排列组合问题解法总结

合集下载

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的⼆⼗种解法(最全的排列组合⽅法总结)教学⽬标1.进⼀步理解和应⽤分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常⽤策略;能运⽤解题策略解决简单的综合应⽤题。

提⾼学⽣解决问题分析问题的能⼒3.学会应⽤数学思想和⽅法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成⼀件事,有类办法,在第1类办法中有种不同的⽅法,在第2类办法中有种不同的⽅法,…,在第类办法中有种不同的⽅法,那么完成这件事共有:种不同的⽅法.2.分步计数原理(乘法原理)完成⼀件事,需要分成个步骤,做第1步有种不同的⽅法,做第2步有种不同的⽅法,…,做第步有种不同的⽅法,那么完成这件事共有:种不同的⽅法.3.分类计数原理分步计数原理区别分类计数原理⽅法相互独⽴,任何⼀种⽅法都可以独⽴地完成这件事。

分步计数原理各步相互依存,每步中的⽅法完成事件的⼀个阶段,不能完成整个事件.解决排列组合综合性问题的⼀般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进⾏,确定分多少步及多少类。

3.确定每⼀步或每⼀类是排列问题(有序)还是组合(⽆序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握⼀些常⽤的解题策略⼀.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和⾸位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排⾸位共有最后排其它位置共有由分步计数原理得位置分析法和元素分析法是解决排列组合问题最常⽤也是最基本的⽅法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满⾜特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑⼀个约束条件的同时还要兼顾其它条件练习题:7种不同的花种在排成⼀列的花盆⾥,若两种葵花不种在中间,也不种在两端的花盆⾥,问有多少不同的种法?⼆.相邻元素捆绑策略例2. 7⼈站成⼀排 ,其中甲⼄相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲⼄两元素捆绑成整体并看成⼀个复合元素,同时丙丁也看成⼀个复合元素,再与其它元素进⾏排列,同时对相邻⾏⾃排。

排列组合问题的20种解法

排列组合问题的20种解法

排列组合问题的20种解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

复习巩固分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在1第2类办法中有m种不同的方法,…,在第n类办法中有n m种不同2的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做1第2步有m种不同的方法,…,做第n步有n m种不同的方法,那么2完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,占了这两个位置.先排末位共有13C 然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合经典题型及解法

排列组合经典题型及解法

排列组合是组合数学中的一个重要概念,涉及到对一组对象进行排列或组合的方式。

下面列举几个经典的排列组合题型及解法:
1. 排列问题:
-题型:从n个不同元素中选取m个元素,有多少种排列方式?
-解法:使用排列数的公式P(n, m) = n! / (n-m)!,其中n!表示n 的阶乘。

2. 组合问题:
-题型:从n个不同元素中选取m个元素,有多少种组合方式?
-解法:使用组合数的公式C(n, m) = n! / (m!(n-m)!),其中n!表示n的阶乘。

3. 重复排列问题:
-题型:从n个元素中选取m个元素进行排列,允许元素重复,有多少种排列方式?
-解法:使用重复排列数的公式P'(n, m) = n^m,其中^n表示n的m次方。

4. 重复组合问题:
-题型:从n个元素中选取m个元素进行组合,允许元素重复,有多少种组合方式?
-解法:使用重复组合数的公式C'(n, m) = C(n+m-1, m),其中C(n, m)表示组合数。

5. 圆排列问题:
-题型:将n个不同的物体围成一个圆圈,有多少种不同的排列方式?
-解法:使用圆排列数的公式P(n) = (n-1)!。

以上是一些常见的排列组合题型及其解法。

在实际问题中,可能会出现更加复杂和变化的情况,需要根据具体问题进行分析和推导解法。

完整版)排列组合的二十种解法(最全的排列组合方法总结)

完整版)排列组合的二十种解法(最全的排列组合方法总结)

完整版)排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力。

3.学会应用数学思想和方法解决排列组合问题。

复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。

2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。

3.分类计数原理和分步计数原理区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。

解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。

2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

一、特殊元素和特殊位置优先策略:例1:由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3.由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素。

