圆锥曲线的焦点弦公式及应用(难)
圆锥曲线焦点弦的一个优美恒等式及应用
有I 1 — n - 十 — m I 1 : 。 l 。 1 , 其 中 为 离 心 率 .
分析 : 由于椭 圆是轴对称 图形 , 故只需证 明其过 右焦 点 的情况. 我们 先证 明倾斜 角 为锐 角的情况.
已知椭 圆 + : 1 ( 。 > 6 > 0 ) 的右焦 点 为F , 过腿 倾
过B 作B B 。 垂 直准线于日 。 , 过B 作B A _ L A A 1 于A
由圆锥 曲线统一性定义知
BF = BB1 =n, AF= AA 1 = m,
A I O 榀
图2
= e .—
—
:e .
—
\
.
BBJ
l
夕 n A A
, Al
f [ J B Bl : — n —, AA1 : — i n —
e e
,
 ̄ [ I BB 1 : — m —, AA1 : — n —
e e
,
n A2 :— m-
—
.
彭 A 2 = — n - — m.
I l
则 有 I 1 — r n t - 十 — m I 1 : c o s l , 其 中 为 离 心 率 .
分析 : 由于双曲线是轴对称 图形 , 故 只需证 明其过右 焦点 的情 况. 我们先证 明倾斜角o / 为锐角的情况.
已知 双 曲线 一 : 1 ( n > 0 , 6 > 0 ) 的右焦 点 为F , 过F
I I
证: I — n - — m I : l 。 I , 其中 为 离 心 率 .
I n+, 孔 I
证明: 如 图2 , 作A A 垂直右准线于A ,
证明 : 如图1 , 作A A。 垂 直右 准线 于A , 过B 作B B 垂直右准线 于B , 过 作B A _ I _ A A 于A 》
圆锥曲线的弦长公式及其推导过程
圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y +=代入曲线方程,化为关于x 的一元二次方程,设出交点坐标()(),,,,2211y x B y x A 利用韦达定理及弦长公式]4))[(1(212212x x x x k -++求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷.一、椭圆的焦点弦长若椭圆方程为)0(12222>>=+b a by a x ,半焦距为c>0,焦点)0,(),0,(21c F c F -,设过1F 的直线l 的倾斜角为l ,α交椭圆于两点()(),,,,2211y x B y x A 求弦长AB .解:连结B F A F 22,,设y B F x A F ==11,,由椭圆定义得y a B F x a A F -=-=2,222,由余弦定理得222)2(cos 22)2(x a c x c x -=⋅⋅-+α,整理可得αcos 2⋅-=c a b x ,同理可求得αcos 2⋅+=c a b y ,则ααα222222cos 2cos cos c a ab c a b c a b y x AB -=⋅++⋅-=+=;同理可求得焦点在y 轴上的过焦点弦长为α2222sin 2c a ab AB -=(a 为长半轴,b 为短半轴,c 为半焦距).结论:椭圆过焦点弦长公式:⎪⎪⎩⎪⎪⎨⎧⋅-⋅-=).(sin2),(cos222222222轴上焦点在轴上焦点在ycaabxcaabABαα二、双曲线的焦点弦长设双曲线(),0,012222>>=-babyax其中两焦点坐标为)0,(),0,(21cFcF-,过F1的直线l的倾斜角为α,交双曲线于两点()(),,,,2211yxByxA求弦长|AB|.解:(1)当ababarctanarctan-<<πα时,(如图2)直线l与双曲线的两个交点A、B在同一支上,连BFAF22,,设,,11yBFxAF==,由双曲线定义可得ayBFaxAF2,222+=+=,由余弦定理可得222222)2()cos(22)2(,)2(cos22)2(aycycyaxcxcx+=-⋅⋅-++=⋅⋅-+απα整理可得αcos2⋅+=cabx,αcos2⋅-=caby,则可求得弦长;cos2coscos222222αααcaabcabcabyxAB-=⋅-+⋅+=+=(2)时或当παπα<<-<≤ababarctanarctan0,如图3,直线l 与双曲线交点()()2211,,,y x B y x A 在两支上,连F 2A,F 2B,设,,11y B F x A F == 则a y B F a x A F 2,222-=+=,由余弦定理可得222)2(cos 22)2(a x c x c x +=⋅⋅-+α,222)2(cos 22)2(a y c y c y -=⋅⋅-+α,整理可得,则,cos ,cos 22a c b y a c b x -⋅=+⋅=αα .cos 2cos cos 222222a c ab a c b a c b x y AB -⋅=+⋅--⋅=-=ααα因此焦点在x 轴的焦点弦长为⎪⎪⎩⎪⎪⎨⎧<<-<≤--<<-=).arctan arctan 0(cos 2),arctan (arctan cos 222222222παπααπααa b a b ac ab a ba b c a ab AB 或 同理可得焦点在y 轴上的焦点弦长公式⎪⎪⎩⎪⎪⎨⎧-<<-<<-<≤-=).arctan (arctan sin 2),arctan arctan 0(sin 222222222a b a b a c ab a ba b c a ab AB πααπαπαα或 其中a 为实半轴,b 为虚半轴,c 为半焦距,α为AB 的倾斜角.三、 抛物线的焦点弦长若抛物线)0(22>=p px y 与过焦点)0,2(pF 的直线l 相交于两点()()2211,,,y x B y x A ,若l 的倾斜角为α,求弦长|AB|.(图4)解:过A 、B 两点分别向x 轴作垂线AA 1、BB 1,A 1、B 1为垂足,y FB x FA ==,设,则点A 的横坐标为αcos 2⋅+x p ,点B 横坐标为αcos 2⋅-y p,由抛物线定。
圆锥曲线焦点弦的八大结论
圆锥曲线焦点弦的八大结论圆锥曲线是几何学中的一类重要的曲线,包括圆、椭圆、双曲线和抛物线。
在圆锥曲线的研究中,焦点和弦是两个重要的概念,它们之间有着许多有趣的关系。
本文将介绍圆锥曲线焦点弦的八大结论。
一、椭圆的焦点弦椭圆有两个焦点,分别为F1和F2。
对于任意一条经过椭圆两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2上;2. 焦点到弦的距离之和等于弦长,即AF1 + BF2 = AB;3. 焦点到弦的距离之差等于弦段所在直线与椭圆长轴的距离之差,即AF1 - BF2 = PM - PN,其中P和N分别为弦AB的两个端点在椭圆上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与椭圆焦点连线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为椭圆长轴的中点;5. 弦中点M到椭圆两个焦点的距离之差等于弦段所在直线与椭圆长轴的距离之差,即MF1 - MF2 = PM - PN;6. 弦端点P和N到椭圆两个焦点的距离之差相等,即PF1 - PF2 = NF1 - NF2;7. 椭圆的两个焦点到弦的距离之积等于椭圆长轴的平方减去弦长的平方,即AF1·BF2 = AC - AB,其中AC为椭圆长轴的长度;8. 弦段所在直线与椭圆中心连线的斜率等于椭圆长轴和短轴的比值,即PG/PM = b/a,其中a和b分别为椭圆长轴和短轴的长度。
二、双曲线的焦点弦双曲线有两个焦点,分别为F1和F2。
对于任意一条经过双曲线两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2的延长线上;2. 焦点到弦的距离之差等于弦长,即AF1 - BF2 = AB;3. 焦点到弦的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即AF1 + BF2 = PM + PN,其中P和N分别为弦AB的两个端点在双曲线上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与双曲线渐近线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为双曲线渐近线的中点;5. 弦中点M到双曲线两个焦点的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即MF1 + MF2 = PM + PN;6. 弦端点P和N到双曲线两个焦点的距离之差相等,即PF1 - PF2 = NF2 - NF1;7. 双曲线的两个焦点到弦的距离之积等于双曲线的常数c的平方减去弦长的平方,即AF1·BF2 = c - AB,其中c为双曲线的常数;8. 弦段所在直线与双曲线中心连线的斜率等于双曲线焦点之间的距离和双曲线渐近线的斜率之和的倒数,即PG/PM = (F1F2/c) + (c/PN)。
圆锥曲线焦点弦的性质及应用
线 Z 方程 . 的
A( 0) S( 6 , I BI=2 , 椭 圆 右 焦 点 F且 a, 、 O,) 若 A √ 过 斜 率 为 的直 线 l 椭 圆 截 得 的 线 段 长 为 椭 圆 长 轴 被
长的÷ , 求椭圆方程・
解
e :
解
设直 线 z 与 轴 的 倾 角 为 a, 题 意 得 由
设 F( , )直 线 z 倾 角 为 , C0 的 则
, : J D
F( 5 0 , √ , ) e=√ 5,
堡 .1B : , . 2 .A l
f1)
若 面 =2 由 定 理 1得 A F
在 定 理 2中 , 于 分 子 为 定 值 , 此 当 焦 点 F 内 由 因
分弦 A B且 CSa =0, a = 9 。 , 母 最 大 , 以 O 即 0 时 分 所
I B I 值 最 小 ; 焦 点 ,外 分 弦 A A 的 当 B且 C Sa = 1 O 即 a =0 时 , 母 最 大 , 以 I BI的 值 最 小 , 是 有 如 。 分 所 A 于
当 ,为 椭 圆 的 左 焦 点 、 曲 线 的 右 焦 点 及 抛 物 线 的 双 焦 点 时 , a是 弦 A 角 B对 极 轴 正 方 向 的 倾 角 ; ,为 椭 当 圆 的 右 焦 点 、 曲 线 的 左 焦 点 时 , a 是 弦 A 对 极 双 角 B 轴反方 向的倾 角. ( )当 焦 点 ,内 分 弦 A 2 B时 , >0 此 时 弦 A A . B在 圆锥 曲线 的 内部 ( 焦点 的 区域 ) 当点 ,外分 弦 A 含 ; B 时 , < 0 此 时 弦 A 在 圆 锥 曲 线 的 外 部 ( 有 双 曲 A , B 只 线 才有 这 种情 形 ) . 定 理 2 过 圆 锥 曲 线 焦 点 的 直 线 Z 于 过 焦 点 对
