章
由于
离散傅里叶变换(DFT)及其快速算法 (FFT)
第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
(10) 解法一
X (k )

n 0
N 1
kn nWN
k 0, 1, , N 1
上式直接计算较难, 可根据循环移位性质来求解X(k)。 因为x(n)=nRN(n), 所

x(n)-x((n-1))NRN(n)+Nδ(n)=RN(n) 等式两边进行DFT, 得到
1 [e j0 n e j0 n ] e 2 j n 0

数字信号处理第三章习题作业答案

数字信号处理第三章习题作业答案

1 e 当 k 2, 4, 6,... 时,X 1 (k ) 0

序列3:
x3 (n) x1 (n) x1 (n 4)
根据序列移位性质可知
X 3 (k ) X1 ( k ) e j k X1 ( k ) (1 e j k )
即 x(n) 是以 n 0 对称轴的奇对称
故这三个序列都不满足这个条件
(3)由于是8点周期序列,其DFS:
nk X (k ) x(n )WN x (n )e n 0 n 0 N 1 7 j 2 nk 8
序列1:
X 1 (k ) e
n 0
3
y 解: 序列 x(n) 的点数为 N1 6 , (n) 的点数为 N 2 15, 故 x(n) y (n) 的点数应为
N N1 N 2 1 20
是线性卷积以15为周期周期延拓后取主值序列 19( N 1) 0
15 ( L)
又 f (n) 为 x(n) 与 y (n) 的15点的圆周卷积,即L=15。
第三章习题讲解
n 1, 0 n 4 h(n) R4 (n 2) 3.设 x(n) 其他n 0, h 令 x(n) x((n))6 , ( n) h((n)) 6 ,
试求 x(n) 与 h (n) 的周期卷积并作图。
解:
y ( n ) x ( m )h ( n m )
4 ( L N 1)
15 ( L)
34 ( L N 1)
混叠点数为N-L=20-15=5 n 0 ~ n 4( N L 1) 故 f (n)中只有 n 5到 n 14的点对应于 x(n) y (n)

数字信号处理》第三版课后习题答案

数字信号处理》第三版课后习题答案

数字信号处理课后答案教材第一章习题解答1.用单位脉冲序列()nδ及其加权和表示题1图所示的序列。

解:2.给定信号:25,41 ()6,040,n nx n n+-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n序列;(3)令1()2(2)x n x n=-,试画出1()x n波形;(4)令2()2(2)x n x n=+,试画出2()x n波形;(5)令3()2(2)x n x n=-,试画出3()x n波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)(3)1()x n的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n时,先画x(-n)的波形,然后再右移2位,3()x n波形如题2解图(四)所示。

3.判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14;(2)12,168w wππ==,这是无理数,因此是非周期序列。

5.设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。

解:(1)令:输入为0()x n n -,输出为'000'0000()()2(1)3(2)()()2(1)3(2)()y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=故该系统是时不变系统。

现代数字信号处理 姚天任 第三章答案上

现代数字信号处理 姚天任 第三章答案上

第三章答案3.1解: (1):由题设:h (n) =)()(10n h n hy (n)=)1()(-n yn y 则u (n) =h (n) y (n)所以可得最陡下降法解:h (n=1) =h *+(I-2μR )2h (0)- h *其中R =)0()1()1()0(yy yy yy yy R R R = 3223(2):h *= R1-P =3 =1-(3):由于R =5225 则可得λ1=1,λ2=5;所以μ的取值范围为:0<μ<51当μ=61时迭代公式收敛。

(4):μ=61时h (n) = 14- + 100132× h (0) - 14-=14- +32--(0) - 14-3.2解:(1)空(2)e (n) = x (n)-y (n)[2μe (n-1)y (n-1)+h (n-1)] = x (n)-u (n)[2μe (n-1)y (n-1)+h (n-1)] 对e (n)进行z 变换: e (Z) = x (z) - 2μZ1-e (Z) - Z1-h (Z)由h (n)=2μe (n-1)u (n-1)+h (n-1) 得 h (Z)=2μZ1-e (Z) + Z1-h (Z)h (Z)=1-11)(Z 2--ZZ e μ 所以:e (Z) = x (Z)-2μZ1-e (Z)- Z1-1-11)(z 2--zz e μH (Z) = 11)1(211---+-ZZ μ 所以零点在单位园上,极点在Z = 1-2μ园上。