若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

排列组合的二十种解法情况总结

排列组合的二十种解法情况总结

排列组合解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A443由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合问题的基本类型及解题方法

排列组合问题的基本类型及解题方法

排列组合问题的基本类型及解题方法解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。

其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。

加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。

分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类。

以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。

(一)特殊元素的“优先安排法”对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。

在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。

例1: 0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?解法一:(元素优先)分两类:第一类,含0,0在个位有24A 种,0在十位有1123A A 种;第二类,不含0,有1223A A 种。

故共有2111242323(A A A )+A A 30+=种。

注:在考虑每一类时,又要优先考虑个位。

解法二:(位置优先)分两类:第一类,0在个位有24A 种;第二类,0不在个位,先从两个偶数中选一个放个位,再选一个放百位,最后考虑十位,有111233A A A 种。

故共有21114233A +A A A =30(二)总体淘汰法对于含有否定词语的问题,还可以从总体中把不符合要求的除去,此时应注意既不能多减也不能少减,例如在例1中也可以用此法解答:5个数字组成三位数的全排列为35A ,排好后发现0不能在首位,而且3和5不能排在末尾,这两种不合题意的排法要除去,故有30个偶数.(三)合理分类与准确分步解含有约束条件的排列组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分布层次清楚,不重不漏.例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有 解:由题意,可先安排甲,并按其进行分类讨论:(1)若甲在第二个位置上,则剩下的四人可自由安排,有44A 种方法;(2)若甲在第三个或第四个位置上,则根据分布计数原理不同的站法有113333A A A 种站法;再根据分类计数原理,不同的站法共有:21134333A A A A 78+=种.(四)相邻问题:捆绑法对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。

超全归纳:排列组合解法

超全归纳:排列组合解法

解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。

末位和首位有特殊要求。

先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。

由分步计数原理得113344288C C A =。

变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。

由分步计数原理得25451440A A =。

二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。

先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。

由分步计数原理得522522480A A A =。

变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。

三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。

分两步。

第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。

变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。

解决排列组合问题的常用方法

解决排列组合问题的常用方法
解:(1)如图,含顶点A的四面体的三个面上,除点A外都有5个点,从中取出3点必与点A共面,共有 种取法
含顶点A的棱有三条,每条棱上有3个点,它们与所对棱的中点共面,共有3种取法
根据分类计数原理和点A共面三点取法共有 种
(2)取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:先不加限制任取4点( 种取法)减去4点共面的取法
(4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个.
(5)分四类:①千位数字为3,4之一时,共有2×5×4×3=120个;
②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;
③千位数字是5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;
【变式】求不同的排法种数:
(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;
(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.
解:(1)是“相邻”问题,用捆绑法解决:
(2)是“不相邻”问题,可以用插空法直接求解.6男先排实位,再在7个空位中排2女,即用插孔法解决: 。另法:用捆绑与剔除相结合:
(2)排列数的定义:从 个不同元素中,任取 ( )个元素的所有排列的个数叫做从 个元素中取出 元素的排列数,用符号 表示。即 = ( )
(3)组合的概念:一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合
(4)组合数的概念:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数.用符号 表示.
2、从 五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.

排列组合公式总结大全(3篇)

排列组合公式总结大全(3篇)

第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。

它广泛应用于统计学、概率论、计算机科学、组合数学等领域。

以下是对排列组合中常用公式的总结,以供参考。

一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。

2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。

2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。

(2)排列的运算性质与组合的运算性质不同。

四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。

2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。

3. 排列组合在统计学中的应用:抽样调查、数据分析等。

排列组合常用方法总结(全)

排列组合常用方法总结(全)

解决排列组合问题常见策略学习指导1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。

组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的。

较复杂的排列组合问题一般是先分组,再排列。

必须完成所有的分组再排列,不能边分组边排列.排列组合问题的常见错误是重复和遗漏.弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧.集合是常用的工具之一.为了将抽象问题具体化,可以从特殊情形着手,通过画格子,画树图等帮助理解。

“正难则反”是处理问题常用的策略。

常用方法:一. 合理选择主元例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有种不同坐法。

例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。

二. “至少"型组合问题用隔板法对于“至少”型组合问题,先转化为“至少一个"型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。

