滚动轴承常见故障及其振动信号特征

合集下载

滚动轴承故障及其诊断方法

滚动轴承故障及其诊断方法

频率为
fo

f Bo Z

1 (1 2
d Dm
) frZ
(4) 单个滚动体有缺陷时的特征频率:如果单个有缺陷的 滚动体每自传一周只冲击外环滚道(或外环)一次,则其 相对于外环的转动频率为
f RS

f
Bo

(Dm
d
d
)

1 (1 2
d2 Dm2
)
fr
Dm d
滚动轴承的特征频率
(5) 保持架与内外环发生碰磨的频率: 保持架碰外环的频率(等于单滚动体的外环通过频率)
以及轴承套圈在座孔中或轴颈 上微小相对运动造成的微振腐蚀 (是微动磨损与腐蚀协同作用的结果)
1滚动轴承异常的基本形式
(5).断裂
过高的载荷会可能引起轴承零件断裂。 磨削、热处理和装配不当都会引起残余应力, 工作时热应力过大也会引起轴承零件断裂。 另外,装配方法、装配工艺不当,也可能造成 轴承套圈挡边和滚子倒角处掉块。
因为滚动体滚而不滑,所以滚动体与内环滚道接触点A的
速度为
VA Vi
又因外环固定,所以滚动体与接触点C的速度为
VC 0
而滚动体中心B的速度(即保持架的速度)为
VB

1 2
V
A


2
(Dm
d)
fr
单个滚动体(或保持架)相对于外环的旋转频率为
f Bo
VB lm


2
(Dm

滚动体损伤振动情况
当滚动体产生损伤时,如剥落、点蚀等,缺陷部位通过内圈或外 圈滚道表面时会产生冲击振动。 在滚动轴承无径向间隙时,会产生频率为nZfRS(n=1,2,…) 的冲击振动。 通常滚动轴承都有径向间隙,因此,同内圈存在点蚀时的情 况一样,根据点蚀部位与内圈或外圈发生冲击接触的位置不同, 也会发生振幅调制的情况,不过此时是以滚动体的公转频率fm进 行振幅调制。这时的振动频率为nzfRS±fm,如图所示。

滚动轴承的故障诊断

滚动轴承的故障诊断

滚动轴承的故障诊断一、滚动轴承的常见故障滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。

据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。

滚动轴承的常见故障形式有以下几种。

1. 疲劳剥落(点蚀)滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。

严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。

疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。

然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。

轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。

2. 磨损润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。

磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。

3. 胶合胶合是一个表面上的金属粘附到另一个表面上去的现象。

其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。

通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。

胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。

4. 断裂轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。

5. 锈蚀锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。

滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法目录一、内容综述 (2)二、滚动轴承振动信号分析 (3)1. 滚动轴承工作原理及结构特点 (4)2. 振动信号产生机制 (5)3. 振动信号采集与处理 (6)三、齿轮振动信号分析 (7)1. 齿轮工作原理及故障类型 (8)2. 振动信号特征提取 (10)3. 齿轮故障识别与诊断 (11)四、滚动轴承与齿轮振动信号分析方法 (12)1. 时域分析 (13)2. 频域分析 (14)3. 时频域联合分析 (16)五、故障诊断方法 (17)1. 基于振动信号特征的故障诊断 (18)2. 基于模型的故障诊断 (20)3. 基于智能算法的故障诊断 (21)六、实验与应用实例 (22)1. 实验设计 (24)2. 实验结果与分析 (25)3. 应用实例介绍 (26)七、结论与展望 (28)1. 研究结论 (29)2. 展望未来发展趋势 (29)一、内容综述本文档旨在全面阐述滚动轴承和齿轮振动信号分析与故障诊断方法的研究现状、发展趋势及其重要性。

随着工业领域的快速发展,滚动轴承和齿轮作为机械设备中的关键部件,其运行状态的正常与否直接关系到整个系统的稳定性和效率。

针对滚动轴承和齿轮的振动信号分析以及故障诊断方法的研究具有极其重要的实际意义。

滚动轴承和齿轮的故障诊断主要依赖于振动信号分析,通过对振动信号的特征提取和模式识别,实现对设备状态的实时监测和故障诊断。

随着信号处理技术和人工智能技术的不断进步,滚动轴承和齿轮振动信号分析的方法日趋成熟,为设备的故障诊断提供了有力的技术支持。

本文首先概述了滚动轴承和齿轮的基本结构、工作原理及其在机械设备中的重要地位。

然后重点介绍了振动信号分析的基本原理和方法,包括信号采集、特征提取、模式识别等关键环节。

接着详细阐述了基于振动信号的故障诊断方法,包括传统方法如频谱分析、包络分析等,以及近年来新兴的基于机器学习和深度学习的诊断方法。

对滚动轴承和齿轮振动信号分析与故障诊断方法的未来发展趋势进行了展望。

滚动轴承的故障诊断PPT演示课件

滚动轴承的故障诊断PPT演示课件

诊断
磨屑
好 有 无 好 好 好 有 好 有 有 不可
方法
轴承间隙
无 无 无 好 好 有 无 无 无 无 不可
油膜电阻
无 无 无 好 好 好 好 有 无 无 可
滚动轴承故障诊断
15
各种诊断方法的灵敏度



