电光调制实验

合集下载

电光调制实验指导书V1.0

电光调制实验指导书V1.0

实验指南一、实验目的1、掌握晶体电光调制的原理和实验方法;2、观察电光调制实验现象,并测量电光晶体的各参数。

3、实现模拟光通讯.二、实验内容1、观察电光调制现象2、计算电光晶体的消光比,透过率,测量晶体的半波电压。

3、进行电光调制与光通讯实验演示三、实验仪器1、光学导轨 1套2、X 轴一维调节滑座 2个3、基本滑座 4个4、起偏器及手动X轴旋转架 1个5、检偏器及手动X轴旋转架 1个6、λ/4 波片及手动X轴旋转架 1个7、He-Ne 激光器 1个8、He-Ne 激光器电源 1个9、电光调制器 1个10、硅光电探测器 1个11、电光调制实验仪信号源 1个12、三相电源线 1根13、音频转接线 1根14、BNC 屏蔽连接线 2根15、有源音箱 1个16、实验指导书 1份17、双踪示波器 1个18、声音源(收音机、MP3 等等) 1个四、实验步骤1.按照系统连接方法将激光器,电光调制器,光电探测器等部件连接到位。

系统连接方法如图4,其中电光调制器的滑动座是二维移动平台,与其他的滑动座有所不同。

其中,信号源面板如图5。

在信号源面板上,“波形切换”开关用于选择输出正弦波或是方波,“信号输出”口用于输出晶体调制电压,若“高压输出开关”拨向上为打开,拨向下为关闭。

如果拨向上那么输出的调制电压上就会叠加一个直流偏压,用于改变晶体的调制曲线,“音频选择”开关用于选择调制信号为正弦波还是外接音频信号,“探测信号”口接光电探测器的输出,对探测器输入的微弱信号进行处理后通过“解调信号”口输出,连接至有源扬声器上。

在具体的连接中,“信号输出”的CH1与CH2输出的信号完全一样,将一个输出连接示波器,另一个输出连接电光调制器。

在观察电光调制现象时,需要使用一个带衰减的探头,连接时,探头的黑色鳄鱼夹连接至前面两根线的黑色鳄鱼夹,探针接红色鳄鱼夹(在测量时,探头应10倍衰减)。

硅光电探测器通过一根两端都是BNC 头的连接线连接至示波器上。

信号调制_电光调制实验

信号调制_电光调制实验

信号调制--电光调制实验一、实验原理1、电光调制原理某些晶体在外加电场的作用下,其折射率随外加电场的改变而发生变化的现象称为电光效应,利用这一效应可以对透过介质的光束进行幅度,相位或频率的调制,构成电光调制器。

电光效应分为两种类型:(1)一级电光(泡克尔斯—Pockels )效应,介质折射率变化正比于电场强度。

(2)二级电光(克尔—Kerr )效应,介质折射率变化与电场强度的平方成正比。

实验仪中使用铌酸锂(LiNbO 3)晶体作电光介质,组成横向调制(外加电场与光传播方向垂直)的一级电光效应。

图1 横向电光效应示意图如图1所示,入射光方向平行于晶体光轴(Z 轴方向),在平行于X 轴的外加电场(E )作用下,晶体的主轴X 轴和Y 轴绕Z 轴旋转45°,形成新的主轴X ’轴—Y ’轴(Z 轴不变),它们的感生折射率差为Δn ,并正比于所施加的电场强度E :rE n n 30=∆式中r 为与晶体结构及温度有关的参量,称为电光系数。

o n 为晶体对寻常光的折射率。

当一束线偏振光从长度为L 、厚度为d 的晶体中出射时,由于晶体折射率的差异而使光波经晶体后出射光的两振动分量会产生附加的相位差δ,它是外加电场E 的函数:3300222L nl n rE n r U d πππδλλλ⎛⎫=∆== ⎪⎝⎭(1) 式中λ为入射光波的波长;同时为测量方便起见,电场强度用晶体两极面间的电压来表示,即U Ed =。

当相差πδ=时,所加电压l d r n U U 302λπ== (2) πU 称为半波电压,它是一个可用以表征电光调制时电压对相差影响大小的重要物理量。

由(2)式可见,半波电压U π决定于入射光的波长λ以及晶体材料和它的几何尺寸。

由(1)、(2)式可得:0()()U U U πδπδ=+ (3) 式中0δ为0U =时的相差值,它与晶体材料和切割的方式有关,对加工良好的纯净晶体而言00δ=。