例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法?解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有:(种)三。

注意合理分类元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。

再用分类计数原理求出总数。

例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。

解:比2015大的四位数可分成以下三类:第一类:3×××,4×××,5×××,共有:(个);第二类:21××,23××,24××,25××,共有:(个);第三类:203×,204×,205×,共有:(个)∴比2015大的四位数共有237个。

(完整版)超全超全的排列组合的二十种解法

(完整版)超全超全的排列组合的二十种解法

超全的排列组合解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2。

掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1。

分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3。

分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2。

怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。

4。

解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一。

特殊元素和特殊位置优先策略例1。

由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。

解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二。

排列组合解题方法

排列组合解题方法

排列组合解题方法排列组合题在高考试题中占据较大比例,或单独命题,或与概率内容相结合,由于排列组合题抽象性较强,解题思路灵活,方法多样,切入点多,学生在解题过程中往往容易出现思维遗漏、或重复的错误。

下面就是小编给大家带来的排列组合解题方法,希望大家喜欢!相离问题插空法主要用来解决 2 个或若干个不相邻元素的排列组合问题,是解决排列组合问题的常见方法之一。

它是指先把无位置要求,无条件限制的元素排列好,然后对有位置要求,受条件限制的元素进行整理,再将受条件限制的元素插入到已排列好的无条件限制元素的间隙或两端中。

例 1 在一张节目单中原有 6 个节目,若保持这些节目相对顺序不变,再添加进去 3 个节目,则所有不同的添加方法共有多少种?解析:该题若直接进行解答较为麻烦,此时可以借助相离问题插空法,可以使问题迎刃而解。

先将原来的6 个节目排列好,这时中间和两端有 7 个空位,然后用一个节目去插 7 个空位,有 A 种方法;接着再用另一个节目去插 8 个空位,有 A 种方法;将最后一个节目插入到 9 个空位中,有 A 种方法,由乘法原理得:所有不同的添加方法 AAA=504 种。

例 2 停车场划出一排 12 个停车位置,今有 8 辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?解析:先排好 8 辆车有 A 种方法,要求空位置连在一起,则在每 2 辆之间及其两端的9 个空当中任选一个,将空位置插入其中有 C 种方法。

故共有 AC 种方法。

相邻问题捆绑法作为排列组合题最为常见的解法之一,就是在解决对于某几个元素相邻问题时,将相邻元素作为整体加以考虑,视为一个“大”元素参与排序,然后再单独对大元素内部各元素间的排列顺序进行一一分析排列。

例 3 有 6 名同学排成一排,其中甲、乙两人必须排在一起的不同排法有多少种?解析:由于甲、乙两人必须要排在一起,故可将甲、乙两人捆绑起来作为一个整体进行考虑,即将两人视为一人,再与其他四人进行全排列,则有 A 种排法,甲、乙两人之间有 A 种排法。