号 强 度


缺 陷 故 障 界
分 析 灵 敏 度

噪 声
灵 敏 度
测 温 分 析






轴承内部有锈蚀
滚动轴承故障诊断
7
轴承失效形式—点蚀
▪ 现象: 滚道面或滚动体表面 上有小坑和片状剥落
▪ 原因: 载荷过大 润滑不良 预载过大 间隙过小
滚动轴承故障诊断
8
轴承失效形式—压痕
▪ 现象: 滚道面上有滚动体的压痕
▪ 原因: 装配不当 静载荷过大 冲击载荷过大 异物侵入
滚动轴承故障诊断
9
轴承失效形式—烧伤、胶合
定义
Sf
xrm s x
Cf
xm ax xrm s
If
xm ax x
CL f
xm a x xr
Kv xr4ms
敏感性
差 一般 较好 好 好
稳定性
好 一般 一般 一般 差
表中:x -平均幅值, xr-方根幅值, -峭度
滚动轴承故障诊断
25
峰值指标用于轴承诊断
峰值指标Cf不受振动信号绝对大小的影响,适用于检测 滚动面剥落与裂纹等故障,但不适于检测磨损。
▪ 现象: 滚道面变色、软化、 熔合
▪ 原因: 转速过高 润滑不良 装配不当
滚动轴承故障诊断

齿轮和滚动轴承故障的振动诊断

齿轮和滚动轴承故障的振动诊断

齿轮和滚动轴承故障的振动诊断在现代工业中,齿轮和滚动轴承作为传动系统的重要元件,其运行状态直接影响着设备的稳定性和可靠性。

然而,由于负载、环境、材料等多种因素,这些元件在运转过程中常常会出现各种故障。

不及时诊断和维修,会对生产造成严重影响。

因此,本文将围绕齿轮和滚动轴承故障的振动诊断展开讨论,旨在为设备管理人员提供有益的参考。

齿轮故障主要是指齿轮在运转过程中出现的各种损伤或异常现象,如齿面磨损、齿面疲劳、断齿等。

这些故障主要源于设计缺陷、制造误差、装配不当、润滑不良等因素。

根据故障性质,齿轮故障可分为突发性故障和渐发性故障。

滚动轴承故障主要是指轴承元件在运转过程中出现的各种损伤或异常现象,如滚珠磨损、滚珠疲劳、保持架损坏等。

这些故障主要源于设计缺陷、制造误差、装配不当、润滑不良等因素。

根据故障性质,滚动轴承故障可分为初期故障、稳定故障和疲劳故障。

齿轮和滚动轴承在传动系统中紧密,共同维持设备的正常运转。

然而,它们出现的故障却有所不同。

齿轮故障主要表现为齿面磨损、变形等,而滚动轴承故障则主要表现为滚珠、保持架等元件的磨损、疲劳等。

齿轮故障通常在较大的冲击载荷下发生,而滚动轴承故障则通常在长时间的平稳载荷下逐渐出现。

振动诊断是通过采集设备在运行过程中的振动数据,分析其特征和规律,以此判断设备是否存在故障以及故障的性质和程度。

通过振动诊断,可以及早发现潜在的故障隐患,防止设备在生产过程中出现停机或损坏,从而提高设备的可靠性和稳定性。

针对齿轮故障的振动诊断,可以通过采集齿轮箱体或轴承座的振动信号,分析其频谱特性和时域波形。

通过比较正常状态和故障状态下的振动数据,可以判断出齿轮是否存在故障以及故障的性质和程度。

还可以采用共振解调技术、波形分析技术等方法,进一步提高诊断的准确性和可靠性。

针对滚动轴承故障的振动诊断,可以通过采集轴承座或设备的振动信号,分析其频谱特性和时域波形。

通过比较正常状态和故障状态下的振动数据,可以判断出滚动轴承是否存在故障以及故障的性质和程度。

滚动轴承故障诊断

滚动轴承故障诊断

滚动轴承故障诊断初步1、故障原因滚动轴承的早期故障是滚子和滚道剥落、凹痕、破裂、腐蚀和杂物嵌入。

即主要故障形式:疲劳剥落、磨损、塑性变形、锈蚀、断裂、胶合、保持架损坏。

产生主要原因包括搬运粗心、安装不当、不对中、轴承倾斜、轴承选用不正确、润滑不足或密封失效、负载不合适以及制造缺陷。

2、频谱和波形特征滚动轴承它是由内圈、外圈、滚动体和保持架四部分组成。

当滚动体和滚道接触处遇到一个局部缺陷时,就有一个冲击信号产生。

缺陷在不同的元件上,接触点经过缺陷的频率是不相同的,这个频率就称为滚动轴承的特征频率。

滚动轴承的故障特征频率的数值一般在几赫兹到几百赫兹之间,在频谱图中的1000Hz以内的低频区域轴承故障特征频率如下:1、滚动轴承故障特征频率(外圈静止)式中:Z——滚动体个数fr——转频(Hz)D——轴承节径(mm)d——滚动体直径(mm)α——接触角(1)滚动轴承内圈故障特征频率(2)滚动轴承外圈故障特征频率(3)滚动轴承滚动体特征频率(4)滚动轴承保持架特征频率2、滚动轴承故障特征频率的计算经验公式:二、滚动轴承故障诊断的要素滚动轴承由内圈、外圈、滚动体和保持架四部分组成,每个轴承部件对应一个轴承故障特征频率。

滚动轴承的故障频率分布有一个明显的特点,往往在低频和高频两个频段内都有表现。

所以在频率分析时,可以选择在这两个频段进行分析。

根据滚动轴承的故障形式在频域中的表现形式,将整个频域分为三个频段,既高频段、中频段和低频段。

l 高频阶段指频率范围处于2000-5000Hz 的频段,主要是轴承固有频率,在轴承故障的早期,高频段反映比较敏感;中频阶段指频率范围处于800-1600Hz 的频段,一般是由于轴承润滑不良而引起碰磨产生的频率范围;l 低频阶段指频率范围处于0-800Hz 的频段,基本覆盖轴承故障特征频率及谐波;在高频段和低频段中所体现的频率是否为轴承故障频率,还要通过其他方法进行印证加以确认。