圆锥曲线的焦半径公式及其应用
技法点拨圆锥曲线的焦半径公式及其应用■郭海先摘要:利用圆锥曲线的焦半径公式以及圆锥曲线的第二定义解答圆锥曲线类问题,能起到事半功倍之效果。
关键词:椭圆焦半径公式;双曲线的焦半径公式;抛物线的焦半径公式圆锥曲线上任意一点到焦点的距离叫作圆锥曲线关于该点的焦半径。
利用圆锥曲线的第二定义很容易得到圆锥曲线的焦半径公式。
一、椭圆的焦半径公式椭圆上的任意一点到焦点F 的长,称为此曲线上该点的焦半径。
根据椭圆的定义,很容易推导出椭圆的焦半径公式。
在涉及焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。
1.若P (x 0,y 0)为椭圆x 2a 2+y 2b2=1(a>b >0)上任意一点,F 1、F 2分别为椭圆的左、右焦点,则||PF 1=a+ex 0,||PF 2=a-e x 0.2.若P (x 0,y 0)为椭圆y 2a 2+x 2b2=1(a>b >0)上任意一点,F 2、F 1分别为椭圆的上、下焦点,则||PF 1=a+e y 0,||PF 2=a-e y 0.例1.椭圆x 225+y 29=1上三个不同的点A (x 1,y 1)、B (4,95)、C(x 2,y 2)到焦点F (4,0)的距离成等差数列,求x 1+x 2的值.解:在已知椭圆中,右准线方程为x =254,设A 、B 、C 到右准线的距离为d 1、d 2、d 3,则d 1=254-x 1、d 2=254-4、d 3=254-x 2.∵|AF |=d 1·e ,|BF |=d 2·e ,|CF |=d 3·e ,而|AF|、|BF|、|CF|成等差数列.∴2d 2=d 1+d 3,即2(254-4)=2×254-(x 1+x 2),x 1+x 2=8.评析:涉及椭圆上点到焦点的距离问题,一般采用焦半径公式求解,即利用焦半径公式可求出A 、B 、C 三点到焦点的距离,再利用等差数列的性质即可求出x 1+x 2的值。
圆锥曲线焦点弦长的公式求法
圆锥曲线焦点弦长的公式求法
巨鹏;孙月芳
【期刊名称】《内江科技》
【年(卷),期】2010(031)005
【摘要】求椭圆、双曲线、抛物线三种圆锥曲线的焦点弦长按一般的方法比较繁琐且运算量大.本文根据圆锥曲线的定义和几何性质,推导出了圆锥曲线焦点弦长的公式求法,只要记住公式,直接将公式所需的量代入即可求出,运算量小,操作简便,避免了繁琐的运算过程,降低了思维能力,大大提高了解题效率.
【总页数】1页(P205)
【作者】巨鹏;孙月芳
【作者单位】甘肃省平凉市第二中学;甘肃省平凉市第二中学
【正文语种】中文
【相关文献】
1.圆锥曲线焦点弦长公式及其应用
2.圆锥曲线过焦点的弦长公式
3.圆锥曲线焦点弦长的三角计算公式
4.圆锥曲线的焦点弦长公式及其应用
5.圆锥曲线焦点弦长公式及应用
因版权原因,仅展示原文概要,查看原文内容请购买。
圆锥曲线的焦点弦长公式
圆锥曲线的焦点弦长公式作者:王树新来源:《课程教育研究》2018年第20期【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2018)20-0127-02一个平面从不同角度截一个圆锥面所得的曲线称为圆锥曲线,截得的结果可以是圆、椭圆、双曲线、抛物线、直线、两相交直线、点。
不过,狭义上讲,圆锥曲线仅指椭圆、双曲线、抛物线,狭义圆锥曲线有一个统一的定义如下:到定点F的距离与到定直线l的距离之比等于常数e的动点轨迹称为圆锥曲线,当01时轨迹是双曲线,当e=1时轨迹是抛物线。
定点F称为圆锥曲线的焦点,定直线l称为圆锥曲线的准线,定点到准线的距离称为焦准距(记为p),常数e称为离心率。
(椭圆和双曲线都有两个焦点和对应的两条准线)如下图1所示,P为某圆锥曲线上任意一点,则P1是P到准线的射影,则=e过焦点的直线与圆锥曲线交于两个点A、B,这两点之间的线段成为圆锥曲线的焦点弦,当直线绕焦点转动起来时,焦点弦的倾斜角和长度都在变化。
当焦点弦与准线平行时称为圆锥曲线的通径。
一、抛物线的焦点弦长公式例1. 如下图2,已知抛物线的方程是y2=2px(p>0),AB是过焦点F的弦。
(1)若A(x1,y1),B(x2,y2),求焦点弦长;(2)若焦点弦的倾斜角是?兹,求焦点弦长。
解:焦点弦AB被焦点F截成两段,为了方便,我们分别记m=|AF|、n=|BF|则|AB|=m+n(1)记A1、B1分别为A、B在准线l上的射影,根据抛物线的定义,m=|AA1|,n=|BB1|则焦点弦长为:三、圆锥曲线的焦点弦长公式例3.如下图6,某圆锥曲线的焦点为F,准线为l,焦准距为p,过焦点F的弦AB与对称轴(过焦点与准线垂直的直线)夹角为?兹,求焦点弦AB的长。
解:记m=|AF|、n=|BF|,如图7,作A1、B1分别为A、B在准l线上的射影,作FC⊥AA1于C,作BD⊥于对称轴于D,则在Rt△ADC中,要注意到,以上解题并不严密,还得继续考查其他图像情况,当点F在焦点弦外(此时的圆锥曲线为双曲线)类似可得 |AB|=综上所述,无论是椭圆、双曲线还是抛物线,它们有相同的焦点弦长公式,其公式为|AB|=,其中p指焦准距。
新教材北师大版高中数学选择性必修第一册第二章圆锥曲线 知识点考点重点难点解题规律归纳总结
第二章 圆锥曲线1 椭圆 ........................................................................................................................... - 1 -1.1 椭圆及其标准方程 ......................................................................................... - 1 - 1.2 椭圆的简单几何性质 ..................................................................................... - 6 - 2 双曲线 ..................................................................................................................... - 11 -2.1 双曲线及其标准方程 ................................................................................... - 11 - 2.2 双曲线的简单几何性质 ............................................................................... - 15 - 3 抛物线 ..................................................................................................................... - 19 -3.1 抛物线及其标准方程 ................................................................................... - 19 - 3.2 抛物线的简单几何性质 ............................................................................... - 23 - 4 直线与圆锥曲线的位置关系 .................................................................................. - 28 -4.1 直线与圆锥曲线的交点 ............................................................................... - 28 - 4.2 直线与圆锥曲线的综合问题 ....................................................................... - 28 -1 椭圆1.1 椭圆及其标准方程1.椭圆的定义平面内到两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的集合(或轨迹)叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.1.椭圆定义中,将“大于|F 1F 2|”改为“等于|F 1F 2|”或“小于|F 1F 2|”,其他条件不变,点的轨迹是什么?[提示] 当距离之和等于|F 1F 2|时,动点的轨迹就是线段F 1F 2;当距离之和小于|F 1F 2|时,动点的轨迹不存在.2.椭圆的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2+y 2b 2=1 (a >b >0) y 2a 2+x 2b 2=1 (a >b >0) 焦点 (-c ,0),(c ,0)(0,-c ),(0,c )a 、b 、c 的关系c 2=a 2-b 22.椭圆x 29+y 216=1的焦点是在x 轴上,还是在y 轴上?[提示] 椭圆x 29+y 216=1的焦点在y 轴上.疑难问题类型1 椭圆定义及应用【例1】 (1)椭圆x 225+y 29=1上一点A 到焦点F 的距离为2,B 为AF 的中点,O 为坐标原点,则|OB |的值为( )A .8B .4C .2D .32(2)已知B (-5,0)、C (5,0),且△ABC 的周长等于24,则顶点A 的轨迹方程为________.(3)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点,过F 1的直线AB 与椭圆交于A 、B 两点,则△ABF 2的周长为________.(1)B (2)x 249+y 224=1(y ≠0) (3)4a [(1)设F ′为椭圆的另一焦点,则|AF |+|AF ′|=2a =10,∴|AF ′|=8,∵O ,B 分别为FF ′,AF 的中点.