排列组合问题解法总结

排列组合问题解法总结

排列组合问题的常见解法一.元素相同问题隔板策略例1.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案解:因为10个名额没有差别,把它们排成一排.相邻名额之间形成9个空隙.在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法.注:这和投信问题是不同的,投信问题的关键是信不同,邮筒也不同,而这里的问题是邮筒不同,但信是相同的.即班级不同,但名额都是一样的. 练习题:个相同的球装5个盒中,每盒至少一个有多少装法 49C 2.100x y z w +++=求这个方程组的自然数解的组数 3103C 二.环排问题直排策略如果在圆周上m 个不同的位置编上不同的号码,那么从n 个不同的元素的中选取m 个不同的元素排在圆周上不同的位置,这种排列和直线排列是相同的;如果从n 个不同的元素的中选取m 个不同的元素排列在圆周上,位置没有编号,元素间的相对位置没有改变,不计顺逆方向,这种排列和直线排列是不同的,这就是环形排列的问题.一个m 个元素的环形排列,相当于一个有m 个顶点的多边形,沿相邻两个点的弧线剪断,再拉直就是形成一个直线排列,即一个m 个元素的环形排列对应着m 个直线排列,设从n 个元素中取出m 个元素组成的环形排列数为N 个,则对应的直线排列数为mN 个,又因为从n 个元素中取出m 个元素的排成一排的排列数为mnA 个,所以mn mN A=,所以m nA N m=.即从n 个元素中取出m 个元素组成的环形排列数为m nA N m =.n 个元素的环形排列数为!(1)!n n A n N n n n===-例2. 8人围桌而坐,共有多少种坐法解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆形展成直线其余7人共有(81)!7!-=种排法,即7!7654321840=⨯⨯⨯⨯⨯⨯= 种七班练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 三.多排问题直排策略例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.先排前4个位置,2个特殊元素有24A 种排法,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种排法.(排好后,按前4个为前排,后4人为后排分成两排即可)练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346解:由于甲乙二人不能相邻,所以前排第1,4,8,11四个位置和后排第1,12位置是排甲乙中的一个时,与它相邻的位置只能排除一个,而其它位置要排除3个,所以共有排列11116181417108238346C C C C +=+=四.排列组合混合问题先选后排策略例4.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种五.小集团问题先整体后局部策略例5.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数在1,5在两个奇数之间,这样的五位数有多少个(注:两个偶数2,4在两个奇数1,5之间,这是题意,说这个结构不能被打破,故3只能排这个结构的外围,也就是说要把这个结构看成一个整体与3进行排列).解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种 六.正难则反总体淘汰策略例6.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法.这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的取法有1255C C ,和为偶数的取法共有123555C C C +.再淘汰和小于10的偶数共9种,符合条件的取法共有1235559C C C +-练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的 抽法有多少种七.平均分组问题除法策略例7. 6本不同的书平均分成3堆,每堆2本共有多少分法解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有22264233C C C A 种分法.练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法(544138422C C C A ) 名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法 (1540)3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______(2224262290C C A A =) 八. 合理分类与分步策略例8.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员.选上唱歌人员为标准进行研究 只会唱的5人中没有人选上唱歌人员共有2233C C 种,只会唱的5人中只有1人选上唱歌人员112534C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类计数原理共有 22112223353455C C C C C C C ++种.解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。

排列组合问题解法大全

排列组合问题解法大全

排列组合问题解法大全一.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种。

二.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 三.特殊元素或特殊位置优限法:优先解决带限制条件的元素或位置,或说“先解决特殊元素或特殊位置”例3.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A =种. 四.分组分配:n 个不同元素按照某些条件分配给k 个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n 个不同元素按照某些条件分成k 组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。

分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。

1.基本的分组问题例4 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法? (1)每组两本.(2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本.分析:(1)分组与顺序无关,是组合问题。

排列组合问题的分类解法

排列组合问题的分类解法
添加标题
应用场景:适用于排列组合问题中,当问题的条件较为复杂,难以直接计算时,可以通过构造法来寻找解决方案。
添加标题
注意事项:构造法需要有一定的数学基础和思维灵活性,同时要注意构造的合理性和正确性。
方程法
定义:通过建立方程来表示排列组合问题中的数量关系
适用范围:适用于具有明显数量关系的问题,如分组、排列等
步骤:分析问题,列出所有可能的选项;根据题意和条件,逐一排除不可能的选项;剩下的选项即为正确答案。
注意事项:排除法只适用于选项之间存在明显差异或可以通过逻辑推理排除某些选项的情况;对于一些复杂问题,可能需要结合其他方法一起使用。
03
排列与组合的综合问题
混合法
添加标题
添加标题
添加标题
添加标题
解题思路:先对元素进行排列,再对排列后的结果进行组合
应用场景:排列与组合的综合问题
步骤:首先假设与原命题相矛盾的结论,然后通过推导证明该结论与已知条件相矛盾,最后得出原命题的正确性。
注意事项:在应用反证法时,需要注意假设的合理性和推导的严密性,避免出现逻辑上的漏洞。
汇报人:XX
感谢您的观看
添加项标题
隔板法
解题步骤: a. 将n个不同元素排成一列,共有n-1个空隙 b. 在这些空隙中插入(m-1)个隔板,将元素分成m组 c. 从每组中取出r个元素,共有C(n,r)种取法
排除法
定义:排除法是一种通过排除不可能的选项来找出正确答案的解题方法。
应用场景:适用于选项之间存在明显差异或可以通过逻辑推理排除某些选项的情况。
示例:5个不同的苹果和3个不同的香蕉,需要将苹果捆在一起,有多少种不同的排法?
定义:将两个或多个元素视为一个整体,然后与其他元素进行排列