根据滚动轴承的故障特征频率在频域和时域中的表现,可将滚动轴承的诊断方法总结为三个频段;八个确认,简称三八诊断法。

滚动轴承振动信号处理及特征提取方法研究共3篇

滚动轴承振动信号处理及特征提取方法研究共3篇

滚动轴承振动信号处理及特征提取方法研究共3篇滚动轴承振动信号处理及特征提取方法研究1滚动轴承振动信号处理及特征提取方法研究随着工业自动化的推进和智能化的发展,机械设备的使用率越来越高,滚动轴承作为最常用的机械元件之一,其使用寿命的长短直接关系到整个机械设备的寿命。

如果能够在使用前预测轴承故障的发生,及时进行维护,就可以极大地提高设备的可靠性和使用寿命。

因此,如何对滚动轴承进行振动信号处理及特征提取成为了机械故障预测领域的热门研究方向。

滚动轴承的振动信号可以通过加速度、速度、位移等参数来表征。

振动信号处理的基本内容包括数据采集、滤波、去噪、分析和特征提取等步骤。

数据采集是为了获取原始振动信号,通常使用加速度传感器将振动信号转换成电信号采集下来。

然后对采集到的振动信号进行滤波和去噪处理来消除环境噪声和其他信号干扰,以便于分析和提取轴承特征信息。

在分析振动信号时,需要从几个方面入手。

首先是时域分析,通过对振动信号的时间序列进行统计分析,可以得到均值、方差、峰值、波形等信息。

其次是频域分析,可以将时域信号转化为频域信号来分析频率分布特征。

最后是时频域分析,可以将振动信号拆分成多个小时间段,然后在每个时间段内进行频域分析,进一步揭示振动信号的时变特性。

特征提取是对振动信号分析的最核心步骤。

特征提取旨在从振动信号中提取出对轴承状态诊断有意义的特征量,以实现机械设备健康状态的检测和故障诊断。

目前常用的特征量包括时域特征、频域特征、时频域特征等。

时域特征包括均值、方差、峰值、脉冲因子、裕度因子等;频域特征包括能量、均值频率、频率幅值、谱峰等;时频域特征包括小波包能量特征、小波包熵特征与小波包谱能量特征等。

总之,滚动轴承的振动信号处理及特征提取是机械预测维护的重要内容,其研究对于提高机械设备的可靠性和使用寿命具有重要的意义。

未来,随着新技术的不断引入和发展,机械故障诊断和维护模式也将不断升级,从而为滚动轴承振动信号处理及特征提取的研究提供更加广泛和多样化的应用场景滚动轴承是工业生产中不可或缺的机械零件,但其长期运行可能会受到各种因素的干扰而导致故障,因此开展振动信号处理及特征提取研究对于机械设备的预测维护具有重要的意义。

滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法目录一、内容简述 (2)1. 相对介绍 (3)2. 重要性和研究背景 (4)3. 文档结构 (6)二、滚动轴承和齿轮的工作原理 (7)1. 滚动轴承结构与工作原理 (8)2. 齿轮结构与工作原理 (10)三、振动信号分析方法 (11)1. 时域分析 (13)1.1 振幅分析 (14)1.2 相位分析 (15)1.3 autocorrelation函数分析 (16)1.4 其他时域分析方法 (18)2. 频域分析 (20)3. 统计特性分析 (21)四、滚动轴承和齿轮的常见故障类型及其特征 (22)1. 滚动轴承故障 (24)1.1 轴承滚动体磨损 (25)1.2 轴承内圈/外圈损坏 (27)1.3 轴承滚道损伤 (28)2. 齿轮故障 (29)五、滚动轴承和齿轮故障诊断方法 (30)1. 基于时域分析的故障诊断方法 (31)2. 基于频域分析的故障诊断方法 (33)2.1 特点峰值识别 (34)2.2 基于经验模态分解 (35)3. 基于机器学习的故障诊断方法 (37)3.1 支持向量机 (38)3.2 神经网络 (NN) (40)3.3 其他机器学习算法 (41)六、实验验证与案例分析 (43)1. 实验平台搭建 (44)2. 仿真数据分析 (45)3. 实际工程案例分析 (46)七、结论与展望 (48)1. 研究成果总结 (49)2. 未来研究方向 (50)一、内容简述本文档旨在系统化介绍滚动轴承和齿轮振动信号的分析方法及其在故障诊断中的应用。

通过对这些关键机械组件的基础振动行为进行分析,我们旨在开发高效准确的诊断工具,用以预测和识别潜在的机械故障。

文档分为几个主要部分:引言本部分阐述了滚动轴承和齿轮在机械系统中的重要性,以及振动分析和故障诊断在维护实践中的作用。

我们还强调了目前的研究趋势和技术挑战。

滚动轴承振动理论在这一章节,我们将详细讨论滚动轴承的振动特性,包括基础振动模型、不同类型的滚动轴承及其振动行为,以及振动信号的物理意义。

基于振动信号的滚动轴承故障诊断与预测.

基于振动信号的滚动轴承故障诊断与预测.

