角平分线教案设计

合集下载

八年级数学下册《角平分线的性质》教案、教学设计

八年级数学下册《角平分线的性质》教案、教学设计
3.小组合作完成的作业,需注明组员姓名,确保分工明确。
4.作业完成后,认真检查,确保答案正确。
4.布置课后作业,要求学生巩固所学知识,并进行适当的拓展延伸。
五、作业布置
为了巩固学生对角平分线性质的理解和应用,提高学生的解题能力,特布置以下作业:
1.请同学们完成课本第chapter页的练习题,重点关注以下题目:
(1)题目编号A:运用角平分线性质解决实际问题。
(2)题目编号B:证明角平分线上的点到角两边的距离相等。
在教学过程中,教师应关注学生的学习状况,及时调整教学策略,使学生在轻松愉快的氛围中掌握角平分线的性几何图形观察能力,掌握了基本的几何概念和性质,能够运用简单的逻辑推理进行问题分析。在此基础上,学生对角平分线的性质的学习将更为顺利。然而,学生在空间想象、逻辑推理和问题解决方面仍存在一定的困难,需要教师在教学过程中给予关注和引导。
2.学生在运用角平分线性质解决具体问题时,是否能够熟练运用。
3.学生在团队合作中,能否主动发表自己的观点,倾听他人意见。
4.学生在遇到困难时,是否具备寻求帮助和解决问题的能力。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握角平分线的定义及性质。
2.学会运用角平分线的性质解决实际问题。
3.培养学生的逻辑思维能力和空间想象力。
3.教师针对学生的错误,进行讲解,帮助学生查漏补缺。
4.教师挑选部分优秀作业进行展示,让学生互相学习,共同提高。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结角平分线的性质及解题方法。
2.学生分享学习心得,教师点评并给予鼓励。
3.教师强调角平分线在实际问题中的应用价值,激发学生学习数学的兴趣。

七年级数学上册《角平分线》教案、教学设计

七年级数学上册《角平分线》教案、教学设计
(二)讲授新知
1.概念讲解:介绍角平分线的定义。
教师讲解:“角平分线是指从一个角的顶点出发,将这个角分成两个相等角的线段。”
2.尺规作图:演示和讲解如何用尺规作图方法作出角的平分线。
教师演示并讲解:“首先,画出角的两边;然后,在角的顶点处分别作两条射线,使这两条射线分别与角的两边相交;最后,连接这两个交点,即可得到角的平分线。”
5.自主学习能力:鼓励学生在课后进行拓展学习,提高对角平分线知识的理解和应用。
(三)情感态度与价值观
1.培养学生的几何审美观念,让他们感受到几何图形的美;
2.培养学生勇于探索、积极思考的学习态度,激发学生对数学学科的兴趣;
3.培养学生严谨、踏实的科学态度,让他们认识到数学知识的严密性和逻辑性;
4.培养学生的创新意识,鼓励他们在解决问题时尝试不同的方法和思路;
3.教师点评:对学生的讨论成果给予肯定和指导。
(四)课堂练习
1.设计练习题:针对本节课所学内容,设计具有梯度性的练习题。
练习题包括:基本概念题、尺规作图题、性质应用题等。
2.学生独立完成练习题,教师巡回指导。
3.选取部分学生进行板演,展示解题过程。
4.针对学生的解答,教师进行点评和讲解。
(五)总结归纳
2.教学策略:
(1)情境创设:以实际问题为背景,创设教学情境,让学生感受角平分线的应用;
(2)逐步引导:从简单的例子入手,逐步引导学生理解和掌握角平分线的性质;
(3)分层教学:针对不同学生的学习水平,设计不同难度的题目,使每个学生都能在原有基础上得到提高;
(4)总结反思:在课后组织学生进行总结反思,巩固所学知识,提高学生的自主学习能力。
2.创设情境:以校园环境为背景,提出实际问题。