排列组合全部20种方法

排列组合全部20种方法

排列组合全部20种方法排列组合解法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习、 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略2、7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.2练习、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略4、7人排队,其中甲乙丙3人顺序一定共有多少不同的排法?练习、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略5、把6名实习生分配到7个车间实习,共有多少种不同的分法34练习1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略6、 8人围桌而坐,共有多少种坐法?练习、 6颗颜色不同的钻石,可穿成几种钻石圈?七.多排问题直排策略7、8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法?前 排后 排一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形一般地,元素分成多排的排列问练习、有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略8、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解决排列组合混合问题,先选后排是最基本的练习、一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有种九.小集团问题先整体后局部策略9、用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多5少个?小集团排列问题中,先整体后局练习、1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种十.元素相同问题隔板策略10、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n练习题:1.10个相同的球装5个盒中,每盒至少一有多少装6法?2 .100+++=求这个方程组的自然数解的组数?x y z w十一.正难则反总体淘汰策略11、从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?有些排列组合问题,正面直接考虑比较复练习、我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略12、 6本不同的书平均分成3堆,每堆2本共有多少分法?7平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以(为均分的组数)练习题:1、将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2、10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法3、某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法解含有约束条件的排列组合问题,可按元素的性8练习:1、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有2、3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.十四.构造模型策略14、马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?一些不易理解的排列组合题如果能转化为非常熟练习、某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?910十五.实际操作穷举策略15、设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法练习1、同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? 2、给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 种十六. 分解与合成策略16、 30030能被多少个不同的偶数整除对于条件比较复杂的排列组合问题,不易用公式进54321练习:正方体的8个顶点可连成多少对异面直线十七.化归策略17、 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?练习、某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少种?分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐处理复杂的排列组合问题时可以把一个问题退化成一个简要BA十八.数字排序问题查字典策略18、由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是十九.树图策略19、3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______练习: 分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i )的不同坐法有多少种? 二十.复杂分类问题表格策略20、有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从中取5只,要求各字母均有且三数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据对于条件比较复杂的排列组合问题,不易用公式色齐备,则共有多少种不同的取法一些复杂的分类选取题,要满足的条件排列组合解法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