∴|OB |=12|AF ′|=4.(2)由已知得,|AB |+|AC |=14,由椭圆的定义可知,顶点A 的轨迹是椭圆, 又2c =10,2a =14,即c =5,a =7, 所以b 2=a 2-c 2=24.当点A 在直线BC 上,即y =0时,A 、B 、C 三点不能构成三角形,所以点A 的轨迹方程是x 249+y 224=1(y ≠0).(3)∵|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,∴△ABF2的周长=|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=2a+2a=4a.]由椭圆定义可知,椭圆上任一点到椭圆的两个焦点距离之和为定值,所以椭圆定义有以下应用:(1)实现两个焦半径之间的相互转化;,(2)将两个焦半径之和看成一个整体,求解定值问题.类型2求椭圆的标准方程[探究问题]1.同一椭圆在不同坐标系下的方程相同吗?[提示]不同.2.在椭圆标准方程的推导过程中,为什么令b2=a2-c2,b>0?[提示]令b2=a2-c2可以使方程变得简单整齐,在今后讨论椭圆的几何性质时,b还有明确的几何意义.3.椭圆x2a2+y2b2=1和y2a2+x2b2=1(a>b>0)有何异同点?[提示]因为椭圆标准方程中的两个参数a,b确定了椭圆的形状、大小,所以椭圆x2a2+y2b2=1和y2a2+x2b2=1(a>b>0)的形状、大小相同,但这两个椭圆的位置不同,焦点坐标也不同.【例2】写出适合下列条件的椭圆的标准方程:(1)焦点坐标为(-4,0),(4,0),并且过点(-5,3);(2)经过点P1(6,1),P2(-3,-2).[思路点拨](1)设出相应焦点位置的椭圆方程,利用关系式b2=a2-c2及点(-5,3)在椭圆上求待定系数;(2)由于焦点位置不明确,可将其设成Ax 2+By 2=1(A >0,B >0)的形式,再进一步确定A ,B .[解] (1)依题意知椭圆的焦点在x 轴上,可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由已知得c =4,所以a 2-b 2=16.①因为点(-5,3)在椭圆上,所以(-5)2a 2+(3)2b 2=1,即5a 2+3b 2=1.② 由①②得a 2=20,b 2=4.因此,所求椭圆的标准方程为x 220+y 24=1.(2)设椭圆的方程为Ax 2+By 2=1(A >0,B >0),由已知得 ⎩⎨⎧6A +B =13A +2B =1, 解得A =19,B =13.∴所求的椭圆的标准方程为x 29+y 23=1.1.求椭圆标准方程的方法(1)定义法:根据椭圆的定义,判断出轨迹是椭圆,然后写出其方程. (2)待定系数法:设出椭圆的标准方程,再依据条件确定a 2、b 2的值,其一般步骤是:①定位:确定椭圆的焦点在x 轴还是y 轴上,从而设出相应的标准方程的形式. ②定量:根据已知条件,建立关于a 、b 、c 的方程组,求出a 2、b 2,从而写出椭圆的标准方程.2.椭圆的标准方程在形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的正常数.类型3 椭圆标准方程的简单应用【例3】 (1)已知方程x 25-2m +y 2|m |-1=1表示焦点在y 轴上的椭圆,则实数m的取值范围为________.(2)已知椭圆方程为kx 2+3y 2-6k =0,焦距为4,则k 的值为________. (1)⎝ ⎛⎭⎪⎫2,52 (2)1或5 [(1)∵椭圆焦点在y 轴上,∴其标准方程应为y 2a 2+x 2b 2=1(a >b >0),∴|m |-1>5-2m >0,解得2<m <52,∴m 的取值范围为2<m <52.(2)将方程kx 2+3y 2-6k =0化为x 26+y 22k =1.∵焦距为4,∴2c =4,即c =2.当焦点在x 轴上时,6-2k =4,解得k =1; 当焦点在y 轴上时,2k -6=4,解得k =5. 综上,k =1或5.]1.判断焦点所在坐标轴的依据是看x 2项,y 2项的分母哪个大,焦点在分母大的对应的坐标轴上.2.对于方程x 2m +y 2n =1(m >0,n >0),当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.特别地,当n =m >0时,方程表示圆心在原点的圆.归纳总结1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在.2.涉及椭圆的焦点三角形问题,可结合椭圆的定义列出|PF 1|+|PF 2|=2a 求解,回归定义是求解椭圆的焦点三角形问题的常用方法.3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解,也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免分类讨论.1.2椭圆的简单几何性质椭圆的几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)对称性对称轴x轴和y轴,对称中心(0,0)范围-a≤x≤a且-b≤y≤b -b≤x≤b且-a≤y≤a顶点A1(-a,0)、A2(a,0),B1(0,-b)、B2(0,b)A1(0,-a)、A2(0,a),B1(-b,0)、B2(b,0)轴长短轴长=2b,长轴长=2a焦点F1(-c,0)、F2(c,0)F1(0,-c)、F2(0,c)焦距|F1F2|=2c离心率e=ca(0<e<1)(1)椭圆方程x2a2+y2b2=1(a>b>0)中,a,b,c的几何意义是什么?(2)椭圆上的点到焦点的最大距离与最小距离分别是什么?[提示](1)在方程x2a2+y2b2=1(a>b>0)中,a,b,c的几何意义如图所示.即a,b,c正好构成了一个以对称中心,一个焦点、一个短轴顶点构成的直角三角形.(2)最大距离:a+c;最小距离:a-c.疑难问题类型1 椭圆的几何性质 [探究问题]1.椭圆x 2a 2+y 2b 2=1(a >b >0)上,到中心O 和焦点F 1(-c ,0)的距离最近和最远的点分别在什么位置?[提示] 椭圆上,到中心O 的距离最近的点是短轴端点B 1和B 2;到中心O 的距离最远的点是长轴端点A 1和A 2.点(a ,0),(-a ,0)与焦点F 1(-c ,0)的距离,分别是椭圆上的点与焦点F 1的最远距离和最近距离.2.利用椭圆方程如何判断点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系? [提示] 点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系: 点P 在椭圆上⇔x 20a 2+y 20b 2=1; 点P 在椭圆内部⇔x 20a 2+y 20b 2<1; 点P 在椭圆外部⇔x 20a 2+y 20b 2>1.3.椭圆的离心率是如何刻画椭圆的扁平程度的? [提示] e 的大小决定了椭圆的扁圆程度. 因为a 2=b 2+c 2,所以ba =1-e 2,因此,当e 越趋近于1时,ba 越接近于0,椭圆越扁; 当e 越趋近于0时,ba越接近于1,椭圆越接近于圆.【例1】 (1)椭圆x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等(2)已知椭圆的标准方程为x 2100+y 264=1,O 为坐标原点,则椭圆上的点P 到椭圆中心|OP |的范围为( )A .[6,10]B .[6,8]C .[8,10]D .[16,20](3)(一题两空)椭圆4x 2+9y 2=36的长轴长为________,短轴长为________. (1)D (2)C (3)6 4 [(1)椭圆x 225+y 29=1中c 21=25-9=16,椭圆x 29-k +y 225-k=1中c 22=25-k -(9-k )=16,∴两椭圆焦距相等.(2)设P (x 0,y 0),则|OP |=x 20+y 20.由椭圆的范围,知|x 0|≤a =10,|y 0|≤b =8, 又∵P 在椭圆上,∴x 20100+y 2064=1, ∴y 20=64-1625x 20,∴|OP |=925x 20+64.∵0≤x 20≤100,∴64≤925x 20+64≤100,∴8≤|OP |≤10.(3)把已知方程化为椭圆的标准方程为:x 29+y 24=1,∴a =3,b =2,∴长轴长为2a =6,短轴长为2b =4.]用标准方程研究几何性质的步骤 (1)将椭圆方程化为标准形式.(2)确定焦点位置.(焦点位置不确定的要分类讨论) (3)求出a ,b ,c . (4)写出椭圆的几何性质.类型2 由椭圆的简单性质求方程【例2】 求适合下列条件的椭圆的标准方程: (1)焦点在y 轴上,a =2,离心率e =12;(2)一焦点坐标为(-3,0),一顶点坐标为(0,5); (3)过点(3,0),离心率e =63.[思路点拨](1)由a=2,e=ca=12,易得c,代入b2=a2-c2可求得b2,此时可写出焦点在y轴上的椭圆方程;(2)由已知可以确定焦点在x轴上及c,b的值,从而可写出椭圆的标准方程;(3)不能确定焦点所在的坐标轴,需分类讨论.[解](1)由a=2,e=12,可得a2=4,且c2=12,即c=1,所以b2=a2-c2=4-1=3.已知椭圆的焦点在y轴上,所以所求的标准方程为y24+x23=1.(2)由椭圆的一个焦点坐标为(-3,0),可知椭圆的焦点在x轴上,且c=3.又由一顶点坐标为(0,5),可得b=5,所以a2=b2+c2=25+9=34.因此所求的标准方程为x234+y225=1.(3)当椭圆的焦点在x轴上时,因为a=3,e=63,所以c=6,从而b2=a2-c2=3,所以椭圆的标准方程为x29+y23=1;当椭圆的焦点在y轴上时,因为b=3,e=63,所以a2-b2a=63,所以a2=27,所以椭圆的标准方程为y227+x29=1.综上,所求椭圆的标准方程为x29+y23=1或y227+x29=1.已知椭圆的简单性质求标准方程:(1)先看题目的条件能否确定焦点所在的坐标轴,当不能确定焦点所在的坐标轴时,需分焦点在x轴上或在y轴上进行讨论.(2)然后依据关系式e=ca,b2=a2-c2确定a,b的值,从而求出椭圆的标准方程.类型3求椭圆的离心率【例3】已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,求该椭圆的离心率.[思路点拨]根据已知条件得出a、c的关系即可.