七年级上数学第六章 角的平分线优质课教案

七年级上数学第六章 角的平分线优质课教案

第2课时角的平分线教学目标课题 6.3.2 第2课时角的平分线授课人素养目标1.认识角的平分线及角的等分线,能通过折纸法画出一个角的平分线,培养几何直观.2.掌握度、分、秒的乘、除运算,提高运算能力.3.会利用角的平分线的定义解决有关角的计算问题.教学重点利用角的平分线的定义解决有关角的计算问题.教学难点1.会利用角的平分线的定义解决有关角的计算问题.2.度、分、秒的乘、除运算.教学活动教学步骤师生活动活动一:回顾导入,引出新课【回顾引入】前面的课时,我们就学过:在一张透明的纸上画一条线段,折叠纸片,使线段的端点重合.折痕与线段的交点就是线段的中点.如图,点M把线段AB分成相等的两条线段AM和BM,点M叫作线段AB的中点.类似地,我们把一个角折叠,会得到什么呢?就让我们一起进入今天这节课的学习吧!【教学建议】教师主要引导,让学生思考后回答.设计意图通过回顾线段的中点,类比引出角的平分线的学习.活动二:实践探究,获取新知探究点角的平分线问题1如图,如果∠AOB=∠BOC,类比线段的中点,∠AOB,∠BOC和∠AOC之间存在什么样的关系?填一填:∠AOC=2∠AOB=2∠BOC ,∠AOB=∠BOC=12∠AOC .概念引入:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫作这个角的平分线.教师总结:问题2类似地,如图,OB,OC是∠AOD内的两条射线,当存在下列关系时,OB,OC是∠AOD的三等分线.∠AOB=∠BOC=∠COD=13∠AOD(或∠AOD=3 ∠AOB =3∠BOC =3∠COD ).【教学建议】(1)对于角的平分线的概念,主要是让学生结合图形来认识和理解,不要出现如“平分一个角的直线是角的平分线”等错误理解.对于画一个角的平分线,学生能用量角器通过计算度数来画就可以,本章不要求尺规作图.(2)学生独立思考,由学生代表发言,教师予以适当评价,这里注意帮助学生正确规范完成几何语言的书写.设计意图经过活动一的类比后,得出角的平分线和等分线等概念,利用折纸作角的平分线形象地展示角平分线的画法,培养学生动手操作的能力,加深对角的平分线及相关概念的理解,培养几何直观.教学步骤师生活动问题3(教材P175探究)如图,在一张半透明的纸上通过折纸作角的平分线.请简单描述操作方法.即,在一张半透明的纸上画出一个角,再将这个角对折,使其两边重合.以顶点为端点沿着折痕画出这条射线,即为该角的平分线.例1如图,∠AOC=90°,OC平分∠BOD,且∠COD=25°35′,求∠AOB的度数.分析:由射线OC平分∠BOD,∠COD=25°35′,得∠BOC=∠COD=25°35′,从而求得∠AOB.解:因为OC平分∠BOD,∠COD=25°35′,所以∠BOC=∠COD=25°35′.因为∠AOC=90°,所以∠AOB=∠AOC-∠BOC=90°-25°35′=64°25′.【对应训练】教材P176练习第2题.活动三:典例精析,补充新知例2(教材P175例3)把一个周角7等分,每份是多少度的角(精确到分)?解:360°÷7=51°+3°÷7=51°+180′÷7≈51°26′.答:每份是约51°26′的角.【对应训练】教材P175练习第1,3题.【教学建议】教师需强调度、分、秒是六十进制的,不能整除时要把剩余的度数化成分.教学中还可补充角度乘除运算的例题,强化学生的运算能力.设计意图结合具体实例讲解角度的除法运算.活动四:随堂训练,课堂总结【随堂训练】见“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.角的平分线是什么?其中有哪些数量关系?2.什么是角的等分线?其中有哪些数量关系?3.如何进行度、分、秒的乘除运算?【知识结构】【作业布置】1.教材P178习题6.3第3(4)(5),8,10,12题.2.相应课时训练.板书设计教学反思本节课通过类比前面所学的线段中点的方式引出角的平分线和角的等分线的学习,进一步培养和提高学生的识图能力和动手操作的能力,体会数学活动的成功经验,激发学习的热情,并借此学习让学生能够掌握并利用角的平分线的概念解决简单的问题.解题大招 利用角的平分线进行角度的计算 要计算一个角的大小,通常先考虑把所求角转化成其他角的和或差,所转化成的角尽可能是已知角或与角的平分线相关联的角.例1 (方程思想) 如图,已知∠AOC ∶∠BOC =1∶4,OD 平分∠AOB ,且∠COD =33°.求∠AOB 的度数.解:因为∠AOC ∶∠BOC =1∶4,所以可设∠AOC =x °,则∠BOC =(4x )°,所以∠AOB =∠AOC +∠BOC =(5x )°.因为OD 平分∠AOB ,所以∠AOD =∠BOD =12∠AOB =(2.5x )°.因为∠COD =∠AOD -∠AOC =33°,所以2.5x -x =33,解得x =22,所以∠AOB =(5x )°=110°.例2 (整体思想) 如图,∠AOB =120°,OD 平分∠BOC ,OE 平分∠AOC.求∠EOD 的度数.解:(1)因为∠AOB =120°,OD 平分∠BOC ,OE 平分∠AOC ,所以∠EOD =∠DOC +∠EOC =12 ∠BOC +12 ∠AOC =12(∠BOC +∠AOC )=12 ∠AOB =12×120°=60°.培优点 与角平分线有关的分类讨论题例 已知∠AOB ,过点O 引两条射线OC ,OM ,且OM 平分∠AOC. (1)如图,若∠AOB =120°,∠BOC =30°,且OC 在∠AOB 的内部.求∠MOB 的度数.以下是求∠MOB 的度数的解题过程,请你补充完整.解:因为∠AOB =120°,∠BOC =30°,所以∠AOC =∠AOB -∠BOC =90°.因为OM 平分∠AOC ,所以∠MOC =12∠AOC = 45 °.所以∠MOB =∠MOC + ∠BOC = 75 °. (2)若∠AOB =α,∠BOC =β(其中α<β<90°),画出图形并直接写出∠MOB 的度数(用含α,β的代数式表示).解:画图如图①,∠MOB =α+β2 或画图如图②,∠MOB =β-α2.解析:①当射线OC 、射线OA 在射线OB 的同侧时,如图①所示. 因为∠AOB =α,∠BOC =β,所以∠AOC =∠BOC -∠AOB =β-α.因为OM 平分∠AOC ,所以∠AOM =12∠AOC =β-α2, 所以∠MOB =∠AOB +∠AOM =α+β-α2 =α+β2.②当射线OC 、射线OA 在射线OB 的异侧时,如图②所示.此时∠MOB =β-α2.所以∠BOM =α+β2 或β-α2.。

华师大版数学八年级上册《角平分线》教案

华师大版数学八年级上册《角平分线》教案

华师大版数学八年级上册《角平分线》教案一、教学内容本节课选自华师大版数学八年级上册第七章第二节《角平分线》。

内容包括:角平分线的定义、性质及判定,教材第7.2节。

二、教学目标1. 知识目标:理解角平分线的概念,掌握角平分线的性质和判定方法。

2. 技能目标:能运用角平分线性质解决相关问题,提高逻辑思维能力和解题技巧。

3. 情感目标:培养学生对数学的兴趣和探索精神,增强团队合作意识。

三、教学难点与重点1. 教学难点:角平分线性质的证明和应用。

2. 教学重点:角平分线的定义和性质。

四、教具与学具准备1. 教具:三角板、量角器、直尺、圆规。

2. 学具:三角板、量角器、直尺、圆规。

五、教学过程1. 实践情景引入通过展示实际生活中角平分线的应用,如剪纸、拼接图形等,引导学生思考角平分线的意义。

2. 知识讲解(1)角平分线的定义:从角的顶点出发,将角分成两个相等的角的线段。

(2)角平分线的性质:角的平分线上的点到角的两边的距离相等。

(3)角平分线的判定:如果一个点在角平分线上,那么它到角的两边的距离相等。

3. 例题讲解例1:求证:角的平分线上的点到角的两边的距离相等。

例2:已知∠ABC=80°,点D在∠ABC的平分线上,求∠ABD和∠CBD的度数。

4. 随堂练习练习1:已知∠A=100°,求∠A的平分线上的点B到∠A的两边的距离。

练习2:判断点P是否在∠ABC的平分线上。

六、板书设计1. 定义:角的平分线2. 性质:角的平分线上的点到角的两边的距离相等3. 判定:点到角的两边的距离相等,则该点在角的平分线上七、作业设计1. 作业题目:(1)求证:角的平分线上的点到角的两边的距离相等。

