2011线性代数期末试题(B)[1]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中山大学软件学院2011级软件工程专业(2011学年秋季学期)
《S E -103+线性代数》期末试题(B 卷)
(考试形式:闭 卷 考试时间: 2小时
)
《中山大学授予学士学位工作细则》第六条
考试作弊不授予学士学位
方向: 姓名: ______ 学号:
出卷: 伍丽华 复核: 高成英
1. Fill in the blank (5×4=20 Pts )
(1) If T is the linear transformation from to whose matrix relative to is
2P 2P },t t ,1{2B = , then =_________________________________. ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡−−=421130012][B T )(2210t a t a a T ++
(2) If the row space of a 4×7 matrix is 4-dimentional, then the dimension of the null space of is _______________. Is ?__________________ (Yes or No). A A 4
Col R A = (3) Let ,,and be eigenvectors of a 3×3 matrix , with corresponding eigenvalues 3, 2, and 1. Compute . =_______________________. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0221v ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2222v ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=2203v A A A
(4) Determine the value(s) of a such that the system is inconsistent. =_____________________________________.
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−+03121232121321x x x a a a
(5) For x in 3R , Let , this quadratic form as is _________________________________________________________.
32212221853)(x x x x x x x Q +−+=Ax x T
2.Make each statement True or False, and descript your reasons.(5×4=20 Pts )
(1) Whenever a system has free variables, the solution set contains many solutions.
(2) If are vectors in a vector space and
k v v v ,,,21L V },,,{Span },,,{Span 12121−=k k v v v v v v L L , then are linearly dependent. k v v v ,,,21L
(3) Let be a linear transformation. If is the standard matrix representation of n n R R T →:A T , then an n ×n matrix B will also be a matrix representation of T if and only if B is similar to .
A
(4) If is an n ×n matrix, then and have the same eigenvectors.
A A T A
(5) If is symmetric and det()>0, then is positive definite.
A A A
3. Calculation (5×8=40 Pts )
(1) let and ][321b b b A =]9342[321321321b b b b b b b b b B ++++++=, where and are vectors in 21,b b 3b 3R . Suppose 1det =A , find .
B det
(2) Computer , where . 6
A ⎥⎦⎤⎢⎣⎡−−=1234A
(3) Let , ⎪⎪⎭
⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−+−−+=numbers real any ,,,,4854328573e d c b a e d c b e d d c b c b a H a. Show that H is a subspace of 4
R
b. Find a basis for H .
(4) Let , . ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=421351A ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡−−=324b a. Find the orthogonal projection of onto Col .
b A b. Find a least-squares solution of b Ax =.
c. Determine the associated least-squares error.
(5) Let W =Span , where , and , Construct an orthonormal basis for .
},{21x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1521x ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡−=2142x W
4. Prove issues (2×6=12 Pts )
(1) Let be a subspace of W n
R such that p W =dim , and let },,,{21p w w w S L = be an orthonomal basis for . Define by W W R T n →:p p w w v w w v w w v v T )()()()(2211⋅++⋅+⋅=L
Prove that T is a linear transformation.
(2) Let and A B be similar matrices. Show that if satisfies the equation , then A 033=+−I A A B also satisfies a similar equation . 033=+−I B B
5. Synthesis (8 points)
Let x be a vector in n R with , Show that if , then .
1=x x T T xx I A −=n A rank <)(。