(3):要使H(Z)稳定,则极点在单位园内即: 0121><-μμ且3.3(1)性能曲面函数:[][][]⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---+=-+=+-=-==+-=-=-=-====-==⎥⎦⎤⎢⎣⎡---==-+=1022202222010222)1([)]()1([)]1()([)([102)]([)()55(2125)]1()([0)]()([10)]([85585)]()1([)]1()([25)]1([25)]([)2cos(2)()2sin()()()()()1()()()()]()([)1([)]()1([)]1()([)([)]()([2)]([)(W W n x E n x n x E n x n x E n x E W W WP RW W n d E n n x n d E n x n d E n d E n x n x E n x n x E n x E n x E n N n d n N n x n W n W n W n x n d n x n d E n X n d E P n x E n x n x E n x n x E n x E n X n X E R WP RW W n d E n T T TTT T ξππξ[]⎥⎦⎤⎢⎣⎡--10)1()()()(2W W n x n d n x n d[]⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+=10202585585]855852510W W W W⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+--10)55(212502W W1211020)55(21525)45545(2510w w w w w ++++-++=(2)误差性能曲面matlab 程序: (3)[][][][][])1(*)(*2)1(**2)(*)1(**2)(*)(*2)(*)1(**2)(**2 210112001---+-=∂∂-+-+=∂∂⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂=∇n x n d n x E w n x n X E w w n x n d n x n X E w n X E w w w w w Tξξξξξ (4)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡==---* 2.1029-0.6498 7553.40 0.4422 0.1367-0.1367- 0.4422 7553.402.5 0.77250.7725 2.5 )1()()()(1)-(n x 1)-x)n *x(n)1)-x(n *n) x( )( *11221n x n d n x n d n x pR w(5)[][]91-10 1029.2698.04.7553- 0-10 *)(2min ==⎥⎦⎤⎢⎣⎡-=-=*w p n d E T ξ 3.4[][]2725.3*2*27275.1*2*20.70717071.0 0.7071- 7071.02725.3 7275.1 2.5 .0.77250.7725 2.5 1)-(n x 1)-x(n *x(n)1)-x(n * x(n) )(1120102111021w2==∂∂==∂∂====⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=λλξλλξV V V V n x E R TT[][][][]4216142)2( 8722242 8722112 )]([ 2)]([)(15..3101021201010101010101022+--++=+-⎥⎦⎤⎢⎣⎡+++=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=-+=ωωωωωωωωωωωωωωωωωωωωωωωεn d E P R n d E n T )解:([][][][]()()()[]6222)5(30014'300113122112'21124 )4(438423287)]([)]([ )3(323296872112872112 210'1''1'0min 2min 2110min 2*2min *1*03131*1*011*2'122'02====⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=Λ+=⎥⎦⎤⎢⎣⎡=Λ∴--=--=⎥⎦⎤⎢⎣⎡--=-Λ+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=+==-=⎥⎦⎤⎢⎣⎡-=-==⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⇒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==∂∂∂∂--λλεελλλλλλεεεεωεωωωωωεεv v T T TTv v v v v v R E v v v v v v Rv v n d E P n d E P R )、(3.6 解:(1)[][]()()[][][][][][][][][]NN N NN NN N N N N N T NN NN N N N N n N N N TT TT T T T n d E n n E n d E E n E n n E n n E n r n x n d n r n x n d E n X n d E P R n n n n x n E n r n x E n x n x E n r n x n r n x E n r n x E n nr E n r E n E n r n E n r n x E n r n x n r n x E n r n x n r n x E E n X n X E R n n n X n d E n n X n X E n n n y n d E n e E n ππππππππππππππππππππππππωωωωωϕωωωωϕϕωωεϕϕϕφωωωωωωεπ212021*********221221211022222242222212212212122124221222212cos -122222222210222sin 2cos ))(5.0(2sin 02cos cos )]([)(2]cos 4[)]([sin 0][sin ][sin )]1(sin )1([cos sin cos 2[)]1()1()(())()()(([)]()([cos cos cos ))]cos((cos E[ )]1(sin sin E[1)]-E[x(n)x(n 1)]-E[r(n)r(n )]1()[()]1()([)]1()([))]1()1())(()([(]))1()1([(E )(sin 2)(sin ))((sin ]r(n))E[(x(n)]))1()1([())]()())(1()1([())]1()1())(()([(]r(n))E[(x(n) ]1)-r(n 1)-x(n r(n)x(n)1)-r(n 1)-x(n r(n)x(n)[])()([1)-r(n 1)-x(n r(n)x(n)X(n) )()()]()([2)(])()([)()](E[d ]))()([()]([)(N 4+++++=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+++=∴====--=-+-+==⎥⎦⎤⎢⎣⎡++=∴=--=-==+-+-+-=-+-+-+-=+=+⎥⎦⎤⎢⎣⎡=++=+=+⎥⎦⎤⎢⎣⎡-+-+-+--+-++=++++==++==-+=-==[]05.0][1044/1T 14.54/1(4)T )21/(1u 0 : ][021][)cos(2/11/2 0 ]cos cos [R -E ]cos cos [)3())cos()21/(()sin()21(2))cos()21/(()sin()cos(20)sin(2)cos(2)5.0(0)cos(2)5.0( )2(2mse21mse112122122122121212212212122221*222220*2201210101======+<<∴<<+=+=+==------=++=⎪⎩⎪⎨⎧-++-=-+=⇒⎪⎩⎪⎨⎧=+++==++===∇-+=∂∂∂∂∂∂∂∂∂∂R ut M u u u R t u R t R r r r N N NN N N N N N N N N N T λλϕϕλλϕλϕλϕλλϕϕϕϕωϕωωωϕωωϕππππππππππππωεπωεωεωεωε值范围为系统收敛的3.11答案:11)(4)(4.0)()]()([2))(()()]([)(min))(()()()()()()1(22222+-=-+===-=n h n h n h n y n x E n y E n h n x E n n e E n n y n h n x n e ξξ5)(04)(8.0)()(==-=n h n h n dh n d ξ (2)μμμξ4)()2.31())(8.04()())(()()1(48.0)(+-=-+=-∇+=+-=∂∂=∇n h n h u n h n n h n h h hn 数迭代计算公式为:最陡下降法推导加权系(3)求加权系数表达式]10)0([)8.01(10])0([)2()(**--+=--+=h h h R I h n h nn μμ要求1max 0-<<λμ5.204.010<<<<∴μμ即3.12答案:2102][][0)1(1011<<==<<∑=--μλμμ即满足为保证收敛应使k k R tr R tr器的收敛速度相同。