(2)已知∠A=120°,求∠A的平分线上的点B到∠A的两边的距离。

2. 答案:(1)证明:略(2)答案:距离相等,均为∠A的一半,即60°。

八、课后反思及拓展延伸1. 反思:通过本节课的教学,发现学生对角平分线的性质和判定方法掌握较好,但在应用方面还有待提高。

1.4角平分线(教案)

1.4角平分线(教案)

同学们,今天我们将要学习的是《角平分线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将角平均分成两个相等角的情况?”比如,在剪纸或拼图时,我们可能需要这样的技巧。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索角平分线的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角平分线的基本概念。角平分线是通过角的顶点,将角分成两个相等角的射线。它在几何图形的分割和证明中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用角平分线来解决实际问题,以及它如何帮助我们解决几何问题。
3.重点难点解析:在讲授过程中,我会特别强调角平分线的定义和性质这两个重点。对于难点部分,比如性质的应用,我会通过具体例题和图示来帮助大家理解。
此外,课后我对学生的作业进行了批改,发现他们在解题过程中对角平分线的应用还不够熟练。为了帮助他们巩固知识点,我计划在下一节课开始时,对一些典型的错误进行讲解,让学生明白自己错在哪里,如何改正。
另外,小组讨论环节,我发现有些学生参与度不高,可能是因为他们对讨论主题不够感兴趣或者不知道如何表达自己的观点。针对这个问题,我打算在下次课中尝试引入一些生活化的例子,激发学生的兴趣,并引导他们如何进行有效讨论。同时,我也会鼓励学生多与同伴交流,培养他们的团队协作能力。
在学生小组讨论的引导过程中,我意识到提问技巧的重要性。提出的问题既要能够启发学生思考,又要具有一定的开放性,让学生有足够的空间发挥。在今后的教学中,我会更加注意问题的设计,努力提高学生的逻辑思维能力和解决问题的能力。
首先,我意识到在讲解角平分线性质时,需要更多地结合实际例子来帮助学生理解。例如,在证明角平分线上的点到角的两边距离相等时,我可以准备一些具体的图形,让学生观察、测量并自己推导出这个性质。这样既能提高他们的几何直观能力,也能加深对性质的理解。

八年级数学上册《角平分线的性质和判定定理》教案、教学设计

八年级数学上册《角平分线的性质和判定定理》教案、教学设计
3.思考题:
-如果一个角的平分线同时也是这个角的垂直平分线,那么这个角有什么特殊的性质?请给出证明;
-如果一个角的平分线同时也是另一个角的平分线,那么这两个角之间有什么关系?请给出证明。
4.实践活动:
-与同学合作,设计一个关于角平分线的数学小报,内容包括定义、性质、判定定理以及生活中的应用等;
-利用所学知识,尝试解决实际生活中的问题,如测量角度、划分土地等,并撰写解题报告。
2.学生在运用角平分线判定定理解决问题时的逻辑思维能力和解题技巧;
3.学生在合作交流、动手操作等方面的学习习惯和团队协作能力。
针对学情,教师应采取以下策略:
1.设计富有启发性的问题,引导学生主动探究角平分线的性质;
2.创设生活情境,让学生在实际问题中体会角平分线判定定理的应用;
3.注重个体差异,给予学生个性化的指导,提高学生的自主学习能力;
4.加强课堂讨论与交流,培养学生的团队合作意识和解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:角平分线的性质及其应用,角平分线的判定定理。
2.难点:理解并灵活运用角平分线的性质和判定定理解决实际问题。
(二)教学设想
1.创设情境,激发兴趣:
-通过引入生活中的实例,如折纸、剪纸等,让学生感受角平分线的存在和应用,激发学生的学习兴趣;
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁;
2.作业完成后,进行自查,确保解题过程和答案正确;
3.遇到问题时,与同学讨论,或向老师请教,及时解决疑问;
4.作业提交时间:课后第二天。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角平分线的性质和判定定理的学习具备了一定的基础。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解角平分线的性质和判定定理方面存在困难。

八上角平分线的性质和判定(教案)

八上角平分线的性质和判定(教案)