怎样求解排列组合问题

怎样求解排列组合问题

探索探索与与研研究究排列组合问题常以填空题或选择题的形式出现在各类试题中,通常要求一些元素的排列数.这类问题的难度不大,却是出错率较高的一类题目.本文重点谈一谈求解排列组合问题的几种常用方法.一、插空法插空法是指把一些要求不相邻的元素插入其他已排列好的元素之间的间隙中,进而求得这些元素的排列数.若要求M 个元素中的n 个元素不相邻,则需先安排没有要求的M -n 个元素,有A M -nM -n 种可能的情况;然后把要求不相邻的n 个元素插入M -n 个元素之间的M -n -1空隙和两端的位置中,有A nM -n +1种可能的情况;最后根据分步计数原理计算,可得总共有A M -n M -n A n M -n +1种可能的情况.例1.4名男生和6名女生排成一排,要求男生不相邻,且不站在队伍的两端,则共有____种排法.分析:4名男生不相邻,且不站在队伍的两端,需采用插空法,先将没有要求的其他6名女生排好,这6名女生之间就有5个空位,再将4名男生插入这5个空位中,就能确保4名男生不相邻,且不站在队伍的两端.解:6个女生排成一排共有A 66种排法,把4个男生放在6个女生中间的5个空位中,有A 45种排法,根据分步计数原理可得,满足要求的排法有A 66A 45=86400种.例2.一条长街上原有6个路灯,假设保持这几个路灯的相对顺序不变,再多安装3个路灯,则一共有多少种不同的安装方法?分析:要保持原来的6个路灯的相对顺序不变,就需采用插空法求解.原来6个路灯的中间空隙和两端共有7个空位,先将一个路灯插入,那么此时7个路灯的中间空隙和两端共有8个空位,再插入第二个路灯,那么此时8个路灯的中间空隙和两端共有9个空位,将最后一个路灯插入,最后利用乘法计数原理求解即可.解:原来6个路灯的中间空隙和两端共有7个空位,将其中一个路灯插入这些空位中,则A 17=7种方法;7个路灯的中间空隙和两端共有8个空位,再插入第二个路灯,有A 18=8种方法;8个路灯的中间空隙和两端共有9个空位,将最后一个路灯插入,有A 19=8种方法,由乘法计数原理可得,共有A 17⋅A 18⋅A 19=504种不同的安装方法.二、隔板法隔板法适用于求解一些相同元素的分组问题.若要将n 个相同的元素分成m 组,需将m -1个板插入n 个元素之间的n -1空隙中,使其分为m 组,则共有C m -1n -1种分法.例3.将7个相同的小球放入4个不同的盒子中,则每一个盒子至少有1个小球的放法有_____种.分析:7个小球相同,要将其放入4个不同的盒子中,只需采用隔板法,在7个小球之间的6个空位中随意插入3块隔板,将小球分成4组,再将其放入4个盒子中即可.解:7个小球之间有6个空位,将3个隔板插入,便把7个小球分成4份,有C 36=20种分法,故使每个盒子至少有1个小球的不同分法共有20种.例4.体育老师将10个完全相同的篮球分给7个小组,要使每个小组至少有1个篮球,则一共有多少种分配方案?分析:10个篮球完全相同,要将其分给7个小组,需采用隔板法,将10个篮球排成一排,在篮球之间的空隙中插入6块隔板,就能将篮球分为7份,且使每一份中至少有一个篮球.解:将10个篮球排成一排,那么在篮球之间形成9个空隙中,插入6块隔板,就将篮球分为7份,有C 69=84种分法,所以一共有84种分配方案.三、优先法优先法适用于求解某个或某些元素有特殊要求的排列组合问题.优先法有两种:特殊位置优先法和特54探索探索与与研研究究殊元素优先法.采用优先法解题,要先明确哪些元素或位置有特殊要求,然后优先对特殊元素、位置进行排列,最后再安排没有特殊要求的元素的排列顺序.例5.从6人中选取4人对每道生产程序进行检验,若第1道生产程序只能由甲、乙两人完成,第4道生产程序只能由甲、丙两人完成,则共有______种不同安排的方案.分析:问题对甲、乙、丙都有特殊要求,其中甲的情况较为复杂,需分三种情况:(1)检验第1道生产程序;(2)检验第4道生产程序;(3)既不检验第1道生产程序,也不检验第4道生产程序.分别求得各种情况下的安排方法数,再根据分类计数原理和分布计数原理进行求解。

排列组合全部20种方法

排列组合全部20种方法

排列组合解法解决排列组合综合性问题的一般过程如下:1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行, 确定分多少步及多少类。