机械工程学院
明德 砺志 博学 笃行
机械工程学院
明德 砺志 博学 笃行
机械工程学院
明德 砺志 博学 笃行
机械工程学院
明德 砺志 博学 笃行
机械工程学院
明德 砺志 博学 笃行
信号提取处理
去噪和降噪是机械振动研究领域的一项重要课题,现实情况下所采集到 的振动信号都不可避免的掺杂了噪声,受到噪声的干扰,有些情况下甚 至原始真实信号湮没于强大的噪声中,造成信息提取的困难,影响到后 期故障诊断分析。因此,机械设备状态监测和故障诊断过程中,一般要 对测得的振动信号进行前期处理以滤除噪声或降低噪声的强度、减小其 干扰,使信号尽可能接近目标监测对象的真实振动,便于提取真实信号 的特征值用于故障诊断。
机械工程学院
明德 砺志 博学 笃行
滚动轴承的故障诊断方法
滚动轴承的振动信号分析故障诊断方法分为简易诊断和精密 诊断两种: 简易诊断:的目的是初步判断被列为诊断对象的滚动轴承是 否出现了故障;精密诊断的目的是要判断在简易诊断中被认 为是出现故障轴承的故障类别及原因。由于滚动轴承自身的 特点,一旦损坏,普通维修很难修复,大多采用更换的维修 方式进行处理; 精密诊断:主要作用是理论研究和在特殊场合(例如无配件 的情况下)判定设备能够坚持运行的时间。提高设备的使用 效率。所以一般情况我们采用轴承简易诊断方法就可以满足 日常设备维护的需要。因此下面我重点介绍轴承的简易诊断 法。
滚动轴承振动机理与特征频率分析
滚动轴承振动原理图
机械工程学院
明德 砺志 博学 笃行
滚动轴承特征频率分析
为分析轴承各部分的运动参数,做如下假设: (l)滚道与滚动体之间无相对滑动; (2)承受径向、轴向载荷时各部分无变形; (3)内圈滚道回转频率为 fi; (4)外圈滚道回转频率为 fo; (5)保持架回转频率,即滚动体公转频率,为 fc。 根据速度v=2πrf,分别得到轴承内外圈及保持架上 的速度。 Vi,Vo,Vc.

滚动轴承故障频谱特征分析

滚动轴承故障频谱特征分析

发电厂中的滚动机械很多,作为重要部件的滚动轴承广泛用于电厂各类机械驱动系统中。

滚动轴承的作用是将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失,是一种精密的机械元件。

滚动轴承具有使用维护方便,工作可靠,起动性能好,在中等速度下承载能力较高等优势,也有减振能力较差,高速时寿命低,声响较大等劣势。

工作中的滚动轴承即使润滑良好,安装正确,防尘防潮严密,运转正常,最终也会因为滚动接触表面的疲劳而失效。

滚动轴承的损坏会导致机械系统出现故障,严重情况下甚至会造成人身伤害。

为保证机械系统的正确运行以及人身安全,需要采取有效的轴承故障分析方法,尽早发现故障以采取应对措施。

一、滚动轴承常见故障1.磨损。

滚动轴承内滚道与滚动体的相对运动会产生磨损;多尘环境中外界的尘土、杂质侵入到轴承内,也会使滚道与滚动体表面产生磨损;润滑不良,还会产生黏着磨损,这种黏着磨损随着轴承转速越高会日益加剧。

还有一种微振磨损,即滚动轴承不旋转但出于振动中时,滚动体与滚道接触面间存在往复的微小滑动,在滚道上产生波纹状的磨痕。

磨损产生后,表面粗糙度增大,轴承游隙加大,运动精度降低,噪声和振动都会增强。

2.疲劳剥落。

工作时轴承滚动体表面与滚道由于交变载荷的作用,先在轴承表面下一定深度处产生裂纹,裂纹逐步扩展至接触表层产生剥落坑,随着时间的增长剥落坑进一步增大会导致滚动体或滚道的局部表层金属大面积剥落,使轴承产生振动和噪声。

3.腐蚀。

当有电流通过滚动轴承内部时,滚动体和滚道间接触点处引起火花使轴承表面局部熔融,产生波纹状凹凸不平;水分、空气水分的直接侵入滚动轴承也会引起轴承表面的锈蚀。

此外,轴承套圈在轴颈或座孔中的微小相对运动也会造成微振腐蚀。

4.塑性变形。

热变形引起的额外载荷、过大的静载荷或冲击载荷、高硬度异物的侵入等情况的发生,会在滚动轴承滚道表面形成划痕或不均匀的凹痕,压痕产生后会进一步加大冲击载荷引起附近表面的剥落,引起轴承塑性变形,进一步加剧轴承振动和噪声。

滚动轴承故障振动信号组成

滚动轴承故障振动信号组成

滚动轴承故障振动信号的组成主要包括以下部分:
1.正常故障模式:轴承的安装、润滑及维护良好的情况下,内外圈或滚动体遭
到点蚀损坏。

这是由于重复受到大量变化的应力导致的。

轴承因点蚀而损坏时,在运行过程中通常会产生强烈的振动、噪声和热量。

2.非正常故障模式:由于轴承安装不当、润滑和维护不良引起的其他故障模式。

例如,当润滑油不足时,轴承烧伤,润滑不良导致轴承表面直接接触或异物掉落导致过度接触,轴承因装配不当而损坏,内圈破损,内外圈和保持架被挤碎。

滚动轴承的特征频率:
1.滚动体在外圈滚道上的通过频率zfc为:
2.zfc=2π(d/2r1)fi=πfi(D-dcosa)
3.滚动体在内圈滚道上的通过频率Zfic为:
4.Zfic=2π(d/2r1)fO=πfO(D+dcosa)
5.保持架上的通过频率(即滚动体自转频率fbc)为:
6.fbc=1/2(Vi+VO)=πfcD。