八上-角平分线的性质和判定(教案)第一章:角平分线的定义教学目标:1. 理解角平分线的定义。

2. 能够正确地画出角的平分线。

教学内容:1. 引入角平分线的概念,引导学生思考如何将一个角平分成两个相等的角。

2. 讲解角平分线的定义,即从角的顶点出发,将角分成两个相等的角的线段。

3. 演示如何画出角的平分线,并引导学生尝试自己画出角的平分线。

教学活动:1. 引导学生回顾之前学过的角的概念,引导学生思考如何将一个角平分成两个相等的角。

2. 教师讲解角平分线的定义,并演示如何画出角的平分线。

3. 学生跟随教师的演示,尝试自己画出角的平分线。

第二章:角平分线的性质教学目标:1. 掌握角平分线的性质。

2. 能够运用角平分线的性质解决相关问题。

教学内容:1. 引入角平分线的性质,引导学生思考角平分线与角的关系。

2. 讲解角平分线的性质,即角平分线将角分成两个相等的角,且角平分线与角的两边成等角。

3. 演示如何运用角平分线的性质解决相关问题,并引导学生尝试自己运用角平分线的性质解决问题。

教学活动:1. 引导学生回顾之前学过的角平分线的定义,引导学生思考角平分线与角的关系。

2. 教师讲解角平分线的性质,并演示如何运用角平分线的性质解决相关问题。

3. 学生跟随教师的演示,尝试自己运用角平分线的性质解决问题。

第三章:角平分线的判定教学目标:1. 掌握角平分线的判定方法。

2. 能够运用角平分线的判定方法证明一条线段是角平分线。

教学内容:1. 引入角平分线的判定,引导学生思考如何证明一条线段是角平分线。

2. 讲解角平分线的判定方法,即如果一条线段平分一个角的两边,则这条线段是该角的平分线。

3. 演示如何运用角平分线的判定方法证明一条线段是角平分线,并引导学生尝试自己运用角平分线的判定方法证明一条线段是角平分线。

教学活动:1. 引导学生回顾之前学过的角平分线的性质,引导学生思考如何证明一条线段是角平分线。

2. 教师讲解角平分线的判定方法,并演示如何运用角平分线的判定方法证明一条线段是角平分线。

八年级数学上册《角平分线的性质定理》教案、教学设计

八年级数学上册《角平分线的性质定理》教案、教学设计
三、教学重难点和教学设想
(一)教学重点
1.角平分线的定义及其性质定理的理解和应用。
2.能够运用角平分线的性质解决实际问题,提高几何推理能力。
3.培养学生运用数学符号和几何语言进行表达的能力。
(二)教学难点
1.角平分线性质定理的推导过程,以及如何引导学生从具体实例中抽象出一般性结论。
2.学生在解决实际问题时,对角平分线性质的灵活运用和与其他几何知识的综合运用。
(二)过程与方法
在本章节的学习过程中,引导学生采用以下方法:
1.采用直观演示法,通过实际操作,让学生感受角平分线的定义和性质,培养学生的观察能力和动手操作能力。
2.采用问题驱动法,设置一系列具有启发性的问题,引导学生主动探究角平分线的性质定理,提高学生的问题解决能力和合作学习能力。
3.运用比较法,将角平分线与其他线段(如中垂线、高线等)进行对比,让学生发现它们之间的联系与区别,提高学生的概括和总结能力。
(4)巩固:设计不同难度的练习题,让学生在实际操作中巩固所学知识,提高解决问题的能力。
(5)拓展:布置一些具有挑战性的问题,鼓励学生发挥想象力和创造力,提高学生的几何思维能力。
3.教学评价:
(1)关注学生在课堂上的表现,观察学生对角平分线性质的理解程度和应用能力。
(2)通过课后作业和小测验,了解学生对知识点的掌握情况,针对性地进行辅导。
八年级数学上册《角平分线的性质定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解角平分线的定义,了解其基本性质,能够准确识别并画出角平分线。
2.掌握角平分线性质定理的内容,并能够运用该定理解决相关问题。
3.学会运用角平分线性质解决实际问题时,能够灵活运用数学符号和几何语言进行表达。

角的平分线数学教案

角的平分线数学教案

角的平分线数学教案
标题:《探索角的平分线》
一、教学目标
1. 知识与技能目标:理解并掌握角的平分线的概念,能够熟练地运用尺规作图法作出任意角的平分线。

2. 过程与方法目标:通过观察、思考、实践,提高学生的空间观念和逻辑思维能力。

3. 情感态度价值观目标:培养学生对几何学习的兴趣,增强他们解决问题的信心。

二、教学重点和难点
重点:理解和掌握角的平分线的概念,掌握尺规作图法作出任意角的平分线的方法。

难点:理解和应用角的平分线的性质。

三、教学过程
1. 导入新课:通过实例引入角的平分线的概念,引发学生的好奇心和求知欲。

2. 新课讲授:
(1) 角的平分线的概念:讲解角的平分线的定义,并让学生自己画出一些角的平分线,加深理解。

(2) 尺规作图法:详细解释如何使用尺规作图法作出任意角的平分线,包括步骤和注意事项。

(3) 角的平分线的性质:引导学生通过实验、讨论等方式发现角的平分线的一些性质,如等腰三角形的判定定理等。

3. 巩固练习:设计一些习题,让学生在实践中巩固所学知识。

4. 总结反思:回顾本节课的主要内容,鼓励学生分享他们的学习体验和收获。

四、作业布置
设计一些题目,要求学生在家中完成,以检验他们对角的平分线的理解和掌握程度。

五、教学评价
根据学生在课堂上的表现和作业完成情况,对学生的学习效果进行评估。

六、教学反思
教师应反思自己的教学方法是否有效,是否有需要改进的地方,以便更好地满足学生的学习需求。

1.4角平分线教案

1.4角平分线教案

1.4角平分线-----三角形三个内角的平分线1.能证明三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.2.能利用角平分线的性质定理及判定定理进行相关的证明与计算.【学习重点】三角形三条角的平分线相交于一点,这点到三边的距离相等的性质的证明【学习难点】三角形三条角的平分线相交于一点,这点到三边的距离相等的性质的运用【教学过程】一、先学(15分钟)1.导入课题,出示目标(1)能证明三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.(2)能利用角平分线的性质定理及判定定理进行相关的证明与计算.2.出示自学指点请同学们认真看课本P30 --31的内容,思考并完成下列问题:(1)回顾:角平分线的性质定理和角平分线的判定定理的内容;(2)如何证三条直线交于一点?(3)通过例2的证明,你能得到什么结论?(5分钟后进行提问和检测,比比谁学得好。

)(学生自学,老师巡查监督学生自学,调整学习进度)提问:1、角平分线性质定理:学生回答,老师总结:角平分线上的点到这个角的两边的距离相等。

2、角平分线判定定理:学生回答,老师总结:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

3、如何证三条角平分线交于一点?学生回答,老师总结:基本思路: 我们知道, 两条直线相交只有一个交点;要想证明三条角平分线相交于一点, 只要能证明两条的交点在第三条直线上即可。

4、通过例2的证明,你能得到什么结论?学生回答,老师总结:定理: 三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.新知探究例2、求证:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。

已知:如图,△ABC中,角平分线BM与角平分线CN相交于点P,过点P分别作AB 、BC、AC的垂线,垂足分别为D、E、F。

求证:∠A的平分线经过点P,且PD=PF=PF.证明:∵BM 是∠ABC的平分线,点P在BM上∴PD=PE (角平分线上的点到这个角的两边的距离相等)同理,PF=PE∴PD=PE=PF∴点P在A的平分线上(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上)即 ∠A 的平分线经过点P ,且PD=PF=PF.新知归纳三角形三条角平分线性质定理: 三角形的三条角平分线交于一点,并且这一点到三条边的距离相等。