3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一. 特殊元素和特殊位置优先策略1、由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.练习、7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法二.相邻元素捆绑策略2、7 人站成一排, 其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习、某人射击8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为三.不相邻问题插空策略3、一个晚会的节目有4个舞蹈,2 个相声,3 个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目. 如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略4、7人排队, 其中甲乙丙3人顺序一定共有多少不同的排法练习、10人身高各不相等, 排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法五.重排问题求幂策略5、把6名实习生分配到7 个车间实习, 共有多少种不同的分法练习1.某班新年联欢会原定的 5 个节目已排成节目单,开演前又增加了两个新节目. 如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8 名乘客人, 他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略6、8 人围桌而坐, 共有多少种坐法一般地,n 个不同元素作圆形排列, 共有(n-1)! 种排法. 如果从n 个不同元素中取出m个元素作1圆形排列共有1An mn练习、 6 颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略7、8 人排成前后两排, 每排 4 人, 其中甲乙在前排,丙在后排,共有多少排法练习、有两排座位,前排11 个座位,后排12 个座位,现安排 2 人就座规定前排中间的 3 个座位不能坐,并且这 2 人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略8、有5个不同的小球, 装入 4 个不同的盒内, 每盒至少装一个球, 共有多少不同的装法.练习、一个班有 6 名战士, 其中正副班长各 1 人现从中选 4 人完成四种不同的任务, 每人完成一种任务, 且正副班长有且只有 1 人参加, 则不同的选法有种九. 小集团问题先整体后局部策略9、用 1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹 少个练习、1. 计划展出 10 幅不同的画 , 其中 1 幅水彩画 , 4幅油画 , 5幅国画 , 排成一行陈列 , 要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5 男生和5女生站成一排照像 ,男生相邻 ,女生也相邻的排法有 种十. 元素相同问题隔板策略10、有 10个运动员名额,分给 7个班,每班至少一个 , 有多少种分配方案将 n 个相同的元素分成 m 份(n ,m 为正整数) , 每份至少一个元素 ,可以用 m-1块隔板, 插入 n 个元素排成一排的 n-1 个空隙中,所有分法数为 C n m 11练习题:1. 10 个相同的球装 5 个盒中 , 每盒至少一有多少装法2 . x y z w 100 求这个方程组的自然数解的组数十一 .正难则反总体淘汰策略11、从 0,1,2,3,4,5,6,7,8,9 取法有多少种有些排列组合问题 , 正面直接考虑比较复杂 , 而它的反面往往比较简捷 , 可以先求1, 5在两个奇数之间 , 这样的五位数有多这十个数字中取出三个数,使其和为不小于 10 的偶数 , 不同的练习、我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种十二.平均分组问题除法策略12、 6 本不同的书平均分成 3 堆,每堆 2 本共有多少分法练习题:1、将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法2、10 名学生分成3组,其中一组 4 人, 另两组 3 人但正副班长不能分在同一组,有多少种不同的分组方法3、某校高二年级共有六个班级,现从外地转入 4 名学生,要安排到该年级的两个班级且每班安排 2 名,则不同的安排方案种数为_____十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目有多少选派方法解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做练习:1、从 4 名男生和 3 名女生中选出 4 人参加某个座谈会,若这 4 人中必须既有男生又有女生,则不同的选法共有2、3 成人 2 小孩乘船游玩,1 号船最多乘 3 人, 2 号船最多乘 2 人,3 号船只能乘1人,他们任选2只船或 3 只船, 但小孩不能单独乘一只船, 这3人共有多少乘船方法.十四.构造模型策略14、马路上有编号为1,2,3,4,5,6,7,8,9 的九只路灯, 现要关掉其中的 3 盏, 但不能关掉相邻的 2 盏或 3 盏, 也不能关掉两端的2盏, 求满足条件的关灯方法有多少种一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒练习、某排共有10个座位,若 4 人就坐,每人左右两边都有空位,那么不同的坐法有多少种十五.实际操作穷举策略15、设有编号1,2,3,4,5 的五个球和编号1,2,3,4,5 的五个盒子,现将 5 个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同, 有多少投法对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收练习1、同一寝室 4 人,每人写一张贺年卡集中起来, 然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种2、给图中区域涂色,要求相邻区域不同色, 现有4种可选颜色, 则不同的着色方法有种十六. 分解与合成策略16、30030 能被多少个不同的偶数整除练习: 正方体的8 个顶点可连成多少对异面直线分解与合成策略是排列组合问题的一种最基本的解题策略, 把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构, 用分类计数原理和分步计数原理将问题合成, 从而得到十七.化归策略17、25 人排成5×5 方阵, 现从中选 3 人, 要求 3 人不在同一行也不在同一列, 不同的选法有多少种处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,练习、某城市的街区由12 个全等的矩形区组成其中实线表示马路,从 A 走到的最短路径有多少种十八.数字排序问题查字典策略18、由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105 大的数数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数, 根据分类计数原理求出其总数。