滚动轴承的常见故障及损坏征状

滚动轴承的常见故障及损坏征状
良 , 4轴 或润 滑油 不符 合 要求 , 以及轴 承间隙调 得过小, 轴承工作 时迅速发 热, 工作 表面 因受 高温而退 火 。在外 表观察 时 , 可发 现工 作表 面 的颜色 发生 变化 。 () 5 塑性 变形 。轴 承 的 滚 道 与滚 子 接 触 面 上 出 现 不均匀 的凹坑 , 明轴 承产 生 塑性 变 形 。其 原 因 说 是轴承在很大的静载荷或冲击载荷作用下 , 工作表 面的局部 应 力超过 材 料 的屈 服 极 限 , 种 情 况一 般 这 发 生在低 速旋 转 的轴 承上 。 () 6 轴承 座圈裂 纹 、 持架碎 裂 。轴承 座 圈产生 保 裂 纹 的原 因可能是 轴 承 配合 过 紧 , 承 外 圈 或 内 圈 轴 松 动 , 承 的包容 件 变形 , 轴 安装 轴承 的表 面加 工不 良 等。保持架碎裂其原因是润滑不足 , 滚动体破碎 , 座 圈歪斜等。座圈滚 道严重磨损 , 可能是座圈 内落人 异物 , 润滑 油不 足或 润滑油 牌号不适 。 承疲劳时, 其表面金属剥落 , 也会使轴承径向间隙增 滚动轴承的故障规律 : 大产生异 响 。此 外 , 承 润 滑 不足 , 成干 摩擦 , 轴 形 以 滚 动 轴承 的运行 状态在 一般使 用过 程 中有一定 及轴 承破碎等 都会产 生异 常 的声 响。轴 承磨损松 旷 的规律性 , 且 重 复 性 较 好 , 并 一套 新 轴 承 开 始 使 用 后 , 持架松 动损坏 , 保 也会 产生 异 响 。 时 , 动值 和 噪声 都 较 小 , 时 开始 时 温 度 有 点高 , 振 有 常见滚 动轴承 的损坏 征状 有 如下几 点 : 频谱有些乱 , 这可能是制造时的一些小缺陷。运行 () 1承受负荷的内外圈、 滚动体( 滚珠、 滚柱等) 段 时 间后 , 承状 态就会 稳定 , 经 过一段 时 间后 轴 再 表面磨损和剥落。造成滚动轴承 的径 向间隙、 向 轴 振动 就会 缓慢增 大 , 时 就要 严 密 监 测 , 意 变化 。 这 注 间 隙增大 , 动轴 承在工 作 中发 出噪声 和发热 , 滚 并且 当振 动超 标 时就要 及时检修 , 更换 轴 承 。 破坏 了与其 配合 轴 的正 确 工 作 位 置 , 现振 动 。表 出 如继 续运 行 , 间很短 就会发 生抱 轴 、 持 架散 时 保 面疲 劳剥落 的初期 是 表 面 上 出现 麻 点 状 的小 凹坑 , 裂 、 滚道和滚珠磨损事故 , 这多为假 冒伪劣轴承 , 这 最后发展成片状的表层脱落。 类 轴承造 成事 故往 往是 突发 的 、 难性 的 , 类 轴承 灾 这 轴承滚 动体 和 内 、 圈滚 道 面 上 均承 受 周期 性 新安装试车时噪声较大, 外 用测振仪测量 时振 幅和速 脉动 载荷 的作用 , 而 产 生 周 期 变 化 的接 触 应 力 。 从 度 都在标 准之 内 , 加 速度 较 大 。判 断 时还 要 和 平 但 当应力循环次数达到一定数值后 , 在滚动体或内、 外 时 的监测 数据 作 比较 。 圈滚道 工作 面上 就产生 疲 劳剥落 。如果 轴 承的负荷 在 实际监 测 中 , 往往 要迅速 判断 滚动轴 承好 坏 、 过大, 会使 这种 疲 劳加 剧 。 另外 , 承 安 装 不正 、 轴 轴 能用 多长 时 间 , 般 当振 幅 、 度 、 速度 和 温度 任 一 速 加 弯曲 , 会产生 滚道 剥 落 现 象 。轴 承 滚道 的疲 劳剥 意 两个值 超标 , 也 就可 以判 断轴 承有 问题 。另外 , 当监 落会降低轴的运转精度, 使机构发生振动和噪声。 测设备出现故障信号时 , 还要排 除非轴承产 生的振 () 承 内外 圈 的配 合 表 面磨 损 。 由于 轴 承 内 源 , 才能客 观 的反映滚 动轴 承真实 情况 。 2轴 这 外圈与 轴和壳 体孔装 配 时 没 有 配 合好 , 破坏 了轴 承 对 于滚 动轴 承来 说 , 障诊 断 的监 测手 段 多 种 故 与壳体 、 轴承与轴的配合关系 , 进一步加速了轴承本 多样 , 如温 度 、 位移 、 度 、 速 加速 度 、 滑油 的形 态等 , 润 身和与之配合的轴或壳体上配合表 面磨损( 俗称走 每种方法对不同故障的敏感度不同。在条件和检测 内圈或走外 圈) 。 手段 已经 限定 的条件 下 , 择最 有 效 的手段 和参 量 选 () 3 滚动轴 承隔 离 圈磨 损 和松 旷。在 工 作 中隔 可提 高诊 断 的准 确性 , 了解 滚 动轴 承 的 故 障性 质 在 离 圈和滚 动 体 ( 珠 、 柱 等 ) 互 摩 擦 , 润 滑 不 和其 可诊 断性 的关 系后 , 以客 观地 判 断 轴 承 的状 滚 滚 相 若 可 良, 加快磨 损 。隔离 圈磨 损 以后 , 动体 松 动 , 则 滚 严 态 。 (2 0) 重时会造成隔离圈散架 , 滚动体脱落。