华师大版数学八年级上册《角平分线》教案

华师大版数学八年级上册《角平分线》教案

华师大版数学八年级上册《角平分线》教案一、教学内容二、教学目标1. 让学生理解并掌握角平分线的定义,能准确画出给定角的平分线。

2. 让学生通过自主探究与合作交流,发现并理解角平分线的性质,能运用性质解决相关问题。

3. 培养学生的空间观念和逻辑思维能力,提高解决问题的能力。

三、教学难点与重点教学难点:角平分线性质的推理过程,运用性质解决实际问题。

教学重点:角平分线的定义,性质及判定方法。

四、教具与学具准备1. 教具:三角板、直尺、量角器、圆规。

2. 学具:三角板、直尺、量角器、圆规、练习本。

五、教学过程1. 实践情景引入利用三角板展示一个角,提问:“如何将这个角分成两个相等的角?”引导学生思考并尝试解决。

2. 探究角平分线(1)让学生尝试用直尺和量角器画出给定角的平分线。

3. 学习角平分线的性质(1)让学生分组讨论,探究角平分线上的点到角的两边的距离关系。

4. 例题讲解(1)展示例题,分析题目考查的知识点。

(2)学生自主解答,教师点评并讲解。

5. 随堂练习(1)让学生独立完成练习题。

(2)教师巡回指导,解答学生疑问。

(2)提出拓展问题,激发学生思考。

六、板书设计1. 角平分线的定义2. 角平分线的性质3. 例题解析4. 练习题七、作业设计1. 作业题目:(1)已知一个角,画出它的平分线。

(2)求证:角平分线上的点到角的两边的距离相等。

2. 答案:(1)利用直尺和量角器画出给定角的平分线。

(2)见教材P123。

八、课后反思及拓展延伸1. 反思:本节课学生对角平分线的定义和性质掌握程度,以及在实际问题中的应用能力。

2. 拓展延伸:引导学生思考,除了角平分线,还有哪些线段具有类似的性质?能否运用这些性质解决实际问题?激发学生的探究兴趣。

重点和难点解析1. 实践情景引入2. 角平分线的性质的探究3. 例题讲解与随堂练习4. 作业设计5. 课后反思及拓展延伸一、实践情景引入1. 选择合适的实践情景,确保学生能够直观地感受到角平分线的存在和作用。

角的平分线教案设计

角的平分线教案设计

角的平分线教案设计第一章:认识角的平分线1.1 引入概念:通过实际图形和几何模型,让学生直观地理解角的概念。

1.2 讲解角的平分线的定义:角的平分线是将一个角平分成两个相等角的直线。

1.3 角的平分线特点:引导学生通过观察和操作,发现角的平分线与角的两边相互垂直,并且将角的两边等分。

第二章:角的平分线的性质2.1 性质1:角的平分线上的任意一点到角的两边的距离相等。

2.2 性质2:角的平分线将角的两边等分,即角的平分线与角的两边相交,交点将角的两边分为两对相等的部分。

2.3 性质3:角的平分线与角的两边相互垂直。

第三章:角的平分线的作图3.1 利用尺规作图方法作出一个角的平分线。

3.2 练习作图:让学生通过实际操作,运用尺规作图方法,作出给定角的平分线。

3.3 思考题:探讨如何作出一个任意角的平分线。

第四章:角的平分线与三角形的关系4.1 三角形的角平分线:介绍三角形的三条角平分线,并引导学生理解它们的作用和性质。

4.2 角平分线定理:讲解三角形三条角平分线交于一点,即三角形内心,并且内心到三角形的三个顶点的距离相等。

4.3 应用:通过实际例子,展示角的平分线在解决三角形问题中的应用。

第五章:角的平分线的应用5.1 构造图形:利用角的平分线解决实际问题,如构造特定的图形或解决几何问题。

5.2 证明题:通过构造图形和运用角的平分线性质,引导学生解决证明题。

5.3 应用题:让学生运用角的平分线知识解决实际问题,如计算距离或角度等。

第六章:角的平分线与圆的关系6.1 圆的角平分线:介绍圆的角平分线,即从圆上一点出发,经过圆心,将圆分成两个相等弧的直线。

6.2 圆心角平分线定理:讲解圆的角平分线与半径相垂直,并且平分圆心角。

6.3 应用:通过实际例子,展示角的平分线在解决圆的问题中的应用。

第七章:角的平分线与圆的内接四边形7.1 圆的内接四边形:介绍圆的内接四边形,即四边形的四个顶点都在圆上。

7.2 圆的内接四边形的性质:讲解圆的内接四边形的对角互补,即相对的角的和为180度。

角平分线的性质教案

角平分线的性质教案

角平分线的性质教案一、教学目标1. 知识与技能:(1)理解角平分线的定义;(2)掌握角平分线的性质定理;(3)学会运用角平分线解决实际问题。

2. 过程与方法:(1)通过观察、思考、交流,探索角平分线的性质;(2)运用角的平分线性质定理,提高解题能力。

3. 情感态度价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。

二、教学重点与难点1. 教学重点:(1)角平分线的定义;(2)角平分线的性质定理。

2. 教学难点:(1)角平分线性质定理的证明;(2)运用角平分线解决实际问题。

三、教学过程1. 导入:回顾上节课所学的角的概念,引出角平分线的定义。

2. 新课讲解:(1)介绍角平分线的定义;(2)讲解角平分线的性质定理;(3)运用角平分线性质定理解决实际问题。

3. 课堂练习:(1)判断题:判断角平分线是否平分角;(2)填空题:填空完成角平分线性质定理的证明;(3)应用题:运用角平分线解决实际问题。

四、课后作业1. 复习角平分线的定义和性质定理;2. 完成课后练习题,巩固所学知识;3. 预习下一节课内容。

五、教学反思本节课通过讲解角平分线的定义和性质定理,使学生掌握了角平分线的基本性质。

在教学过程中,注意引导学生观察、思考、交流,培养学生的逻辑思维能力和解题能力。

通过课后作业的布置,帮助学生巩固所学知识,为后续课程的学习打下基础。

六、教学拓展1. 对比分析:(1)角平分线与线段中垂线的联系与区别;(2)角平分线与高的联系与区别。

2. 探索问题:(1)角的平分线是否一定是直线?(2)角的平分线在几何中的应用。

七、课堂小结1. 回顾本节课所学内容,总结角平分线的定义、性质定理及应用;2. 强调角平分线在几何中的重要性。

八、测试与评价1. 课堂测试:(1)判断题:判断角平分线与线段中垂线的联系与区别;(2)选择题:选择正确的角平分线性质定理;(3)应用题:运用角平分线解决实际问题。