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二十种排列组合问题的解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标1.进一步理解和应用分步计数原理和分类计数原理.2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事.分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位,从1,3,5三个数中任选一个共有13C 排法;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种排法;最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法;∴由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的 种法?解:先种两种不同的葵花在不受限限制的四个花盒中共有24A 不同种法,再其它葵花有55A 不同种法,所以共有不同种法2545121201440A A =⨯=种不同的种法.二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排.由分步计数原理可得共有522522480A A A =种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20解:命中的三枪捆绑成一枪,与命中的另一枪插入未命中的四枪的空位,共有2520A =种不的情形.443例3.一晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原 节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7733A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法.(七个空位坐了四人,剩下3个空位按一定顺序坐下甲,乙,丙)思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有3474C A 方法.(先选三个座位坐下甲,乙,丙共有37C 种选法,余下四个空位排其它四人共有44A 种排法,所以共有3474C A 种方法.)练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?510C五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法 练习题:1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87六.环排问题直排策略如果在圆周上m 个不同的位置编上不同的号码,那么从n 个不同的元素的中选取m 个不同的元素排在圆周上不同的位置,这种排列和直线排列是相同的;如果从n 个不同的元素的中选取m 个不同的元素排列在圆周上,位置没有编号,元素间的相对位置没有改变,不计顺逆方向,这种排列和直线排列是不同的,这就是环形排列的问题.一个m 个元素的环形排列,相当于一个有m 个顶点的多边形,沿相邻两个点的弧线剪断,再拉直就是形成一个直线排列,即一个m 个元素的环形排列对应着m 个直线排列,设从n 个元素中取出m 个元素组成的环形排列数为N 个,则对应的直线排列数为mN 个,又因为从n 个元素中取出m 个元素的排成一排的排列数为mnA 个,所以mn mN A =,所以mnA N m =.即从n 个元素中取出m 个元素组成的环形排列数为m nA N m=.n 个元素的环形排列数为!(1)!n n A n N n n n===-例6. 8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆形展成直线其余7人共有(81)!7!-=种排法,即7!7654321840=⨯⨯⨯⨯⨯⨯= 种A B C D E AH G F练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.先排前4个位置,2个特殊元素有24A 种排法,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种排法.(排好后,按前4个为前排,后4人为后排分成两排即可)练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346解:由于甲乙二人不能相邻,所以前排第1,4,8,11四个位置和后排第1,12位置是排甲乙中的一个时,与它相邻的位置只能排除一个,而其它位置要排除3个,所以共有排列11116181417108238346C C C C +=+=八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数在1,5在两个奇数之间,这样的五位数有多少个?(注:两个偶数2,4在两个奇数1,5之间,这是题意,说这个结构不能被打破,故3只能排这个结构的外围,也就是说要把这个结构看成一个整体与3进行排列).解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排.相邻名额之间形成9个空隙.在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法.注:这和投信问题是不同的,投信问题的关键是信不同,邮筒也不同,而这里的问题是邮筒不同,但信是相同的.即班级不同,但名额都是一样的.一班二班三班四班七班10个相同的球装5个盒中,每盒至少一有多少装法? 49C2.100x y z w +++=求这个方程组的自然数解的组数 3103C十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法.这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的取法有1255C C ,和为偶数的取法共有123555C C C +.再淘汰和小于10的偶数共9种,符合条件的取法共有1235559C C C +-练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的 抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDE F,若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则222642C C C 中还有(AB,EF ,C D),(CD,AB,EF),(CD,EF ,AB)(E F,C D,AB),(EF,AB,CD)共有33A 种取法 ,而这些分法仅是(AB ,CD,EF)一种分法,故共有22264233C C C A 种分法. 练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?(544138422C C C A ) 2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法 (1540)3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______(2224262290C C A A =) 十三. 合理分类与分步策略 例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员.选上唱歌人员为标准进行研究只会唱的5人中没有人选上唱歌人员共有2233C C 种,只会唱的5人中只有1人选上唱歌人员112534C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类计数原理共有 22112223353455C C C C C C C ++种.解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。

相关文档
最新文档