[解]不妨设椭圆的焦点在x轴上,因为AB⊥F1F2,且△ABF2为正三角形,所以在Rt△AF1F2中,∠AF2F1=30°,令|AF1|=x,则|AF2|=2x,所以|F1F2|=|AF2|2-|AF1|2=3x=2c,由椭圆的定义,可知|AF1|+|AF2|=2a=3x,∴e=2c2a=3x3x=33.求椭圆的离心率通常有两种方法:(1)若给定椭圆的方程,则根据焦点位置先求a2、b2,再求出a、c的值,利用公式e=ca直接求解;(2)若椭圆的方程未知,则根据条件建立a、b、c之间的关系式,化为关于a、c的齐次方程,再将方程两边同除以a的最高次幂,得到e的方程,解方程求得e.归纳总结1.已知椭圆的方程讨论椭圆的性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定位,再定量”,常用的方法是待定系数法.3.椭圆的范围给出了椭圆上的点的横坐标、纵坐标的取值范围,常用来求解与椭圆有关的最值与范围问题.4.椭圆的对称性是椭圆的重要几何性质,在解题时,恰当使用对称性能简化求解过程.2双曲线2.1双曲线及其标准方程1.双曲线的定义平面内到两个定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合(或轨迹)叫作双曲线.这两个定点叫作双曲线的焦点,两个焦点间的距离叫作双曲线的焦距.1.双曲线定义中,将“小于|F1F2|”改为“等于|F1F2|”或“大于|F1F2|”的常数,其他条件不变,点的轨迹是什么?[提示]当距离之差等于|F1F2|时,动点的轨迹就是两条射线,端点分别是F1、F2,当距离之差大于|F1F2|时,动点的轨迹不存在.2.双曲线定义中,将“差的绝对值”改为“差”,其他条件不变,点的轨迹是什么?[提示]动点的轨迹是双曲线的一支.2.双曲线的标准方程焦点在x轴上焦点在y轴上标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2ca、b、c的关系c2=a2+b23.确定双曲线的标准方程需要知道哪些量?[提示]a,b的值及焦点所在的位置.疑难问题类型1双曲线的定义及应用双曲线中,焦点三角形的面积问题【例1】 已知双曲线x 29-y 216=1的左,右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.[解] 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°,所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=163.利用双曲线定义求点的轨迹方程【例2】 已知定点A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,求另一焦点F 的轨迹方程.[思路点拨] 考查点F 的几何性质,利用双曲线的定义求解. [解] 设F (x ,y )为轨迹上的任意一点, 因为A ,B 两点在以C ,F 为焦点的椭圆上,所以|F A |+|CA |=2a ,|FB |+|CB |=2a (其中a 表示椭圆的长半轴长). 所以|F A |+|CA |=|FB |+|CB |.所以|F A |-|FB |=|CB |-|CA |=122+92-122+(-5)2=2,即|F A |-|FB |=2. 由双曲线的定义知,F 点在以A ,B 为焦点,2为实轴长的双曲线的下半支上.所以点F 的轨迹方程是y 2-x248=1(y ≤-1).1.利用双曲线的定义解决与焦点有关的问题,一是要注意||PF 1|-|PF 2||=2a 的变形使用,特别是与|PF 1|2+|PF 2|2,|PF 1|·|PF 2|间的关系.2.利用双曲线的定义求曲线的轨迹方程, 其基本步骤为 ①寻求动点M 与定点F 1,F 2 之间的关系;②根据题目的条件计算是否满足||MF 1|-|MF 2||=2a (常数,a >0);③判断:若2a <2c =|F 1F 2|,满足定义,则动点M 的轨迹就是双曲线,且2c =|F 1F 2|,b 2=c 2-a 2,进而求出相应a ,b ,c ;④根据F 1,F 2所在的坐标轴写出双曲线的标准方程.类型2 求双曲线的标准方程【例3】 (1)已知双曲线过点(3,-42)和⎝ ⎛⎭⎪⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程. [思路点拨] 用待定系数法求解.[解] (1)设所求双曲线方程为Ax 2-By 2=1()AB >0, 则⎩⎪⎨⎪⎧9A -32B =1,8116A -25B =1, 解得⎩⎪⎨⎪⎧A =-19,B =-116,∴双曲线的标准方程为y 216-x 29=1.(2)法一:设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 由题意易求得c =25.又双曲线过点(32,2), ∴(32)2a 2-4b 2=1.又∵a 2+b 2=(25)2, ∴a 2=12,b 2=8.故所求双曲线方程为x 212-y 28=1.法二:设双曲线方程为x 216-k -y 24+k =1(-4<k <16),将点(32,2)代入得k =4, ∴所求双曲线方程为x 212-y 28=1.待定系数法求双曲线方程的步骤类型3曲线类型的判定【例4】已知曲线C:x2t2+y2t2-1=1(t≠0,t≠±1).(1)求t为何值时,曲线C分别为椭圆、双曲线;(2)求证:不论t为何值,曲线C有相同的焦点.[思路点拨]方程Ax2+By2=1表示的轨迹是由参数A,B的值及符号确定,因此要确定轨迹,需对A,B进行讨论.[解](1)当|t|>1时,t2>0,t2-1>0,且t2≠t2-1,曲线C为椭圆;当|t|<1时,t2>0,t2-1<0,曲线C为双曲线.(2)证明:当|t|>1时,曲线C是椭圆,且t2>t2-1,因此c2=a2-b2=t2-(t2-1)=1,∴焦点为F1(-1,0),F2(1,0).当|t|<1时,双曲线C的方程为x2t2-y21-t2=1,∵c2=a2+b2=t2+1-t2=1,∴焦点为F1(-1,0),F2(1,0).综上所述,无论t为何值,曲线C有相同的焦点.方程Ax2+By2=1(A,B≠0)表示双曲线的充要条件为AB<0,若A<0,B>0,则方程表示焦点在y轴上的双曲线;若B<0,A>0,则方程表示焦点在x轴上的双曲线.即双曲线的焦点位置是由x2,y2的系数的正负决定的.归纳总结1.对双曲线定义的理解(1)定义中距离的差要加绝对值,否则只为双曲线的一支.设F1,F2表示双曲线的左,右焦点,若|MF1|-|MF2|=2a,则点M在右支上;若|MF2|-|MF1|=2a,则点M在左支上.(2)双曲线定义的应用:①若||MF1|-|MF2||=2a(0<2a<|F1F2|),则动点M的轨迹为双曲线.②若动点M在双曲线上,则||MF1|-|MF2||=2a.2.求双曲线标准方程的步骤(1)定位:在标准方程的前提下,确定焦点位于哪条坐标轴上,以确定方程的形式.(2)定量:确定a2,b2的数值.提醒:若焦点的位置不明确,应注意分类讨论,也可以设双曲线方程为mx2+ny2=1的形式,其中mn<0.2.2双曲线的简单几何性质双曲线的性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≥a或x≤-a,y∈R y≥a或y≤-a,x∈R 顶点(-a,0),(a,0)(0,-a),(0,a)对称性对称轴:x轴、y轴;对称中心:坐标原点轴长实轴长=2a,虚轴长=2b渐近线xa±yb=0或y=±ba xxb±ya=0或y=±ab x离心率e=ca(e>1)(1)渐近线相同的双曲线是同一条双曲线吗?(2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示](1)渐近线相同的双曲线有无数条,但它们实轴与虚轴的长的比值相同.(2)e2=c2a2=1+b2a2,ba是渐近线的斜率或其倒数.疑难问题类型1双曲线的简单性质【例1】求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.[思路点拨]先将双曲线的形式化为标准方程,再研究其性质.[解]双曲线的方程化为标准形式是x29-y24=1,∴a2=9,b2=4,∴a=3,b=2,c=13.又曲线的焦点在x轴上,∴顶点坐标为(-3,0),(3,0),焦点坐标为(-13,0),(13,0),实轴长2a=6,虚轴长2b=4,离心率e=ca=133,渐近线方程为y=±23x.1.由双曲线方程探究其简单几何性质时,需先看所给方程是否为标准方程,若不是,需先把方程化为标准方程,这是依据方程求参数a,b,c值的关键.2.写顶点坐标、焦点坐标、渐近线方程时,需先由方程确定焦点所在的坐标轴,否则易出错,需注意双曲线方程与渐近线方程的对应关系.类型2利用双曲线的性质求双曲线方程【例2】求适合下列条件的双曲线的标准方程.(1)实轴长为16,离心率为5 4;(2)双曲线C的右焦点为(2,0),右顶点为(3,0).[思路点拨]由双曲线的几何性质,列出关于a,b,c的方程,求出a,b,c 的值.[解](1)设双曲线的标准方程为x2a2-y2b2=1或y2a2-x2b2=1(a>0,b>0).由题意知2a=16,ca=54,c2=a2+b2,解得c=10,a=8,b=6,所以双曲线的标准方程为x264-y236=1或y264-x236=1.(2)设双曲线方程为x2a2-y2b2=1(a>0,b>0).由已知得a=3,c=2,∴b2=c2-a2=1.∴双曲线的标准方程为x23-y2=1.1.求双曲线方程,关键是求a,b的值,在解题过程中应熟悉a,b,c,e等元素的几何意义及它们之间的联系,并注意方程思想的应用.2.若已知双曲线的渐近线方程ax±by=0,可设双曲线方程为a2x2-b2y2=λ.类型3双曲线的离心率【例3】已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,求双曲线C的离心率.[思路点拨]确定四边形中为60°的内角,通过解三角形得a,b,c的关系,进而求出离心率.[解]设双曲线方程为x2a2-y2b2=1(a>0,b>0),如图所示,由于在双曲线中c>b,故在Rt△OF1B2中,只能是∠OF1B2=30°,所以bc=tan 30°,c=3b,所以a=2b,离心率e=ca=32=62.求双曲线离心率的两种方法(1)直接法:若已知a,c可直接利用e=ca求解.