2. 评价:(1)学生自我评价:总结自己在课堂学习中的收获;(2)同伴评价:评价他人的解题方法和思路;(3)教师评价:对学生的学习情况进行总结和评价。

角的平分线教案设计

角的平分线教案设计

角的平分线教案设计第一章:角的平分线定义与性质1.1 教学目标了解角的平分线的定义掌握角的平分线的性质1.2 教学内容角的平分线的定义:介绍角的平分线的概念,即角的平分线是将一个角平分成两个相等角的直线。

角的平分线的性质:讲解角的平分线上的点到角的两边的距离相等的性质。

1.3 教学方法使用图形和实物进行讲解,帮助学生直观地理解角的平分线的定义和性质。

进行角平分线的实际操作,让学生通过实践加深对角平分线的理解。

1.4 教学评估进行角的平分线定义和性质的测试,以评估学生对知识点的掌握程度。

第二章:角的平分线的作图2.1 教学目标学会使用直尺和圆规作出角的平分线理解角的平分线作图的原理2.2 教学内容角的平分线作图方法:介绍使用直尺和圆规作出角的平分线的方法和步骤。

角的平分线作图原理:解释角的平分线作图的原理,即通过构造辅助线和运用角的平分线性质来作出角的平分线。

2.3 教学方法演示角的平分线作图的步骤,让学生跟随老师的演示进行练习。

提供角的平分线作图的练习题,让学生通过实践提高作图能力。

2.4 教学评估进行角的平分线作图的练习,以评估学生对作图方法的掌握程度。

第三章:角的平分线与三角形3.1 教学目标了解角的平分线在三角形中的性质和作用学会运用角的平分线解决三角形问题3.2 教学内容三角形的角的平分线性质:介绍三角形中角的平分线的性质,如角的平分线相交于三角形的内心等。

运用角的平分线解决三角形问题:讲解如何运用角的平分线解决三角形的不等式、角度计算等问题。

3.3 教学方法通过图形的演示和实例,讲解角的平分线在三角形中的性质和作用。

提供角的平分线解决三角形问题的练习题,让学生通过实践掌握解题方法。

3.4 教学评估进行角的平分线在三角形中的性质和解决问题的测试,以评估学生对知识点的掌握程度。

第四章:角的平分线与圆4.1 教学目标了解角的平分线与圆的关系学会运用角的平分线解决与圆相关的问题4.2 教学内容角的平分线与圆的关系:介绍角的平分线与圆的关系,如圆的平分线也是圆的切线等。

角平分线华东师大版八年级数学上册优质教案

角平分线华东师大版八年级数学上册优质教案

角平分线华东师大版八年级数学上册优质教案一、教学内容本节课选自华东师大版八年级数学上册,主要内容为第六章《三角形的初步认识》中的6.4节“角平分线”。

具体内容包括:角平分线的定义、性质、判定及在实际问题中的应用。

二、教学目标1. 理解并掌握角平分线的定义,能准确判断角的平分线;2. 掌握角平分线的性质,并能在实际问题中灵活运用;3. 会用角平分线解决一些简单的几何问题。

三、教学难点与重点教学难点:角平分线的性质及在实际问题中的应用。

教学重点:角平分线的定义、性质及判定方法。

四、教具与学具准备1. 教具:三角板、量角器、直尺、圆规;2. 学具:三角板、量角器、直尺、圆规、练习本。

五、教学过程1. 实践情景引入:展示一个三角形,提出如何将一个角平均分成两个相等的角,引导学生思考。

2. 例题讲解:(1)什么是角平分线?引导学生通过观察、讨论,得出角平分线的定义;(2)角平分线的性质:通过画图、观察、推理,引导学生发现并证明角平分线的性质;(3)判定角的平分线:通过实例,引导学生掌握判定角的平分线的方法。

3. 随堂练习:针对本节课所学内容,设计一些练习题,让学生独立完成,并及时给予反馈。

六、板书设计1. 角平分线的定义;2. 角平分线的性质;3. 判定角的平分线的方法;4. 课堂练习题及答案。

七、作业设计1. 作业题目:(1)求证:角的平分线上的点到角的两边的距离相等;(2)已知:在三角形ABC中,AD是角BAC的平分线,求证:AB=AC。

2. 答案:略。

八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,分析学生的掌握情况,找出存在的问题,为下一步教学提供依据。

2. 拓展延伸:(1)探索:角的平分线与三角形的中位线有何关系?(2)拓展:如何利用角平分线解决实际问题?(3)提高:研究角平分线在多边形中的应用。

重点和难点解析1. 教学目标中关于角平分线的性质和应用的要求;2. 教学难点中角平分线性质的应用;3. 教学过程中的实践情景引入、例题讲解和随堂练习;4. 板书设计中关于角平分线性质和判定方法的展示;5. 作业设计中的证明题和解题方法;6. 课后反思及拓展延伸中的探索和拓展问题。