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

第 1 章
时域离散信号和时域离散系统
题2解图(一)
第 1 章
时域离散信号和时域离散系统
题2解图(二)
第 1 章
时域离散信号和时域离散系统
题2解图(三)
第 1 章
时域离散信号和时域离散系统
题2解图(四)
第 1 章
时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
n n0 k n n0
|x(k)|≤|2n0+1|M, 因
此系统是稳定的; 假设n0>0, 系统是非因果的, 因为输出
还和x(n)的将来值有关。
第 1 章
时域离散信号和时域离散系统
(4)假设n0>0, 系统是因果系统, 因为n时刻输出只和n时刻以后的输入 有关。 如果|x(n)|≤M, 则|y(n)|≤M, 因此系统是稳定的。 (5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果 |x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM, 因此系统是稳定的。 7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示, 要求画出y(n)输出的波形。 解: 解法(一)采用列表法。 y(n)=x(n)*h(n)= x(m)h(n-m)
δ(n-2)]
1 2
=2x(n)+x(n-1)+
x(n-2)
将x(n)的表示式代入上式, 得到
1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(n)+2δ(n-1)+δ(n-2) 2
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章

《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案

数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

数字信号处理第3版课后答案市公开课一等奖百校联赛优质课金奖名师赛课获奖课件

数字信号处理第3版课后答案市公开课一等奖百校联赛优质课金奖名师赛课获奖课件
(1)在h(n)尾部加L-N个零点, 在x(n)尾部加L-M个零
(2)计算L点H(k)=FFT[h(n)]和L点X(k)=FFT[x(n)];
(3) 计算Y(k)=H(k)X(k) (4) 计算Y(n)=IFFT[Y(k)], n=0,1,2,3,…,L-1。 但当h(n)和x(n)中任一个长度很长或者无限长时, 需用书 上介绍重合相加法和重合保留法。
说明: 如上计算过程中DFT和IDFT均采取FFT算法时,
才称为快速算法, 不然比直接在时域计算循环卷积运算量
大3倍以上。
13/157
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
3.3.2 线性卷积快速计算——
序列h(n)和x(n)长度分别为N和M, L=N+M-1, 求 y(n)=h(n)*x(n)方法以下:
ze N
n
ze N
n
所以
~xN (n)
1 N
N
x(m)e
j
2π N
km
k 0 n
j2π k(nm)
eN
x(m)
m
1 N
N 1 j2π k (nm)
eN
k 0
19/157
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
因为
1
N
N 1 j2π k (nm)
eN
k 0
1 0
m n rN, r为整数 其它m
2X (0) [x(n) x(N 1 n)] 0
n0
23/157
所以
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
X(0)=0 (2) 因为x(n)=x(N-1-n), 所以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N+1(k−m)π N
+
sin⎡⎣( sin⎡⎣(k
k +m) π⎤⎦ +m)π / N⎤⎦