(2)方程法:若无法求出a,b,c的具体值,但根据条件可确定a,b,c之间的关系,可通过b2=c2-a2,将关系式转化为关于a,c的齐次方程,借助于e=ca,转化为关于e的n次方程求解.归纳总结1.由已知双曲线的方程求双曲线的几何性质时,注意首先应将方程化为标准形式,并要特别注意焦点所在的位置,防止将焦点坐标和渐近线方程写错.2.注意双曲线性质间的联系,尤其是双曲线的渐近线斜率与离心率之间的联系,并注意数形结合,从直观入手.3.椭圆、双曲线的标准方程都可写成Ax2+By2=1的形式,当A>0,B>0且A≠B 时表示椭圆,当AB<0时表示双曲线.3 抛物线3.1 抛物线及其标准方程1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的集合(或轨迹)叫作抛物线,定点F 叫作抛物线的焦点,定直线l 叫作抛物线的准线.1.抛物线的定义中,若点F 在直线l 上,那么动点的轨迹是什么? [提示] 点的轨迹是过点F 且垂直于直线l 的直线. 2.抛物线的标准方程 图形标准 方程 y 2=2px (p >0) y 2=-2px(p >0) x 2=2py (p >0) x 2=-2py (p >0) 焦点 坐标 ⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2 准线 方程x =-p 2x =p 2y =-p 2y =p 22.抛物线的标准方程y 2=2px (p >0)中p 的几何意义是什么? [提示] 焦点到准线的距离.3.已知抛物线的标准方程,怎样确定抛物线的焦点位置和开口方向? [提示] 一次项变量为x (或y ),则焦点在x 轴(或y 轴)上;若系数为正,则焦点在正半轴上;系数为负,则焦点在负半轴上.焦点确定,开口方向也随之确定.疑难问题类型1 抛物线的定义【例1】 已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A .34B .1C .54D .74[思路点拨] 如图,过A 、B 分别作准线l 的垂线AD ,BC ,垂足分别为D ,C ,M 是线段AB 的中点,MN 垂直准线l 于N ,由于MN 是梯形ABCD 的中位线,所以|MN |=|AD |+|BC |2.C [由抛物线的定义知|AD |+|BC |=|AF |+|BF |=3,所以|MN |=32,又由于准线l 的方程为x =-14,所以线段AB 中点到y 轴的距离为32-14=54,故选C .]1.解答本题的关键是利用抛物线的定义把到焦点的距离转化为到准线的距离.2.与抛物线有关的问题中,涉及到焦点的距离或到准线的距离时,一般是利用定义对两个距离进行相互转化.类型2 求抛物线的标准方程求抛物线的焦点坐标或准线方程【例2】 求下列抛物线的焦点坐标和准线方程. (1)y 2=40x ;(2)4x 2=y ;(3)6y 2+11x =0.[解] (1)焦点坐标为(10,0),准线方程为x =-10. (2)由4x 2=y 得x 2=14y . ∵2p =14,∴p =18.∴焦点坐标为(0,116),准线方程为y =-116.(3)由6y 2+11x =0,得y 2=-116x , 故焦点坐标为(-1124,0),准线方程为x =1124.求抛物线的标准方程【例3】 求满足下列条件的抛物线的标准方程.(1)过点(-3,2); (2)已知抛物线焦点在y 轴上,焦点到准线的距离为3.[思路点拨] 确定p 的值和抛物线的开口方向,写出标准方程.[解] (1)设所求的抛物线方程为y 2=-2p 1x (p 1>0)或x 2=2p 2y (p 2>0),∵过点(-3,2),∴4=-2p 1×(-3)或9=2p 2×2.∴p 1=23或p 2=94.故所求的抛物线方程为y 2=-43x 或x 2=92y .(2)由题意知,抛物线标准方程为x 2=2py (p >0)或x 2=-2py (p >0)且p =3, ∴抛物线标准方程为x 2=6y 或x 2=-6y .1.根据抛物线方程求准线方程或焦点坐标时,应先把抛物线的方程化为标准方程,这样才能准确写出抛物线的准线方程.2.求抛物线方程的主要方法是待定系数法,若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,若抛物线的焦点位置不确定,则要分情况讨论,另外,焦点在x 轴上的抛物线方程可统一设成y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可统一设成x 2=ay (a ≠0).类型3 抛物线的实际应用【例4】 一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[思路点拨] 解答本题首先建系,转化成抛物线的问题,再利用抛物线的方程解决问题.[解] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则点B 的坐标为⎝ ⎛⎭⎪⎫a 2,-a 4,如图所示.设隧道所在抛物线方程为x 2=my ,则⎝ ⎛⎭⎪⎫a 22=m ·⎝ ⎛⎭⎪⎫-a 4,∴m =-a .即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得0.82=-ay ,即y =-0.82a . 欲使卡车通过隧道,应有y -⎝ ⎛⎭⎪⎫-a 4>3,即a 4-0.82a >3. ∵a >0,∴a >12.21.∴a 应取13.1.解答本题的关键是把实际问题转化为数学问题,利用数学模型,通过数学语言(文字、符号、图形、字母等)表达、分析、解决问题.2.在建立抛物线的标准方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系.这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.归纳总结1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫m 4,0,准线方程为x =-m 4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫0,m 4,准线方程为y =-m 4. 2.设M (x 0,y 0)是抛物线y 2=2px (p >0)上一点,焦点为F ,则根据抛物线的定义,抛物线的焦半径|MF |=x 0+p 2.3.对于抛物线上的点,利用定义可以把其到焦点的距离与到准线的距离相互转化.4.对于抛物线的四种形式的标准方程,应准确把握、熟练应用,能利用图形分析性质,学习时应能根据一种类型归纳出另外三种的相关性质,注意数形结合思想的应用.3.2 抛物线的简单几何性质1.抛物线的几何性质 标准方程 y 2=2px (p >0) y 2=-2px (p >0)x 2=2py (p >0) x 2=-2py (p >0) 图形性质 范围x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 对称轴 x 轴 y 轴顶点(0,0) 离心率e =1 2.过焦点的弦若直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,则(1)抛物线的焦半径|AF |=x 1+p 2,|BF |=x 2+p 2;(2)过焦点的弦|AB |=x 1+x 2+p ;(3)当直线AB 垂直于抛物线的对称轴时,弦AB 叫作抛物线的通径,它的长为2p ,通径是过焦点最短的弦.直线与抛物线只有一个公共点,那么直线与抛物线一定相切吗?[提示] 可能相切,也可能相交,当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有一个公共点.疑难问题类型1抛物线几何性质的应用【例1】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上.求这个正三角形的边长.[思路点拨]正三角形及抛物线都是轴对称图形,如果能证明x轴是它们的公共对称轴,则容易求出等边三角形的边长.[解]设正三角形OAB的顶点A,B在抛物线上,且坐标分别为(x1,y1),(x2,y2),则y21=2px1,y22=2px2.由|OA|=|OB|,得x21+y21=x22+y22,即(x1+x2)(x1-x2)=2px2-2px1.∴(x1-x2)(x1+x2+2p)=0.∵x1>0,x2>0,2p>0,∴x1-x2=0,即x1=x2.由此可知|y1|=|y2|,即点A、B关于x轴对称,∴AB⊥x轴,且∠AOx=30°,∴y1x1=tan 30°=33.∵x1=y212p,∴y1=23p,|AB|=2y1=43p.∴这个正三角形的边长为43p.抛物线各元素间的关系,抛物线的焦点在其对称轴上,顶点就是抛物线与对称轴的交点,准线与对称轴垂直,准线与对称轴的交点和焦点关于顶点对称,顶点到焦点的距离与顶点到准线的距离均为p 2.类型2与中点弦、焦点弦有关的问题【例2】 (1)过点Q (4,1)作抛物线y 2=8x 的弦AB ,恰被点Q 所平分,则AB 所在直线的方程为________.(2)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A ,B 两点,且|AB |=9.则该抛物线的方程为________.[思路点拨] (1)法一:设A (x 1,y 1),B (x 2,y 2),用点差法求k AB ;法二:设直线AB 的方程,建立方程求解.(2)设出直线方程,直线方程与抛物线方程联立,根据焦点弦长公式求解.(1)4x -y -15=0 (2)y 2=8x [(1)法一:设以Q 为中点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则有y 21=8x 1,y 22=8x 2,∴(y 1+y 2)(y 1-y 2)=8(x 1-x 2).又y 1+y 2=2,∴y 1-y 2=4(x 1-x 2),即4=y 1-y 2x 1-x 2, ∴k =4.∴所求弦AB 所在直线的方程为y -1=4(x -4),即4x -y -15=0.法二:设弦AB 所在直线的方程为y =k (x -4)+1.联立⎩⎨⎧ y 2=8x ,y =k (x -4)+1,消去x ,得ky 2-8y -32k +8=0, 设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),由根与系数的关系得y 1+y 2=8k .又y 1+y 2=2,∴k =4.∴所求弦AB 所在直线的方程为4x -y -15=0.