图2 电光调制器工作原理由激光器发出的激光经起偏器P 后只透射光波中平行其透振方向的振动分量,当该偏振光I P 垂直于电光晶体的通光表面入射时,如将光束分解成两个线偏振光,则经过晶体后其X 分量与Y 分量会产生)(U δ的相差,然后光束再经检偏器A ,产生光强为I A 的出射光。

电光调制实验报告

电光调制实验报告

电光调制实验报告电光调制实验报告引言电光调制是一种利用电场对光进行调制的技术,广泛应用于通信、光学传感和光学信息处理等领域。

本实验旨在通过搭建电光调制实验装置,探究电场对光的调制效果,并分析其应用前景。

实验装置本次实验所使用的电光调制实验装置包括:光源、偏振器、电光调制器、光电探测器和示波器。

其中,光源发出的光经过偏振器后,进入电光调制器,在电场的作用下发生相位差变化,最后通过光电探测器转化为电信号,再经示波器显示出来。

实验步骤1. 将光源、偏振器、电光调制器、光电探测器和示波器依次连接起来,确保电路连接正确。

2. 调整偏振器的角度,使得光通过电光调制器时,其电场与电光调制器的极化方向垂直。

3. 打开光源和示波器,调节示波器的参数,观察示波器上的波形变化。

4. 改变电光调制器的电压,观察示波器上的波形变化,并记录下来。

5. 重复步骤4,但同时改变偏振器的角度,观察示波器上的波形变化,并记录下来。

实验结果与讨论通过实验观察和记录,我们可以得到以下结论和讨论:1. 电场对光的调制效果:随着电光调制器电压的增加,示波器上的波形振幅逐渐增大,说明电场对光的幅度进行了调制。

这说明电光调制器能够通过改变电场的强度来调制光的强度。

2. 电场对光的相位调制效果:通过改变电光调制器的电压和偏振器的角度,我们可以观察到示波器上的波形发生相位差的变化。

这说明电光调制器能够通过改变电场的强度和方向来调制光的相位。

3. 电光调制器的应用前景:电光调制技术在通信领域有着广泛的应用前景。

通过调制光的幅度和相位,可以实现光信号的调制和解调,从而实现高速、大容量的光通信。

此外,电光调制器还可以用于光学传感和光学信息处理等领域,提高系统的灵敏度和可靠性。

结论通过电光调制实验,我们深入了解了电场对光的调制效果,并探讨了其应用前景。

电光调制技术在通信、光学传感和光学信息处理等领域具有重要的应用价值,为实现高速、大容量的光通信提供了有力支持。

光调制演示实验报告(3篇)

光调制演示实验报告(3篇)

第1篇一、实验目的1. 理解光调制的原理和过程。

2. 学习使用光调制器进行信号调制。

3. 分析调制信号的频率、幅度和相位变化。

4. 掌握光调制在通信系统中的应用。

二、实验原理光调制是利用光波来携带信息的一种技术,它通过改变光波的某一参数(如幅度、频率、相位等)来实现信息的传输。

本实验中,我们主要研究幅度调制(AM)和频率调制(FM)两种调制方式。

1. 幅度调制(AM):在AM调制中,信息信号(如声音、图像等)与载波信号相乘,产生一个调制信号。

调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。

2. 频率调制(FM):在FM调制中,信息信号与载波信号的频率相乘,产生一个调制信号。

调制信号的频率随信息信号的变化而变化,而幅度和相位保持不变。

三、实验仪器与设备1. 光源:激光器或LED光源2. 调制器:光调制器(如光强度调制器、相位调制器等)3. 信号发生器:用于产生信息信号4. 光探测器:用于检测调制后的光信号5. 数据采集与分析系统:用于分析调制信号的频率、幅度和相位变化四、实验步骤1. 搭建实验系统:将光源、调制器、信号发生器、光探测器和数据采集与分析系统连接成一个完整的实验系统。

2. 进行幅度调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。

b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行AM调制。

c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。

3. 进行频率调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。

b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行FM调制。

c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。

4. 分析实验数据:使用数据采集与分析系统对实验数据进行处理和分析,得到调制信号的频率、幅度和相位变化曲线。

五、实验结果与分析1. 幅度调制实验结果:实验结果显示,调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。