滚动轴承的振动机理与信号特征

滚动轴承的振动机理与信号特征

滚动轴承的振动机理与信号特征滚动轴承的振动可由外部振源引起,也可由轴承本身的结构特点及缺陷引起。

此外,润滑剂在轴承运转时产生的流体动力也可以是振动(噪声)源。

上述振源施加于轴承零件及附近的结构件上时都会激励起振动。

一、滚动轴承振动的基本参数1.滚动轴承的典型结构滚动轴承的典型结构如图1所示,它由内圈、外圈、滚动体和保持架四部分组成。

图1 滚动轴承的典型结构图示滚动轴承的几何参数主要有:轴承节径D:轴承滚动体中心所在的圆的直径滚动体直径d:滚动体的平均直径内圈滚道半径r1:内圈滚道的平均半径外圈滚道半径r2:外圈滚道的平均半径接触角α:滚动体受力方向与内外滚道垂直线的夹角滚动体个数Z:滚珠或滚珠的数目2.滚动轴承的特征频率为分析轴承各部运动参数,先做如下假设:(1)滚道与滚动体之间无相对滑动;(2)承受径向、轴向载荷时各部分无变形;(3)内圈滚道回转频率为fi;(4)外圈滚道回转频率为fO;(5)保持架回转频率(即滚动体公转频率为fc)。

参见图1,则滚动轴承工作时各点的转动速度如下:内滑道上一点的速度为:Vi=2πr1fi=πfi(D-dcosa)外滑道上一点的速度为:VO=2πr2fO=πfO(D+dcosa)保持架上一点的速度为:Vc=1/2(Vi+VO)=πfcD由此可得保持架的旋转频率(即滚动体的公转频率)为:从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与d/2r1成反比。

由此可得滚动体相对于保持架的回转频率(即滚动体的自转频率,滚动体通过内滚道或外滚道的频率)fbc根据滚动轴承的实际工作情况,定义滚动轴承内、外圈的相对转动频率为一般情况下,滚动轴承外圈固定,内圈旋转,即:同时考虑到滚动轴承有Z个滚动体,则滚动轴承的特征频率如下:滚动体在外圈滚道上的通过频率zfoc为:滚动体在内圈滚道上的通过频率Zfic为:滚动体在保持架上的通过频率(即滚动体自转频率fbc)为:3.止推轴承的特征频率止推轴承可以看作上述滚动轴承的一个特例,即α=90°,同时内、外环相对转动频率为轴的转动频率fr,此时滚动体在止推环滚道上的频率为:滚动体相对于保持架的回转频率为:以上各特征频率是利用振动信号诊断滚动轴承故障的基础,对故障诊断非常重要。

滚动轴承故障诊断

滚动轴承故障诊断

类比判定标准
•对若干同一型号轴承在相同条件下在同一部位进行振动检测,并将
滚动轴承故障诊断振值相互比较进行判断标准
第33页
33
简易诊疗
振动信号简易诊疗法
振幅值诊疗法
• 振幅值指峰值、均方根值
滚动轴承故障诊疗 故障诊疗技术
• 峰值反应是某时刻振幅最大值,因而它适合用于像表面点蚀损伤之 类含有瞬时冲击故障诊疗;对于转速较低情况(如300r/min以下), 也常采取峰值进行诊疗
滚动轴承故障诊断
第28页
28
振动测量
传感器选择与固定方式
滚动轴承振动可能是频率为1kHz以下低频脉动,也 有可能是频率在1kHz以上,数千赫兹甚至数十千赫 兹高频振动,通常二者皆有
传感器获取信号应同时覆盖上述两个频带 传感器尺寸和重量应尽可能小 提议采取钢制螺栓固定
滚动轴承故障诊断
第29页
➢ 轴承结构特点引发振动 ➢ 轴承制造装配原因引发振动 ➢ 故障缺点引发振动
磨损 胶合 疲劳剥落损伤
滚动轴承故障诊断
第18页
18
振动原因分析---故障缺点引发振动(1)
滚动轴承故障诊疗 振动机理
轴承磨损
伴随磨损进行,振动加速度峰值和RMS值迟缓上升,振动信 号展现较强随机性
峰值与RMS值比值从5左右逐步增加到5.5~6
普通所说轴承寿命就是指轴承疲劳寿命
滚动轴承额定寿命
• 在滚道或滚动体上出现面积为0.5mm2疲劳剥落坑就认为轴 承寿命终止
• 同一批轴承中,最高寿命与最低寿命能够相差几十倍甚至 上百倍,所以正确诊疗轴承故障能够合理利用轴承寿命
滚动轴承故障诊断
第8页
8
常见故障形式
磨损

滚动轴承的振动机理与信号特征(1)

滚动轴承的振动机理与信号特征(1)

滚动轴承的振动机理与信号特征(1) 中国设备管理网(2005-06-13)文章来源:中国设备管理网滚动轴承的振动可由外部振源引起,也可由轴承本身的结构特点及缺陷引起。