(2)设直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 联立⎩⎪⎨⎪⎧ y 2=2px ,y =22⎝ ⎛⎭⎪⎫x -p 2,化简得4x 2-5px +p 2=0,∴x 1+x 2=5p 4,∵|AB |=9=x 1+x 2+p ,∴5p 4+p =9,∴p =4,∴抛物线的方程为y 2=8x .]直线与抛物线相交的弦长问题直线和抛物线相交于A(x1,y1),B(x2,y2)两点,直线的斜率为k.(1)一般的弦长公式:|AB|=1+k2|x1-x2|.(2)焦点弦长公式:当直线经过抛物线y2=2px(p>0)的焦点时,弦长|AB|=x1+x2+p.(3)“中点弦”问题解题策略两种方法类型3抛物线中的最值问题【例3】已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|P A|+|PF|的最小值,并求出取最小值时点P的坐标.[思路点拨]利用抛物线的定义可将|PF|转化为P到准线的距离来考虑.[解]由定义知,抛物线上点P到焦点F的距离等于点P到准线l的距离d,则|P A|+|PF|=|P A|+d.将x=3代入抛物线方程y2=2x,得y=±6.∵6>2,∴点A在抛物线内部.由图可知,当P A⊥l时,|P A|+d最小,最小值为7 2,即|P A|+|PF|的最小值为7 2,此时点P纵坐标为2,代入y2=2x,得x=2.∴此时点P坐标为(2,2).1.本题若设P(x,y),利用两点间的距离公式建模求解,难以得到答案,而由抛物线的定义将|PF|转化为点P到准线的距离,则当P,A,Q三点共线时,|P A|+|PF|取得最小值,从而使问题迎刃而解.2.解决这类题,就是用抛物线的定义与平面几何的知识把折线段变为直线段,即知最小值.归纳总结1.抛物线只有一个焦点,一个顶点,一条对称轴,一条准线,无对称中心.2.抛物线上一点与焦点F的连线的线段叫做焦半径,设抛物线y2=2px(p>0)上任一点A(x0,y0),则|AF|=x0+p 2.3.抛物线的顶点也在抛物线上,作为抛物线上的一个特殊点,它到焦点的距离也等于到准线的距离,解题时注意应用.4.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.。
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
16.过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为________.
17.过抛物线 的焦点 作倾角为 的直线,与抛物线分别交于 、 两点( 在 轴左侧),则 _______________________.
注意:夹角不是直线的倾斜角,而是直线与焦点所在轴的夹角,这样就不需要区的右焦点F作倾斜角为 的直线,交双曲线于 两点,求弦长 .
三、圆锥曲线坐标式焦点弦长公式
1.椭圆的坐标式焦点弦长公式
例9
9.已知椭圆 ,若过左焦点的直线交椭圆于 两点,求 .
【结论6】椭圆的坐标式焦点弦长公式:
我们有如下结论:
【结论6】双曲线的坐标式焦点弦长公式:
(1)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: ;
(2)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: .
3.抛物线的坐标式焦点弦长公式
由抛物线的定义易得
【结论7】抛物线的坐标式焦点弦长公式:
(1)抛物线 的焦点弦长公式: ;
(2)抛物线 的焦点弦长公式: ;
说明:特殊情形,当倾斜角为 时,即为椭圆的通径,通径长 .
2.双曲线的倾斜角式焦点弦长公式
例2
2.设双曲线 ,其中两焦点坐标为 ,过 的直线 的倾斜角为 ,交双曲线于 , 两点,求弦长 .
可得如下结论2:
【结论2】双曲线的倾斜角式焦点弦长公式:
(1) 为双曲线 的左、右焦点,过 倾斜角为 的直线 与双曲线 交于 两点,则 .
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
专题16圆锥曲线焦点弦
圆锥曲线过焦点的弦长公式
圆锥曲线过焦点的弦长公式
徐耀斌
【期刊名称】《数学教学研究》
【年(卷),期】2011(030)001
【摘要】在数学教学和学生的数学学习过程中常常会遇到过椭圆、双曲线、抛物线焦点弦长的计算问题,为了计算方便,下面通过这3种圆锥曲线的定义推导出它们在标准方程下所对应的弦长公式.
【总页数】2页(P46-47)
【作者】徐耀斌
【作者单位】甘肃省秦安县第二中学,741600
【正文语种】中文
【相关文献】
1.圆锥曲线焦点弦长公式及其应用 [J], 王智红
2.圆锥曲线的焦点弦长公式及其应用 [J], 吴勇明;李勇
3.圆锥曲线的中点弦方程和中点弦长公式 [J], 关忠
4.圆锥曲线焦点弦长公式及应用 [J], 潘继军
5.巧用弦长公式妙解圆锥曲线 [J], 黄书虹
因版权原因,仅展示原文概要,查看原文内容请购买。
圆锥曲线焦点弦公式及应用
圆锥曲线焦点弦公式及应用湖北省阳新县高级中学邹生书焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。
定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。
(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。
证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。
由圆锥曲线的统一定义得,,又,所以。
(1)当焦点内分弦时。
如图1,,所以。
图1(2)当焦点外分弦时(此时曲线为双曲线)。
如图2,,所以。
图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。
例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。
若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。
例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。
过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。
例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。
例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。
例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。
若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。
定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。
高考高频考点(圆锥曲线)8、椭圆、双曲线的角版焦半径、焦点弦公式
第8讲 椭圆、双曲线的角版焦半径、焦点弦公式知识与方法1.椭圆()222210x y a b a b +=>>的一个焦点为F ,P 为椭圆上任意一点,设PFO α∠=,则椭圆的焦半径2cos b PF a c α=−,若延长PF 交椭圆于另一点Q ,则椭圆的焦点弦22222cos ab PQ a c α=−. 2.双曲线()222210,0x y a b a b −=>>的一个焦点为F ,P 为双曲线上任意一点,设PFO α∠=,则双曲线的焦半径2cos b PF c aα=±,若直线PF 交双曲线于另一点Q ,则双曲线的焦点弦22222cos ab PQ a c α=−.(焦半径公式中取“+”还是取“-”由P 和F 是否位于y 轴同侧决定,同正异负)典型例题【例1】已知椭圆22:142x y C +=的左焦点为F ,过F 且倾斜角为45°的直线l 交椭圆C 于A 、B 两点,则AB =______;若AF BF >,则:AF BF =______. 【解析】如图,设AFO α∠=,则45α=︒由焦点弦公式,2222222228cos 42cos 453ab AB a c α︒⨯⨯===−−⨯,由焦半径公式,22cos b AF a c α===−,23BF ==,所以:3:1AF BF =.【答案】83,3:1变式1 已知椭圆22:142x y C +=的左焦点为F ,过F 且斜率为2的直线l 交椭圆C 于A 、B 两点,则AB =______【解析】设直线l 的倾斜角为α,则tan 2α=,所以cos α=,由焦点弦公式,22222222220cos 942ab AB a c α⨯⨯===−−⨯⎝⎭. 【答案】209变式2 已知椭圆22:142x y C +=的左焦点为F ,过F 的直线l 交椭圆C 于A 、B 两点,若3AF =,则AB =______.【解析】设AFO α∠=,则由焦半径公式,23cos b AF a c α===−,解得:cos 3α=,由焦点弦公式,2222218cos 5ab AB a c α==−. 【答案】185变式3 已知椭圆22:142x y C +=的左焦点为F ,过F 的直线l 交椭圆C 于A 、B 两点,若AF BF AF BF λ+=⋅,则λ=________.【解析】设AFO α∠=,则BFO πα∠=−,由焦半径公式,2cos b AF a c α==−,()2cos b BF a c πα==−−,所以112AF BF +==,从而2AF BF AF BF +=⋅,即2λ=.【反思】一般地,设椭圆()2222:10x y C a b a b+=>>的一个焦点为F ,过F 的直线l 交椭圆C于A 、B 两点,则2112aAF BF b +=.变式4 已知椭圆222:14x y C b+=()02b <<的右焦点为F ,过F 且倾斜角为60°的直线l 交椭圆C 于A 、B 两点,若167AB =,则椭圆C 的离心率为________. 【解析】由焦点弦公式,()222222222216cos 744cos 60ab b AB a c b α⨯⨯===−−−⨯︒,解得:22b =,所以e =.变式5 已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 且斜率为1的直线l 交椭圆C 于A 、B 两点,若2AF 、AB 、2BF 成等差数列,则椭圆C 的离心率为______. 