反应釜温控
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反应釜中温度控制
摘要: 反应釜作为制药生产中实现化学反应的主要设备,在制药行业温度控制领域,很多系统控制方法设计为常规PID控制方式和模糊控制相结合的智能控制方式,其控制方法的研究具有非常重要的意义。在实际的化工生产过程中,温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。反应釜的温度控制占有着极为重要的地位。因此如何对反应釜内化学反应温度进行精确、有效的控制,显得至关重要。然而,由于温度控制系统的过程复杂多变,具有不确定性,因此温度系统的要求更为先进的控制技术和控制理论。
关键词:反应釜;PID控制;模糊控制;温度控制
0 引言
化工行业在我国国民经济发展中占有重要地位,其中连续搅拌反应釜作为化工生产中实现化学反应的主要设备。在实际的化工生产过程中,反应釜的温度决定了产品的产量、质量,有时甚至影响到生产过程中的安全性。
1 国内外研究现状
在国外,Minesh利用径向基函数神经网络来在线控制连续搅拌反应釜系统,此算法有极强的适应性;S.S.Ge提出了神经网络自适应控制,用多层神经网络构造隐式反馈线性控制(IFLC),其优点是跟踪误差小,对一般非线性系统有良好的控制性能;M.Jalili设计了一种基于对象神经模糊模型的预测控制方法,解决了温度大时滞问题;采用了控制效果良好的非线性PID控制器,该方法应用局部模型网络通过门处理来变换非线性模型;Fradkov提出半自适应控制,结合自适应控制与鲁棒控制,利用参数化不确定凸性来设计自适应控制器,在好的区域内采取常规的自适应控制方法,而当处于“坏”的区域时,首先冻结自适应律,接着再转换为一个鲁棒的常参数控制,这样可以减小参数不确定对系统性能的影响,实现基于全状态空间的良好控制性能[1]。
在国内雷佳等充分利用遗传算法的寻优特性,提出了一种与PID控制相结合的遗传寻优算法,明显地提高了控制效果[2];以工业现场实际情况为背景,通过改进跟踪微分器,设计了一种二阶白抗扰控制方法,明显提高了工业现场连续搅拌反应釜的控制效果;朱学峰根据连续搅拌反应釜系统的非线性特性,提出了基于混合模型的非线性预测控制策略,此混合模型由非线性和线性两个部分组成,
通过其仿真也可看出实际输出与模型输出误差较小[3];吴伟林提出了一种基于神经元网络的自适应控制方法,该方法有效改善了反应釜温度的大时滞问题,能够对反应釜温度进行有效地控制[4];刘士荣应用了一种模糊逆模-PID与神经网络相结合的复合控制策略,对反应釜温度控制获得了良好的控制效果[5]。伴随着控制理论的发展,越来越多的先进控制方法被应用到连续搅拌反应釜系统并取得了满意的成果。目前很多先进的反应釜控制技术就是将几种控制方法相结合,通过取长补短以期得到更加令人满意的控制效果。随着连续搅拌反应釜控制技术的不断深入和发展,该系统的控制效果也会得到进一步地改善和提高。
2 连续搅拌式反应釜工艺简介
2.1 连续式反应釜的基本结构
连续搅拌反应釜的基本结构如图2.1所示。反应釜由搅拌容器和搅拌机两大部分组成。搅拌容器包括筒体、换热元件及内构件。搅拌器、搅拌轴及其密封装置、传动装置等统称为搅拌机。
筒体为通常为一圆柱形壳体,可以在罐内装入物料,他提供反应所需的空间,使物料在其内部进行化学反应;传热装置的作用是满足反应所需温度条件;搅拌装置包括搅拌器、搅拌轴等,是实现搅拌的工作部件;传动装置包括电动机、减速器、联轴器及机架等附件,它提供搅拌的动力;轴封装置是保证工作时形成密
封条件,阻止介质向外泄漏的部件[6]。
图2-1
2.2 连续式反应釜的工作原理
在内层放入反应溶媒可做搅拌反应,夹层可通上不同的冷热源(冷冻液,热
水或热油)做循环加热或冷却反应。通过反应釜夹层,注入恒温的(高温或低温)热溶媒体或冷却媒体,对反应釜内的物料进行恒温加热或制冷。同时可根据使用要求在常压或负压条件下进行搅拌反应。物料在反应釜内进行反应,并能控制反应溶液的蒸发与回流,反应完毕,物料可从釜底的出料口放出,操作极为方便。
2.3 连续式反应釜的控制难点
连续搅拌反应釜(CSTR)温度控制的难点主要反应在:
(1)复杂性、时滞性和非线性ls;
a)化学反应的生产过程伴随着物理化学反应、生化反应、相变过程及物质和能量的转换和传递,因而是一个十分复杂的工业生产过程;
b)所用反应釜容量大、釜壁厚,因此是一个热容量大、纯滞后时间长的被控对象;c)随着反应的进行,各传热媒体的传热系数成非线性变化,并且对各种外界环境的变化比较敏感;加上反应过程增益变化也会很大,甚至增益变化方向都是不一样的;而且,随着反应的进行,釜内固体颗粒增多,釜的传热系数也会随着发生不规则变化。
(2)难控性
a)反应过程中,由于化学反应放热过程的复杂性和非线性,各传热媒体的传热系数成非线性变化,并对各种外部干扰的影响较敏感,使得控制有一定的难度;
b)反应过程中如果热量移去不及时、不均匀,会使反应温度一直往上升,极易因局部过热而造成“飞温”现象,产生“爆聚”;反之,如果热量移去过多,会造成反应温度一直往下跌,造成反应熄灭。而聚合反应好坏的主要因素就是反应釜温度控制的好坏,温度的变化将直接影响产品的质量和产量,所以此过程的温度控制是重点也是难点;
c)反应工艺以及反应设备的约束及外界环境对反应影响的不确定性因素也使得控制的难度增加。
(3)建模难
反应过程化学反应机理较为复杂,尤其是聚合反应过程涉及物料、能量的平衡,反应动力学等,加上外界条件如原料纯度、催化剂类型、原料添加数量的变化、热水温度、循环冷却液流量的变化等对系统的影响较大,推导机理模型较为困难;又由于化学反应放热过程的复杂性和非线性,随着反应的进行,各传热媒体的传热系数不规则变化对各种外部干扰的影响比较敏感,依照机理法和最小二乘法等传统的建模方法,要建立反应过程的精确数学模型是非常困难的[7]。
3 PID控制
3.1 什么叫PID控制
当今的闭环自动控制技术都是基于反馈的概念以减少不确定性。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的是被控变量的实际值,与期望值相比较,用这个偏差来纠正系统的响应,执行调节控制。在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
3.2 PID控制的基本原理
3.2.1 PID控制器的概念
文中控制方案的核心思想是PID控制,PID全称是Proportional Integral