此外,润滑剂在轴承运转时产生的流体动力也可以是振动(噪声)源。

上述振源施加于轴承零件及附近的结构件上时都会激励起振动。

一、滚动轴承振动的基本参数1.滚动轴承的典型结构滚动轴承的典型结构如图1所示,它由内圈、外圈、滚动体和保持架四部分组成。

图1 滚动轴承的典型结构图示滚动轴承的几何参数主要有:轴承节径D:轴承滚动体中心所在的圆的直径滚动体直径d:滚动体的平均直径内圈滚道半径r1:内圈滚道的平均半径外圈滚道半径r2:外圈滚道的平均半径接触角α:滚动体受力方向与内外滚道垂直线的夹角滚动体个数Z:滚珠或滚珠的数目2.滚动轴承的特征频率为分析轴承各部运动参数,先做如下假设:(1)滚道与滚动体之间无相对滑动;(2)承受径向、轴向载荷时各部分无变形;(3)内圈滚道回转频率为fi;(4)外圈滚道回转频率为fO;(5)保持架回转频率(即滚动体公转频率为fc)。

参见图1,则滚动轴承工作时各点的转动速度如下:内滑道上一点的速度为:V i=2πr1f i=πf i(D-dcosa)外滑道上一点的速度为:V O=2πr2f O=πf O(D+dcosa)保持架上一点的速度为:V c=1/2(V i+V O)=πf c D由此可得保持架的旋转频率(即滚动体的公转频率)为:从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与d/2r1成反比。

由此可得滚动体相对于保持架的回转频率(即滚动体的自转频率,滚动体通过内滚道或外滚道的频率)fbc根据滚动轴承的实际工作情况,定义滚动轴承内、外圈的相对转动频率为一般情况下,滚动轴承外圈固定,内圈旋转,即:同时考虑到滚动轴承有Z个滚动体,则滚动轴承的特征频率如下:滚动体在外圈滚道上的通过频率zfoc为:滚动体在内圈滚道上的通过频率Zfic为:滚动体在保持架上的通过频率(即滚动体自转频率fbc)为:3.止推轴承的特征频率止推轴承可以看作上述滚动轴承的一个特例,即α=90°,同时内、外环相对转动频率为轴的转动频率fr,此时滚动体在止推环滚道上的频率为:滚动体相对于保持架的回转频率为:以上各特征频率是利用振动信号诊断滚动轴承故障的基础,对故障诊断非常重要。

滚动轴承常见故障及其振动信号特征

滚动轴承常见故障及其振动信号特征

滚动轴承常见故障及其振动信号特征摘要:轴承为机械设备的关键部件之一,轴承损坏能直接影响设备正常运作,影响生产效率。

本文对轴承的常见故障原因及形式进行分析,并总结其故障检测方法和轴承在发生故障时的振动信号特征。

关键词:轴承故障振动信号及时对系统关键部件进行维修和更换可以在一定程度上避免系统工作过程中关键部件损坏带来的系统故障造成的经济损失和人员伤害。

滚动轴承为旋转机械的关键部件,其运行状态直接决定转动部件的效率和安全,本文总结了常见的滚动轴承故障种类和轴承故障检测方法,并对轴承振动信号特点进行分析。

本文对轴承故障的诊断和设备的维修提供参考作用,有助于实现对轴承故障的原因和种类的预先判断。

1 轴承故障形式及原因分析滚动轴承在工作过程中,由于装配不当、润滑欠缺、异物侵入或者超负荷运转等都可能引发轴承损坏,或者过载等都可能引发轴承损坏,或者长时间工作后产生疲劳剥落或者自然磨损导致系统故障。

常见的轴承故障可总结为损伤和磨损两大类。

常见的损伤类故障有疲劳剥落、塑性变形、轴承烧伤、锈蚀、断裂、胶合六种;磨损类故障为轴承长期正常工作引起的渐变性故障。

1.1 疲劳剥落滚动轴承发生故障的典型方式是其滚动接触发生单纯的疲劳剥落。

在工作中,轴承滚子和滚道接触面相对滚动的同时又互相挤压,加上周期交变载荷的作用,长时间工作后,轴承部件接触面将产生小的剥落坑,最终发展为大面积剥落,该现象称作疲劳剥落。