【解析】直线l 的斜率为1l ⇒的倾斜角45α=︒,由焦点弦公式,22222cos 45ab AB a c =−︒,2AF 、AB 、2BF 成等差数列222223AB AF BF AB AF BF AB ⇒=+⇒=++, 如图,由椭圆定义可得224AF BF AB a ++=, 所以34AB a =,故222264cos 45ab a a c =−︒, 化简得:22232b a c =−,所以2222332a c a c −=−,从而224a c =,故椭圆C 的离心率12c e a ==.【答案】12【例2】过双曲线22:142x y C −=的右焦点且斜率为的直线截该双曲线所得的弦长为【解析】k =⇒直线的倾斜角60α=︒,由焦点弦公式,222222222165cos 46cos 60ab AB a c α⨯⨯===−−︒. 【答案】165变式1 过双曲线22:142x y C −=的右焦点F 的直线l 与双曲线C 交于A 、B 两点,若8AB =,则直线l 的方程为_______.【解析】由题意,2a =,b =,c =)F,设直线AFO α∠=,则由焦点弦公式,22222248cos 23cos ab AB a c αα===−−,解得:25cos 6α=或12,若25cos 6α=,则21sin 6α=,所以21tan 5α=,从而直线l 的斜率tan 5k α==,故直线l 的方程为y x =−; 若21cos 2α=,则21sin 2α=,所以2tan 1α=,从而直线l 的斜率tan 1k α==±,故直线l 的方程为(y x =±;综上所述,直线l 的方程为5y x =或(y x =±【答案】5y x =±−或(y x =± 变式2 过双曲线22:142x y C −=的右焦点F 的直线l 与双曲线C 交于A 、B 两点,若23AF =,则BF =______.【解析】设AFO α∠=,因为23AF =,所以点A 必在双曲线右支上,由焦半径公式,22cos 3b AF c a α===+,解得:cos α=,所以sin α=,从而tan αC 的渐近线的斜率为2±,2>,所以点B 也在双曲线的右支上,如图, 由图可知,BFO AFO ππα∠=−∠=− 所以()22cos b BF c a πα==−+.【答案】2强化训练1.(★★)已知椭圆22:143x y C +=的左焦点为F ,过F 且倾斜角为60°的直线l 交椭圆C 于A 、B 两点,则AB =_______.【解析】由焦点弦公式,22222222316cos 51412ab AB a c α⨯⨯===−⎛⎫−⨯ ⎪⎝⎭. 【答案】1652.(★★)已知椭圆22:193x y C +=的左焦点为F ,过F 的直线l 交椭圆C 于A 、B 两点,若3AB =,则直线l 的方程为________.【解析】设直线l 的倾斜角为α,由焦点弦公式,2222222333cos 96cos ab AB a c αα⨯⨯===−−⨯,从而cos 2α=,所以45α=︒或135°,从而直线l 的斜率为1±,显然()F ,故直线l的方程为y x =+或y x =−.【答案】y x =+或y x =−−3.(★★★)已知椭圆22:142x y C +=的左、右焦点分别为1F 、2F ,过1F 且倾斜角为45°的直线l 交椭圆C 于A 、B 两点,则2ABF 的面积为________. 【解析】如图,由焦点弦公式,222228cos 3ab AB a c α==−, 所以21218sin 4523ABF SF F AB =⋅⋅︒=.【答案】834.(★★★)已知椭圆()2222:10x y C a b a b+=>>一个焦点为F ,过F 且斜率为1的直线l 交椭圆C 于A 、B 两点,若34AB a =,则椭圆C 的离心率为________.【解析】由题意,直线l 的倾斜角为45°,由焦点弦公式,22222cos 45ab AB a c =−︒,因为34AB a =,所以222264cos 45ab a a c =−︒,结合222b a c =−化简得:222a c =,故离心率2c e a ==.【答案】25.(★★★)已知F 是椭圆22:142x y C +=的左焦点,过F 且不与x 轴垂直的直线交椭圆于A 、B 两点,弦AB 的中垂线交x 轴于点M ,则AB FM=________.【解析】解法1:如图,由对称性,不妨设直线的倾斜角为锐角,A 在x 轴下方, 则22222442cos 2cos AB αα⨯⨯==−−,AF ==,所以21222cos FN AN AF AB AF α=−=−==−,从而cos FN FM α==AB FM=解法2(特值法):考虑AB y ⊥的情形,此时4AB =,M与原点重合,所以FM =AB FM=【答案】6.(★★★)如图,椭圆22:12x C y +=的左焦点为F ,过F 作两条互相垂直的直线分别与椭圆交于A 、B 和D 、E 四点,则四边形ADBE 的面积的取值范围是________.【解析】设AFO α=,不妨假设02πα≤≤,则2EFO πα∠=+,由焦点弦公式,AB =22cos 2DE α=−+ ⎪⎝⎭, 所以四边形ADBE 的面积()()2222114222cos 2sin 2cos 2sin S AB DE αααα=⋅=⨯⨯=−−−− 2222241642sin 2cos sin cos 8sin 2ααααα==−−++,显然20sin 21α≤≤,所以1629S ≤≤,即四边形ADBE 的面积的取值范围是16,29⎡⎤⎢⎥⎣⎦. 【答案】16,29⎡⎤⎢⎥⎣⎦7.(★★★)双曲线22:1C x y −=的右焦点为F ,过F 的直线l 与双曲线C 交于A 、B 两点,若4AB =,则直线l 的方程为________. 【解析】由题意,1a b ==,c =)F,设直线AFO α∠=,则由焦点弦公式,22222224cos 12cos ab AB a c αα===−−,解得:23cos 4α=或14, 若23cos 4α=,则21sin 4α=,所以21tan 3α=,从而直线l的斜率tan k α==, 故直线l的方程为y x =;若21cos 4α=,则23sin 4α=,所以2tan 3α=,从而直线l的斜率tan k α==故直线l的方程为y x =,综上所述,直线l的方程为y x =或3y x =±【答案】y x =−或3y x = 8.(★★★)双曲线22:163x y C −=的左、右焦点分别为1F 、2F ,过1F 的直线l 与双曲线C 交于A 、B 两点,若213AF AF =,则2BF =________.【解析】由题意,21213AF AF AF AF ⎧=⎪⎨−=⎪⎩,所以1AF =1AFO α∠=,则21cos b AF c a α==+,所以=,解得:cos α=,从而sin α==sin tan cos ααα==C的渐近线斜率为,因为<,所以点B 也在左支上,且1BFO πα∠=−, 故()22cos b BF c aπα===−+【答案】39.(★★★)双曲线22:13y C x −=的左焦点为F ,点P 在双曲线C 的右支上,且5PF =,则PFO 的面积为________.【解析】解法1:由题意,1a =,b =2c =,设PFO α∠=,由焦半径公式,23cos 2cos 1b PFc a αα==−−,又5PF =,所以352cos 1α=−,解得:4cos 5α=,所以3sin 5α=,如图,显然113sin 523225PFOSPF OF α=⋅⋅=⨯⨯⨯=. 解法2:由题意,1a =,2c =,离心率2e =,设()00,P x y ,由焦半径公式,0125PF x =+=,又5PF =,所以0125x +=,解得:02x =或3−,因为P 在右支上,所以02x =, 代入双曲线方程可求得03y =±,所以01123322PFOSOF y =⋅=⨯⨯±=. 解法3:如图,设双曲线C 的右焦点为1F ,由双曲线定义,12PF PF −=,又5PF =,所以13PF =, 易求得14FF =,所以22211PF FF PF +=,故11PF FF ⊥, 所以1111143622PFF SFF PF =⋅=⨯⨯=, 显然O 是1FF 的中点,所以1132PFOPFF SS ==.【答案】3。
焦点弦的常用公式
当前位置:首页>>高中数学>>学生中心>>解题指导圆锥曲线有关焦点弦的几个公式及应用湖北省阳新县高级中学邹生书如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。
圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。
焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。
本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。
定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。
(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。
证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。
由圆锥曲线的统一定义得,,又,所以。
(1)当焦点内分弦时。
如图1,,所以。
图1(2)当焦点外分弦时(此时曲线为双曲线)。
如图2,,所以。
图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。
例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。
若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。
例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。
过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。
例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。
例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。
圆锥曲线的极坐标方程 焦半径公式 焦点弦公式
椭圆、 曲线、抛物线统一的极坐标方程为
ρ = ep . 1 − e cosθ
其中 p 是定点 F 到定直线的距离,p>0 .