e
j
N+1(k+m)π N
⎫⎪ ⎬ ⎪⎭
={ N,k=m或k=−m 2 0,其他
3.7 图 P3.7 表示的是一个有限长序列 x(n) ,画出 x1(n) 和 x2 (n) 的图形。
(1) x1(n) = x ⎡⎣(n − 2)⎤⎦4 R4 (n)
x(n
+
2)
,如图
P3.3_1
所示,它不是实偶序列。由题
3.2
中的(2)知道,
X
jk 2π
(k)e 5
不是实偶序列。
∑ 3.4 设 x(n) = R3 (n) , x(n) = ∞ x(n + 6r) ,求 X (k) ,并作图表示 x(n) 和 X (k) 。 r =−∞
∑ ∑ ∑ 解:
δ [(n − n0 )]N
RN (n)WNnk
=
W n0 N
k
,
0

k

N
−1
n=0
∑N −1
(3) X (k) =
a
W n nk N
n=0
=
1

a
W N Nk N
1− aWNk
= 1− aN 1− aWNk
,0 ≤ k ≤ N −1
(4)
∑ ∑ X(k)
=
N−1 2π
cos(
n=0 N
nm)WNnk
(2) x2 (n) = x ⎡⎣(2 − n)⎤⎦4 R4 (n)
解: x1(n) 和 x2 (n) 的图形如图 P3.7_1 所示:
3.8 图 P3.8 表示一个 4 点序列 x(n) 。 (1)绘出 x(n) 与 x(n) 的线性卷积结果的图形。 (2)绘出 x(n) 与 x(n) 的 4 点循环卷积结果的图形。 (3)绘出 x(n) 与 x(n) 的 8 点循环卷积结果的图形,并将结果与(1)比较,说明线性卷积与循环卷
(1) X (k) = X (k +10) ,对于所有的 k;
(2) X (k) = X (−k) ,对于所有的 k;
(3) X (0) = 0 ;
(4)
X
(k )e
jk 2π 5
,对所有的
k
是实函数。
解:(1)正确。因为 x(n) 一个周期为 N=10 的周期序列,故 X (k) 也是一个周期为 N=10 的周期序列。 (2)不正确。因为 x(n) 一个实数周期序列,由例 3.2 中的(1)知, X (k) 是共轭对称的,即应有 X (k) = X *(−k) ,这里 X (k) 不一定是实数序列。
∑ ∑ 解: X1(k) =
9
− j 2π nk
x1(n)e 10
n=0
=
X (z) z=0.5
exp
⎡ ⎢⎣
j⎛⎜⎝
2π 10
k
+π 10
⎞⎤ ⎟⎠⎥⎦
=
9
x(n)(0.5)−
n

e
jπ 10
n


e
j
2π 10
nk
n=0
由上式得到
x1
(n)
=
(0.5)−n

e
π j 10
n
x(n)
3.14 如果一台通用计算机计算一次复数乘法需要 100 μs ,计算一次复数加法需要 20 μs ,现在用它来计
积之间的关系。
解:(1)图 P3.8_1(1)所示的是 x(n) 与 x(n) 的线性卷积结果的图形。 (2)图 P3.8_1(2)所示的 x(n) 与 x(n) 的 4 点循环卷积结果的图形。 (3)图 P3.8_1(3)所示的 x(n) 与 x(n) 的 8 点循环卷积结果的图形。 可以看出, x(n) 与 x(n) 的 8 点循环卷积结果的图形与(1)中 x(n) 与 x(n) 的线性卷积结果
∑ ∑ X * (−k )
N −1
= [ x(n)WN−nk ]*
=
N −1
x ( n )WNnk
=
X (k )
n=0
n=0
(2)因 x(n) 为实函数,故由(1)知有
X (k) = X *(−k) 或 X (−k) = X *(k)
又因 x(n) 为偶函数,即 x(n) = x(−n) ,所以有
∏ (z −WN−k )
k =1
z N −1
=
N −1
j 2π k
∏(z −e N )
k =1
z N −1
极点:
z0
=
0( N
−1阶) ;零点:
z pk
=
j 2π k
e N ,k
= 1, 2,..., N
−1
图 P3.11_1(1)是极-零点分布图。
(2) X (e jω ) =
X
(z)
|
z=e

