智能材料在土木工程中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能材料在土木工程中的应用

[摘要]:智能材料是2l 世纪的一种新型的材料、是材料科学发展的方向,而在当代的土木工程领域内,智能材料已经得到了广泛的应用。本文对智能材料的概念、类型及其特点进行介绍,论述了智能材料在土木工程中应用和研究现状。

[关键词]:智能材料;土木工程;应用现状

智能材料是一种能感知外界环境变化并自动改变自身特性以适应该变化,可实现自诊断、自调节、自适应、自修复等功能的新型复合材料,是近年来引起世界各发达国家重视的新材料高技术体系,其全新的构思源于仿生,目标是要获得类似人的各种功能的“活”的材料。智能材料的出现为土木工程材料与结构提供了新的发展方向,智能材料与结构系统在木土工程领域中有着巨大的应用潜力,目前压电、压磁、光纤、形状记忆合金等智能材料,在当代土木工程领域内也已得到了广泛应用。

1智能材料的概念,类型及其特性

1.1概念.

智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。

1.2组成.

目前智能材料主要有形状记忆合金、电流变体和磁流变体、磁致伸缩材料、压电材料等几大类。一般情况下智能材料由基体材料、敏感材料、驱动材料和信息处理器四部分构成。 l)基体材料基体材料担负着承载的作用,一般宜选用轻质材料. 基体材料首选高分子材料,因为其重量轻、耐腐蚀,尤其具有粘弹性的非线性特征. 其次也可选用金属材料,以轻质有色合金为主。

2)敏感材料敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、PH 值等). 常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等.

3)驱动材料因为在一定条件下驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务. 常用有效驱动材料有形状记忆材料、压电材料、电流变体和磁致伸缩材料等. 可以看出,这些材料既是驱动材料又是敏感材料,起到了双重作用,这也是智能材料设计时

可采用的一种思路.

4)信息处理器信息处理器是在敏感材料、驱动材料间传递信息的部件,是敏感材料和驱动材料二者联系的桥梁.

1.3特性.

因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征:

1)传感功能:能够感知外界或自身所处的环境条件,如负载、应力、应变、振动、热、光、电、磁、化学、核辐射等的强度及其变化。

2)反馈功能:可通过传感网络,对系统输入与输出信息进行对比,并将其结果提供给控制系统。

3)信息识别与积累功能:能够识别传感网络得到的各类信息并将其积累起来。

4)响应功能:能够根据外界环境和内部条件变化,适时动态地作出相应的反应,并采取必要行动。

5)自诊断能力:能通过分析比较系统的状况与过去的情况,对诸如系统故障与判断失误等问题进行自诊断并予以校正。

6)自修复能力:能通过自繁殖、自生长、原位复合等再生机制,来修补某些局部损伤或破坏。

7)自调节能力:对不断变化的外部环境和条件,能及时地自动调整自身结构和功能,并相应地改变自己的状态和行为,从而使材料系统始终以一种优化方式对外界变化作出恰如其分的响应。

2智能材料在土木工程中应用

2.1 形状记忆合金在土木工程中的应用

形状记忆合金(SMA)是一类具有形状记忆效应(Shape Memory Effect)的智能合金材料。具有形状记忆效应的合金包括Ni—Ti,Cu—Zn—Al,Cu—Al—Ni以及聚氨基甲醇乙醇等。作为一种新型的功能性材料,形状记忆合金其最显著的优点之一就是在激发材料的形状记忆效应时,材料能产生很高的回复应力(700 MPa以上)和回复应变(8%左右),并且还具有很强的能量储存和能量传输能力。利用这一特性就可把材料埋植在各种结构中,进行结构的自增强、自增韧、自诊断和自适应控制的研究与应用,同时也可将材料制成智能型驱动器,进行结构的裂缝、损伤、变形及振动的主动隔振等方面的研究与应用。

形状记忆合金的另一个显著的优点是相变伪弹性性能和相变滞后性能,其应力一应变曲线在加卸载过程中形成环状,这说明材料在此过程中可吸收和耗散大量的能量。试验结果表明,形状记忆合金的相变回复力也很高,其值可达近400 MPa。根据这一特性就可研制具有相变伪弹性性能的形状记忆合金被动耗能器或被动耗能控制系统,以便进行土木工程结构的被动耗能抗震控制。

目前,国外已将形状记忆合金耗能器用于砌体结构和钢筋混凝土结构的被动抗震控制设计,同时也有用于古建筑抗震加固的应用实例,还有将形状记忆合金制成主动阻尼控制系统的研究。用 TiNi 形状记忆合金作为隔音材料及探测地震损害控制的潜力已显示出来。已试验了桥梁和建筑物中的应用,因此作为隔音材料及探测损害控制的应用已成为一个新的应用领域。

2.2压电材料在土木工程中的应用

将压电体集成于传统的结构中,利用压电传感元件感知结构的振动模态,并根据其输出,再通过相应的控制算法确定压电作动体的输入,以实现结构振动的主动控制,是目前压电类智能结构应用研究的前沿和热点。为此,许多研究人员先后利用压电陶瓷(ZPT)作为加速度传感器和驱动体研究了任意复杂激励下压电层合结构的主动阻尼和被动阻尼以及主动振动控制等问题,还有的学者根据经典复合板理论,采用加速度反馈控制方法讨论了利用压电传感元件实现复合材料层合梁的主动阻尼控制并进行了试验研究。特别是近年来压电材料和压电堆技术的迅速发展,为压电类智能结构的研究和应用开辟了许多新领域。

目前压电材料和压电堆技术广泛应用于土木工程结构的静变形控制能、噪声主动控制、健康监测、安全评定和自适应修复以及抗震抗风等多个领域。

2.3光导纤维在土木工程中的应用

光导纤维是一种由外包层和内芯构成的纤维状光通信介质材料,这种先进的信息传输材料最先被用于通信传输系统,而且其研究发展速度很快。原因是作为信息载体的光子要比电子的速度容量与空间容量优越得多。光子响应速度比电子高出三个数量级。光子的高并行处理能力和高信息率等特性,使其具有远高于电子信息容量与处理速度的潜力。

目前,在传统的混凝土结构中埋人光纤作为传感元件进行结构强度、裂缝、损伤、变形、振动、钢筋锈蚀和施工质量等方面的自动诊断、监测、预报、控制和评价,同时再埋人驱动元件(如形状记忆合金等),并将控制元件和信息处理系统与之结合,形成具有智能功能的混凝土结构,从而实现混凝土结构的自检测、自诊断、自适应和自修复等,也是智能材料结构系统在土木工程中的研究与开发应用的热点和前沿。

相关文档
最新文档