初中数学角的平分线教案

初中数学角的平分线教案

初中数学角的平分线教案一、教学目标1.让学生掌握角的平分线的定义、性质及判定方法。

2.培养学生运用角的平分线知识解决实际问题的能力。

3.培养学生的逻辑思维能力和空间想象能力。

二、教学重点与难点1.重点:角的平分线的定义、性质及判定方法。

2.难点:运用角的平分线知识解决实际问题。

三、教学过程1.导入新课(1)复习旧知识:让学生回顾角的定义、分类及性质。

(2)提出问题:如何将一个角平分成两个相等的角?2.角的平分线定义(1)引导学生观察角的平分线模型,让学生直观感受角的平分线。

(2)给出角的平分线定义:从角的顶点出发,将这个角平分成两个相等的角的射线,叫做这个角的平分线。

(3)让学生举例说明角的平分线。

3.角的平分线性质(1)引导学生观察角的平分线性质,让学生直观感受角的平分线性质。

(2)给出角的平分线性质:角的平分线上的点到这个角的两边的距离相等。

(3)让学生举例说明角的平分线性质。

4.角的平分线判定方法(1)引导学生探究角的平分线判定方法。

(2)给出角的平分线判定方法:如果一条射线将一个角平分成两个相等的角,那么这条射线就是角的平分线。

(3)让学生举例说明角的平分线判定方法。

5.应用举例(1)让学生独立完成课本上的例题,巩固角的平分线知识。

(2)引导学生运用角的平分线知识解决实际问题,如求角度、证明角相等。

6.练习与巩固(1)让学生完成课后练习,巩固角的平分线知识。

(2)教师批改练习,及时反馈,指导学生掌握角的平分线知识。

7.课堂小结(2)教师点评学生表现,鼓励学生积极思考、参与课堂。

8.课后作业(1)完成课后练习。

(2)预习下节课内容,了解角的平分线在生活中的应用。

四、教学反思本节课通过直观的模型、生动的实例,让学生掌握了角的平分线的定义、性质及判定方法。

在教学过程中,注重培养学生的逻辑思维能力和空间想象能力。

通过课后作业,巩固所学知识,为下节课的学习打下坚实基础。

附:课后练习1.判断题:角的平分线上的点到这个角的两边的距离相等。

八年级数学上册《角的平分线的性质》教案、教学设计

八年级数学上册《角的平分线的性质》教案、教学设计
3.学会运用角的平分线性质解决实际问题,如构造线段相等、角度相等等问题。
学生能够将角的平分线的性质应用于实际问题的解决中,培养学以致用的能力。
(二)过程与方法
1.通过实际操作,让学生经历角的平分线的探索过程,培养动手操作能力和观察能力。
教学过程中,教师引导学生通过实际操作,观察角的平分线,培养学生动手操作的能力和观察能力。
“同学们,你们在生活中见过这样的角吗?它们有什么特殊之处呢?今天我们要学习角的平分线,一起来探索这些角的奥秘吧!”
2.提问:引导学生思考角的平分线的定义及作用。
“谁能来说说什么是角的平分线?它有什么作用呢?”
3.导入新课:通过学生回答,自然导入本节课的学习内容——角的平分线的性质。
(二)讲授新知
1.概念讲解:详细解释角的平分线的定义,并通过图示进行展示。
3.提高题挑战:
完成课后提高题6、7,这两题难度较大,旨在培养学生几何证明的思路和方法,提高学生的逻辑思维能力和解题技巧。
4.探究性问题:
针对本节课所学内容,提出一个探究性问题:“除了点到角的两边的距离相等,角的平分线还有其他性质吗?”鼓励学生在课后进行自主探究,培养学生的创新意识和研究精神。
5.小组合作任务:
五、作业布置
为了巩固本节课所学内容,检验学生对角的平分线性质的理解和应用能力,特布置以下作业:
1.基础知识巩固:
完成课本第章节后的练习题1、2、3,这些题目旨在帮助学生巩固角的平分线的定义和性质,加强对基础知识的掌握。
2.应用题训练:
选择两道应用题(如课本例题4、5),要求学生运用角的平分线性质进行解决。通过解决实际问题,提高学生将理论知识应用于实际情境的能力。
2.强调几何证明的思路和方法。

八年级上角平分线教案

八年级上角平分线教案

八年级上角平分线教案一、教学目标1. 知识与技能:(1)理解角平分线的定义;(2)学会使用角平分线性质和判定定理解决相关问题。

2. 过程与方法:(1)通过观察、操作、推理等活动,培养学生的空间想象能力和逻辑思维能力;(2)学会用角平分线性质和判定定理解决实际问题。

3. 情感态度价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、合作交流的精神。

二、教学重点与难点1. 教学重点:(1)角平分线的定义及其性质;(2)角平分线的判定定理及应用。

2. 教学难点:(1)角平分线性质和判定定理的灵活运用;(2)解决实际问题。

三、教学过程1. 导入:(1)复习相关知识,如角的概念、平分线的定义;(2)提问:角平分线有什么性质和作用?2. 新课讲解:(1)讲解角平分线的定义;(2)引导学生观察、操作,发现角平分线的性质;(3)讲解角平分线的判定定理;(4)运用性质和判定定理解决实际问题。

3. 例题讲解:(1)分析例题,引导学生运用角平分线性质和判定定理解决问题;(2)讲解解题思路和方法;(3)让学生独立完成练习题。

四、课后作业1. 复习本节课所学知识,整理笔记;2. 完成课后练习题,巩固所学知识;3. 收集生活中的角平分线实例,进行观察和分析。

五、教学反思1. 课堂效果评价:(1)学生对角平分线定义、性质和判定定理的理解程度;(2)学生解决实际问题的能力;(3)学生的参与度和积极性。

2. 教学方法调整:(1)针对学生掌握情况,调整教学节奏和难度;(2)注重引导学生主动探究,提高学生解决问题的能力;(3)注重个体差异,关注学生全面发展。

六、教学评价1. 课堂评价:(1)通过课堂提问、回答问题的情况,了解学生对角平分线定义、性质和判定定理的理解程度;(2)通过练习题的完成情况,评估学生运用所学知识解决问题的能力;(3)观察学生在课堂中的参与程度、合作交流的情况,了解学生的学习积极性。

2. 作业评价:(1)检查课后作业的完成情况,关注学生对课堂所学知识的掌握程度;(2)通过作业批改,发现学生存在的问题,及时进行反馈和指导。

八年级数学上册《角平分线》教案、教学设计

八年级数学上册《角平分线》教案、教学设计
(2)作业完成情况:评价学生对知识点的掌握程度,以及对尺规作图的熟练程度;
(3)单元测试:通过测试,了解学生对角平分线知识点的掌握情况,以及运用知识解决问题的能力;
(4)课后访谈:了解学生在学习过程中遇到的困难和问题,及时调整教学策略。
4.教学资源:
(1)教材:充分利用课本资源,结合教学目标进行教学设计;
(2)反思自己在学习过程中的收获和不足,为下一节课的学习做好准备。
作业要求:
1.认真完成作业,保持卷面整洁;
2.思考题要结合所学知识,进行深入分析和研究;
3.遇到问题及时与同学、老师交流,提高解决问题的能力;
4.作业提交时间:下周一下午放学前。
(4)应用:设计有针对性的例题和练习,让学生运用角平分线知识解决问题,巩固所学;
(5)拓展:引导学生思考角平分线在其他几何问题中的应用,培养学生的发散思维;
(6)总结:对本节课的知识点进行梳理,强调重难点,帮助学生巩固记忆。
3.教学评价:
(1)课堂表现:关注学生在课堂上的参与程度、积极性和合作精神;
(五)总结归纳
1.教学活动设计:
(1)对本节课的知识点进行梳理,强调重点和难点;
(2)学生分享学习收获和感受,教师给予鼓励和评价;
(3)布置课后作业,巩固所学知识。
2.教学内容:
(1)总结角平分线的定义、性质和判定方法;
(2)回顾尺规作图的方法,强调注意事项;
(3)明确角平分线在实际问题中的应用价值。
五、作业布置
为了巩固本节课所学知识,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.必做题:
(1)完成课本第十五章第二节课后练习题1、2、3;
(2)运用尺规作图,作出给定角的平分线,并简要说明作图过程;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线的性质
一、教材分析:本节课主要探究角平分线的性质与判定,而角平分线的性质对学生后期的三角形的全等起到很重要的作用,学生可以利用角平分线的性质和判定探索问题中的线段的数量关系与三角形全等的证明,实现承上启下的作用。