=
X *(k)
n=0
n=0
n=0
3.2 (1)设 x(n) 为实周期序列,证明 x(n) 的傅里叶级数 X (k) 是共轭对称的,即 X (k) = X *(−k) 。
(2)证明当 x(n) 为实偶函数时, X (k) 也是实偶函数。
证明:(1)
∑ X (−k ) = N −1 x(n)WN−nk n=0
解:图 P3.5_1 所示的是计算这两个序列的周期卷积 x3 (n) 的过程,可以看出,x3 (n) 是 x1 (n) 延时 1 的结果, 即 x3(n) = x1(n −1) 。
3.5 计算下列序列的 N 点 DFT:
(1) x(n) = δ (n)
(2) x(n) = δ [(n − n0 )]N * RN (n), 0 < n0 < N
第三章 离散傅里叶变换及其快速算法习题答案参考
3.1 图 P3.1 所示的序列 x(n) 是周期为 4 的周期性序列。请确定其傅里叶级数的系数 X (k) 。
∑ ∑ ∑ 解: X (k)
=
N −1
x(n)WNnk
=
N −1
x(−n)WNnk
=
−( N −1)
x(n)WN−nk
=
X (−k)
(3)求 x(n) 的 DFT 的闭式表示,并与 X (e jω ) 对照。
解:(1)
∑ ∑ X (z)
=
∞ n=−∞
RN (n)z−n
=
N −1
z−n
n=0
=
1− z−N 1− z−1
=
zN −1 z N −1(z −1)
=
N −1
∏ (z −WN−k )
k =0
z N −1(z −1)
=
N −1
3.10 已 知 序 列 x(n) = anu(n), 0 < a < 1 。 现 在 对 其 Z 变 换 在 单 位 圆 上 进 行 N 等 分 取 样 , 取 值 为
X (k ) = X (z) |z=WN−k ,求有限长序列的 IDFT。
解:在 z 平面的单位圆上的 N 个等角点上,对 z 变换进行取样,将导致相应时间序列的周期延拓,延 拓周期为 N,即所求有限长序列的 IDFT 为
N −1ω 2
2
图 P3.11_1(2)所示的是频谱幅度 | X (e jω ) | 的函数曲线。
∑ { N −1
(3) X (k ) = RN (n)WNnk
n=0
= 1 −WNNk 1 − WNk
=
1−
e− j2π k
− j 2π k
1−e N
= X (e jω ) ω= 2π k N
=
N ,k=0 0,k =1,2,...,N −1
总计需要时间: (105 + 21)s = 126s
用 FFT 计算 DFT:
复数乘法:
N 2
log2
N
=
5120次, 5120 ×100μ s

0.512s
复数加法: N log2 N = 10240次,10240× 20μs ≈ 0.2048s
总计需要时间: (0.512 + 0.2048)s = 0.7168s
算 N=1024 点的 DFT,问直接计算 DFT 和用 FFT 计算 DFT 各需要多少时间? 解:直接计算 DFT:
复数乘法: N 2 = 10242 = 1048576次,1048576×100μs ≈ 105s
复数加法: N (N −1) = 1024×1023 = 1047552次,1047552× 20μs ≈ 21s
−e− jπ (k−m)
−jπ (k−m)
−e N
− j N+1(k−m)π
eN
jπ(k+m)
+ ejπ (k+m) eN
−e− jπ (k+m)
−jπ (k+m)
−e N
−j N+1(k+m)π
eN
⎞ ⎟ ⎟⎠
=
12⎧⎪⎨⎪⎩sinsi⎡⎣n(⎡⎣k(
k −m) π⎤⎦ −m)π / N⎤⎦

e
j
的图形相同。
3.9 x(n) 是一个长度为 N 的序列,试证明 x[(−n)]N = x[(N − n)]N 。 证明:因为 x[(−n)]N 是由 x(n) 周期性重复得到的周期序列,故可表示为 x[(−n)]N = x[(−n + rN )]N 取 r=1,上式即为 x[(−n)]N = x[(N − n)]N 。
相关文档
最新文档