当 0 e 1 时,方程表示椭圆
当 e>1 时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允
许ρ 0,方程就表示整个 曲线
当 e=1 时,方程表示开口向右的抛物线.
二、圆锥曲线的焦半径公式
推论 若圆锥曲线的弦 MN 过焦点 F,则有 1 + 1 = 2 . MF NF ep
、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 过焦点 F,
1、椭圆中, p = a 2 − c = b2 , MN = ep +
ep
= 2ab2 .
c
c
1− ecosθ 1− ecos(π −θ) a2 − c2 cos2 θ
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
湖北省天门中学 薛德斌
一、圆锥曲线的极坐标方程
椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定
直线(准线)的距离的比等于常数 e 的点的轨迹.
以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点 F 作相
应准线的垂线,垂足为 K,以 FK 的 向延长线为极轴建立极坐标系.
3、抛物线中, MN = p +
p
= 2p .
1 − cosθ 1 − cos(π − θ ) sin 2 θ
四、直角坐标系中的焦半径公式 设 P x,y 是圆锥曲线 的点,
1、若 F1、F2 分别是椭圆的左、右焦点,则 PF1 = a + ex ,、 F2 分别是 曲线的左、右焦点,
设 F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线 的右支、抛物线) 任一点,则
圆锥曲线焦点弦问题的魔法公式
圆锥曲线焦点弦问题的魔法公式作者:王海彬来源:《读书文摘(下半月)》2018年第04期摘要:圆锥曲线部分是解析几何的核心内容,同时也是高考必考知识点,在每年的高考题中总会出现1~2道客观题和1道解答题。
即使是客观题一般难度也较大,甚至于出现在选择题或填空题的最后一题,主要知识点为圆锥曲线的基本概念、性质、直线和圆锥曲线的位置关系,重点考查学生等价转化、数形结合、逻辑推理等能力。
特别是近年随着向量等多个知识点的融入,综合性和技巧性越来越强,方法灵活多样,学生很难掌握解题的规律。
在一次讲解课后作业过程中,笔者偶然发现了一个解决焦点弦相关问题的神级结论,这一结论会给我们解决这一类问题带来意想不到的“神奇”效果!关键词:圆锥曲线;焦点弦;向量;神级结论在人教版高中数学选修2-1作业本圆锥曲线部分出现了这样一道题:例:已知椭圆C:[x2a2+y2b2=1](a>0,b>0)的离心率为[32],过右焦点F且斜率为k(k>0)的直线与椭圆C 相交于A、B两点,若[AF=3FB],则k等于()。
A.1B.[2]C.[3]D.2这道题让我有一种似曾相识的感觉,后来在2010年高考全国卷Ⅱ选择题第12题中找到了它的踪迹。
作为一道高考压轴的选择题,我们可以看出这肯定是一道难题,是拉开学生客观题分数的一个秘密武器,同时也是一道值得挖掘的好题。
学生的解法一般如下:解:∵椭圆C:[x2a2+y2b2=1]的离心率为[32]∴可设该椭圆的方程为: [x24b2+y2b2=1],即[x2+4y2=4b2]。
设A([x1],[y1]),B([x2],[y2]),F([3b],[0])。
由[AF=3FB],可得[y1=-3y2]。
再设直线AB的方程为[x=my+3b]。
代入椭圆方程可得[m2+4y2+23mby-b2=0]。
∴[y1+y2=-23mbm2+4y1.y2=b2m2+4]又∵[y1=-3y2],∴[-2y2=-23mbm2+4],∴[],[-3y22]=[-b2m2+43y22=b2m2+4]∴[b2m2+4]=[9m2b2(m2+4)2]∴[9m2=m2+4]。
圆锥曲线的焦点弦长公式
Course Education Research 课程教育研究2018年第20期一个平面从不同角度截一个圆锥面所得的曲线称为圆锥曲线,截得的结果可以是圆、椭圆、双曲线、抛物线、直线、两相交直线、点。
不过,狭义上讲,圆锥曲线仅指椭圆、双曲线、抛物线,狭义圆锥曲线有一个统一的定义如下:到定点F 的距离与到定直线l 的距离之比等于常数e 的动点轨迹称为圆锥曲线,当0<e<1时轨迹为椭圆,当e>1时轨迹是双曲线,当e=1时轨迹是抛物线。
定点F 称为圆锥曲线的焦点,定直线l 称为圆锥曲线的准线,定点到准线的距离称为焦准距(记为p ),常数e 称为离心率。
(椭圆和双曲线都有两个焦点和对应的两条准线)如下图1所示,P 为某圆锥曲线上任意一点,则P 1是P 到准线的射影,则PF PP 1=e图1过焦点的直线与圆锥曲线交于两个点A 、B ,这两点之间的线段成为圆锥曲线的焦点弦,当直线绕焦点转动起来时,焦点弦的倾斜角和长度都在变化。
当焦点弦与准线平行时称为圆锥曲线的通径。
一、抛物线的焦点弦长公式例1.如下图2,已知抛物线的方程是y 2=2px (p>0),AB 是过焦点F 的弦。
(1)若A(x 1,y 1),B(x 2,y 2),求焦点弦长;(2)若焦点弦的倾斜角是θ,求焦点弦长。
解:焦点弦AB 被焦点F 截成两段,为了方便,我们分别记m=|AF|、n=|BF|则|AB|=m+n(1)记A 1、B 1分别为A 、B 在准线l 上的射影,根据抛物线的定义,m=|AA 1|,n=|BB 1|则焦点弦长为:|AB|=m+n=|AA 1|+|BB 1|=[x 1-(-p 2)]+[x 2-(-p 2)]=x 1+x 2+p分析:这个弦长公式的巧妙在于,把斜向的弦长AB 化成横线的线段AA 1与BB 1的和,而横向的长度往往比较好计算,这里的m=|AA 1|,n=|BB 1|非常重要,下面还会继续用到这个转化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。
圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。
焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。
本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。
定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。
(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。
证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。
由圆锥曲线的统一定义得,,又,所以。
(1)当焦点内分弦时。
如图1,,所以。
图1
(2)当焦点外分弦时(此时曲线为双曲线)。
如图2,,所以。
图2
评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。
例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。
若,则的离心率为()
解这里,所以,又,代入公式得,所以,故选。
例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心
率为。
过右焦点且斜率为的直线于相交于两点,若,则()
解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。
例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为
的直线,与抛物线交于两点(点在轴左侧),则有____
图3
解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,
设,又,代入公式得,解得,所以。
例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。
例5(自编题)已知双曲线的离心率为,过左焦点
且斜率为的直线交的两支于两点。
若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。
定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。
过点的弦与曲线的焦点所在的轴的夹角为,则有。
证明设点在准线上的射影分别为,过点作轴的垂线交直线于点,交直线于点。
由圆锥曲线的统一定义得,,所以。
图4
(1)当焦点内分弦时。
如图4,,。
,所以较长焦半径,较短焦半径。
所以。
(2)当焦点外分弦时(此时曲线为双曲线)。
图5
如图5,,。
所以,
所以较长焦半径,较短焦半径。
所以。
综合(1)(2)知,较长焦半径,较短焦半径。
焦点弦的弦长公式为。
特别地,当曲线为无心曲线即为抛物线时,焦准距就是径之半,较长焦半径,较短焦半径,焦点弦的弦长公式为。
当曲线为有心曲线即为椭圆或双曲线时,焦准距为。
注由上可得,当焦点内分弦时,有。
当焦点外分弦时,有。
例6 (2009年高考福建卷理科第13题)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___
解由抛物线焦点弦的弦长公式为得,,解得。
例7(2010年高考辽宁卷理科第20题)已知椭圆的右焦点为,经过且倾斜角为的直线与椭圆相交于不同两点,已知。
(1)求椭圆的离心率;(2)若,求椭圆方程。
解(1)这里,,由定理1的公式得,解得。
(2)将,代入焦点弦的弦长公式得,,解得,即,所以①,又,设,
代入①得,所以,所以,故所求椭圆方程为。
例8(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___
解易知均在右支上,因为,离心率,点准距,因倾斜角为,所以。
由焦半径公式得,。
例9(由2007年重庆卷第16题改编)过双曲线的右焦点作倾斜角为
的直线,交双曲线于两点,则的值为___
解因为,离心率,点准距,因倾斜角为,所以。
注意到分别在双曲线的两支上,由焦半径公式得,。
例10 (2007年高考全国卷Ⅰ)如图6,已知椭圆的左、右焦点分别为,
过的直线交椭圆于两点,过的直线交椭圆于两点,且。
求四边形面积的最小值。
图6
解由方程可知,,则。
设直线与轴的夹角为,因为,所以直线与轴
的夹角为。
代入弦长公式得,
,。
故四边形的面积为,。
所以四边形面积的最小值为。