二、学情分析:学生刚刚经历了三角形的全等证明,对证明线段的长度关系有了探索的方向,本节课主要通过动手实践,摸索角平分线的性质与判定,再利用三角形全等的证明来求证角平分线的性质与判定,进而了解和掌握角平分线的性质与判定。

三、教学目标:①知识技能:了解角平分线的画法,了解和掌握角平分线的性质,理解角平分线的判定。

②数学思考:经历角平分线的作法的实践活动,理解角平分线的性质和角平分线的判定。

③问题解决:作角平分线,运用角平分线的性质与判定解决实际应用中的全等证明。

④情感态度:在合作探究中体验数学知识来源于生活,在学习过中中体验成功的乐趣,锻炼克服困难的意志,培养严谨的科学态度。

三、教学重点与难点:①教学重点:理解如何作角的平分线(尺规作图),角平分线的性质及运用。

②教学难点:作角平分线中注意为什么要大于线段长的一半,由角平分线的性质得出角平分线的判定。

四、课时安排:1课时。

五、教学方法:合作探究法、引导法。

六、教学过程:
(一):交流预习:预习教材P48-50的内容,展示收获。

(教师巡视,师友相互交流,将自己的收获与师傅或学友分享)
(二)互助探究:探究①角平分线的画法。

教师用课件展示思考1(教材P48):师友利用预习的知识加以说明,两组师友展示画法并说明:
1)
(教师在师傅的讲解时突出强调为什么要大于DE
2
探究②角平分线上的点到角两边的距离的关系。

教师展示课件教材思考2(P48)
师友互助,展示结果并讲解:
(教师补充:这题我们先应确定已知条件是什么,求证是什么。


已知:点C 在AOB ∠的角平分线上,,求证:CD=CE.
证明: OC 平分AOB ∠,
∴EOC DOC ∠=∠, OB CE OA CD ⊥⊥,,∴︒=∠=∠90CEO CDO ,
在DOC ∆与EOC ∆中,EOC DOC ∠=∠(已求)
CEO CDO ∠=∠(已求)
OC OC = (公共边)
∴DOC ∆≅EOC ∆(AAS )
∴CE CD =
师友共同总结这一结论:
角平分线上的点到角的两边的距离相等。

此时让师友总结证明几何命题的步骤:1、明确命题中的已知和求证;
2、根据题意画出图形,并用数学符号表示已知和求证;
3、经过分析,找出由已知推出要证的结论的途径,写出证明过程。

探究 角平分线的判定。

教师展示课件教材思考3(P49) 师友共同探讨,教师巡视,加以引导。

展示师友比较优秀的做法并总结:
角的内部到角的两边的距离相等的点在角的平分线上。

教师引导学生找出已知条件和求证,并让师友合作探讨,给出证明。

选取一组师友的结果并展示:
已知:如图,OA QD ⊥,OB QE ⊥,点D 、E 为垂足,QE QD =,求证:
公路
铁路
S
点Q 在AOB ∠的平分线上。

证明: OA QD ⊥,OB QE ⊥(已知) ∴︒=∠=∠90QEO QDO (垂直的定义)
在QDO Rt ∆与QEO Rt ∆中,QO QO =(公共边)
QE QD =(已知)
∴QDO Rt ∆≅QEO Rt ∆(HL )
∴QOE QOD ∠=∠
∴点Q 在AOB ∠的平分线上。

教师引导师友总结:
在角的内部到角两边相等的点在角的角平分线上。

(突出强调数学符号形式)数学符号语言表示为:
OA QD ⊥,OB QE ⊥,QE QD =
∴ 点Q 在AOB ∠的平分线上
(三)分层提高:教师利用课件展示练习:
如图 ,已知ABC ∆的外角CBD ∠的角平分线和BCE ∠的角平分线相交于点F ,求证:点F 在DAE ∠的角平分线上。

学友在师傅的指导下,师友共同完成本题,教师巡堂,帮助有困难的
师友,然后展示较好的作业。

师友作业展示如下:
证明:过F作AE
FM⊥交FG⊥交AE于点G,AD
FH⊥交AD于点H,BC BC于点M, F在BCE
∠的平分线上,AE
FM⊥,
FG⊥,BC FG=
∴FM
又 F在CBD
∠的平分线上,AD
FM⊥,
FH⊥,BC
FM=
∴FH
FG=
∴FH
∠的角平分线上。

∴点F在DAE
(四)总结归纳:本节课你有哪些收获?你还有什么困惑?通过本次课的学习,你会勾画知识框图吗?你还想学习什么内容?(师友共同完成,学友回答,师傅可作补充)
(五)巩固反馈:(师友合作探讨交流)
如图,ABC
∆的角平分线BM,CN相交于点P,
求证:点P到三边AC
,的距离相等。

BC
AB,
(请两组师友加以证明,完成过程)
证明:过点P 作AB PD ⊥于D,DC PE ⊥于E ,AC PF ⊥于F ,
BM 是ABC ∆的角平分线,点P 在BM 上
∴PE PD =(角平分线上的点到角的两边的距离相等)
同理:PF PE =
∴PF PE PD ==
即点P 到三边AC BC AB ,,的距离相等。

七、布置作业:①教材P51---T5,P52---T7
②<能力>本节同步
③ 自编一道证明题,与师傅(或学友)分享
八、板书设计:
12.3角平分线的性质
1、角平分线的画法 展示角平分线的画法
2、角平分线的性质 借助角平分线画法证明
3、角平分线的判定 利用性质证明
4、课堂小结。

相关文档
最新文档