1.2 塑性变形当工作载荷过重时,由于滚动轴承承受的过大的冲击力和静载荷的原因,轴承滚道的表面上形成的不均匀凹坑,这种现象主要发生在低速旋转的轴承上。

另外由于热变形而引起的额外的载荷也可能使轴承产生塑性变形[1]。

1.3 断裂过大的负荷是轴承内部部件断裂的主要原因,另外工作过程中摩擦产生的热应力过大时也能引起轴承零件的断裂。

1.4 轴承烧伤轴承装配存在较大偏斜量时,容易引起轴承温度升高,并出现轴承烧伤现象。

另外,轴承润滑不良、应用不合格或者变质的润滑油、装配过紧都能引起轴承的烧伤。

轴承振动特征分析含轴承故障特征频率的特点及计算

轴承振动特征分析含轴承故障特征频率的特点及计算

轴承故障原因及其解决
• 污染 – 污染是轴承失效的主要原因之一 – 污染的征兆是在滚道和滚动体表面有点痕,导致振 动加大和磨损 – 清洁环境,工具,规范操作。新轴承的储运。
• 润滑油失效 – 滚道和滚子的变色(蓝、棕)是润滑失效的征兆, 随之产生滚道、滚子和保持架磨损,导致过热和严 重故障。 – 滚动轴承的正常运行取决于各部件间存在良好油膜 失效常常由润滑不足和过热引起
滚动轴承故障频率计算(2)
保持架故障频率: FTF=(N/2)[1-(d/D)Cos φ]
滚动体旋转故障频率: BSF=(N/2)(D/d){1-[(d/D)Cos φ]²}
外环故障频率: BPFO=(N/2)n[1-(d/D)Cosφ]
内环故障频率: BPFI=(N/2)n[1+(d/D)Cosφ]
轴承故障原因及其解决
• 腐蚀 –其征兆是在滚道、滚子、保 持架或其他位置出现红棕色 区域 –原因是轴承接触腐蚀性流体 和气体 –严重情况下,腐蚀引起轴承 早期疲劳失效 –除掉腐蚀流体,尽可能使用 整体密封轴承
轴承故障原因及其解决
• 不对中
– 征兆是滚珠在滚道上产生的磨痕与滚道边缘不平行 – 如果不对中超过0.001in/in,会产生轴承和轴承座异常
轴承故障特征频率的特点
12. 评定的低速机器的轴承状态:
评定尤其是低于100转/分转速的机器轴承状态时,推荐采集时域波形和 (FFT)频谱二者。当转速很低时,滚动体滚动通过轴承内外环上缺陷时发 生的脉冲没有足够能量产生清楚的,可以检测出来的FFT谱中的频率,但 是在时域波形中仍然可能清楚的看出来。
保持架故障频率:
FTFe≌N(0.5-1.2/n)
估算公式
n=滚动体数目; N=轴的转速。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滚动轴承常见故障及其振动信号特征
轴承长时间未使用或者存储环境不良会导致轴承表面生锈,进而引发轴承锈蚀故障。

另外,轴承在工作过程中也可能因为润滑不良或者介质腐蚀等原因产生锈蚀现象。

1.6胶合
轴承在长期运行过程中,可能会因为润滑不足或者介质污染等原因导致轴承内部的胶合现象。

胶合现象会导致轴承的滚动体和滚道之间失去滚动性能,从而引发轴承故障。

2轴承故障检测方法
轴承故障检测的方法主要包括视觉检测、声音检测、振动检测、温度检测和油液检测等。

其中,振动检测是最常用的一种方法。

轴承在故障发生时会产生特定的振动信号,通过对振动信号进行分析可以判断轴承是否发生故障,并确定故障的类型和程度。

3轴承故障的振动信号特征
轴承故障时产生的振动信号具有一定的特征,不同类型的故障会产生不同的振动信号特征。

常见的轴承故障振动信号特征包括频率、振幅、相位和波形等。

通过对这些特征的分析,
可以准确地判断轴承的故障类型和程度,并采取相应的维修措施。

总之,对轴承故障的诊断和维修具有重要意义。

通过本文
对轴承常见故障形式、故障检测方法和振动信号特征的分析,
可以帮助工程师更好地诊断和处理轴承故障,提高设备的运行
效率和安全性。

轴承锈蚀的原因之一是水分侵入。

当轴承停止工作时,温度下降,空气中的水分容易在轴承表面凝结成水珠,如果不及时清理,就会引起轴承锈蚀。

另外,保护不当也会使水分直接进入轴承,导致轴承锈蚀。

在高速高负荷和润滑不足的情况下,轴承部件会迅速升温,摩擦产生的热量能引起轴承部件接触的金属表面相互粘接,这种现象称为胶合。

轴承滚子和滚道相对运动产生的挤压力和侵入轴承滚道的杂物也会引起轴承表面的磨损。

磨损会增大轴承的游隙,降低运转精度,增加工作噪音。

常见的滚动轴承故障检测方法包括油样分析法、温度监测法、声发射法和振动法。

油样分析法通过分析轴承润滑油中的金属颗粒来判断轴承的运转状况。

温度监测法通过监测轴承附
近部件的温度来观测轴承是否正常运转。

声发射法可以通过分析发声周期来判断故障类型和部位。

振动法采用振动传感器采集轴承的振动信号,对信号进行处理和分析,可以判断轴承故障的种类和位置。

另外还有一些通过经验来判断轴承工作状态的方法。

故障轴承的振动信号特征可以分为表面损伤和磨损类损伤。

表面损伤类故障的振动信号特点是产生突变的宽带信号形式的冲击脉冲力,会引起谐振,故障特征频率一般在2kHz以下。

轴承内圈损伤会导致频率为nf6的冲击振动,但如果滚动
轴承有径向间隙且为单边载荷,损伤部分与滚动体接触位置不同,振动振幅会发生周期性的变化,即发生振幅调制。

若以轴频率进行调制,其振动频率为什么?
轴承外圈损伤也会产生冲击振动,其振动频率为什么?
当滚动体产生损伤时,缺陷部位通过滚道表面时将产生冲击振动,并以公转频率进行调制,其振动频率为什么?
磨损类故障是轴承在长时间工作时产生的一种渐变性故障。

轴承工作面磨损后产生的振动信号与正常轴承的振动信号有着相同的性质,两者的波形都是规则的。

但轴承磨损后的振动信号幅值明显高于正常轴承,这是已磨损轴承的振动信号区别于正常轴承的基本特点。

综上所述,本文对滚动轴承故障进行了分类总结,有利于及时对轴承故障进行诊断并采用合理的处理方法。

采集轴承的振动信号并进行分析处理后,依据获得的振动信号特征,可诊断出轴承故障部位。

在实时信号处理系统的辅助下,易于实现轴承状态的实时监测。

参考文献:
1]无
2]滚动轴承故障分析与探讨[M].内燃机配件,2000(3)。

相关文档
最新文档