实验21 电光调制

实验21 电光调制

示波器
图 4 系统连接方法
-4-
图 5 信号源面板 其中,信号源面板如图 5 。在信号源面板上, “波形切换”开关用于选择输出正弦波或是方波, “信 号 输 出 ”口 用 于输 出 晶体 调 制 电压 , 若“ 高 压输 出 开 关” 拨 向上 为 打开 , 拨 向下 为 关闭 。 如果 拨 向 上 那么输出的调制电压上就会叠加一个直流偏压,用于改变晶体的调制曲线, “音频选择”开关用于选 择 调制信号为正弦波还是外接音频信号, “探测信号”口接光电探测器的输出,对探测器输入的微弱信 号 进行处理后通过“解调信号”口输出,连接至有源扬声器上。 在具体的连接中, “信号输出”的 CH1 与 CH2 输出的信号完全一样,将一个输出连接示波器,另一 个 输 出 连接 电 光调 制 器。 在 观 察电 光 调制 现 象时 , 需 要使 用 一个 带 衰减 的 探 头, 连 接时 , 探头 的 黑 色 鳄鱼夹连接至前面两根线的黑色鳄鱼夹,探针接红色鳄鱼夹(在测量时,探头应 10 倍衰减) 。硅光 电 探测器通过一根两端都是 BNC 头的连接线连接至示波器上。在进行音频实验时,则不需要示波器, 且 硅 光 电 探测 器 连接 至 信号 源 “ 探测 信 号” 口 , “解 调 信 号” 接 至有 源 音箱 。 “ 音频 输 入” 接 外加音 频 信 号。 2. 光路 准直 打 开 激 光 器电 源 ,调 节光 路 , 保 证光 线 沿光 轴通 过 。 在 光路 调 节过 程中 , 先 将 波片 , 起偏 器和 检 偏 器 移 走, 调 整激 光 管, 电 光 晶体 和 探测 器 三者 的 相 对位 置 ,使 激 光能 够 从 晶体 光 轴通 过 ;调 整 好 之 后 , 再 将波 片 ,起 偏 器和 检 偏 器放 回 原位 , 再调 节 它 们的 高 度, 因 为它 们 的 通光 孔 很大 , 调节 相 对 容 易。调节完毕后,锁紧滑动座和固定各部件。 3. 1/4 波片对调 制的影响 将 信 号 源 输出 的 正弦 波信 号 加 在 晶体 上 ,并 将探 测 器 输 出的 信 号接 到示 波 器 上 ,调 节 波片 ,观 察 输 出 信 号的 变 化, 记 下调 节 最 佳时 输 出信 号 的幅 值 ; 改变 信 号源 输 出信 号 的 幅值 与 频率 , 观察 探 测 器 输出信号的变化;去掉 1/4 波片,加上直流偏压,改变其大小,观察输出信号的变化,并与加波片 的 情况进行比较。 4. 静态 特性曲线测量 测量晶体的半波电压采用极值法,即晶体上只加直流电压,不加交流信号,把直流电压从小到大逐

南邮光电调制实验报告(3篇)

南邮光电调制实验报告(3篇)

第1篇一、实验目的1. 理解并掌握光电调制的基本原理和方法。

2. 掌握不同调制方式(如ASK、FSK、PSK)的实验操作和波形分析。

3. 学习调制信号的解调过程,并分析解调效果。

4. 培养实验操作能力和数据分析能力。

二、实验原理光电调制是利用光电器件将信息信号加载到光波上的过程。

常见的调制方式有振幅键控(ASK)、频率键控(FSK)和相位键控(PSK)等。

本实验主要研究ASK调制和PSK调制。

1. ASK调制ASK调制是将信息信号的幅值变化加载到载波信号上。

调制过程如下:(1)信息信号经过放大、整流、滤波等处理,得到与信息信号幅值相对应的电流信号。

(2)电流信号驱动光电二极管,产生与电流信号相对应的光信号。

(3)光信号经过调制器,与载波信号叠加,形成已调信号。

2. PSK调制PSK调制是将信息信号的相位变化加载到载波信号上。

调制过程如下:(1)信息信号经过放大、整流、滤波等处理,得到与信息信号幅值相对应的电流信号。

(2)电流信号经过调制器,与载波信号叠加,形成已调信号。

(3)已调信号经过相位控制器,使载波信号的相位根据信息信号的幅值变化而变化。

三、实验器材1. 光电调制器2. 光电二极管3. 载波信号发生器4. 信息信号发生器5. 信号分析仪6. 连接线若干四、实验步骤1. ASK调制实验(1)将信息信号发生器输出信号连接到光电调制器的输入端。

(2)将载波信号发生器输出信号连接到光电调制器的载波输入端。

(3)调节信息信号发生器的输出幅度,观察调制信号的波形。

(4)将调制信号输入信号分析仪,分析调制信号的频谱和功率。

2. PSK调制实验(1)将信息信号发生器输出信号连接到光电调制器的输入端。

(2)将载波信号发生器输出信号连接到光电调制器的载波输入端。

(3)调节信息信号发生器的输出幅度,观察调制信号的波形。

(4)将调制信号输入信号分析仪,分析调制信号的频谱和功率。

五、实验结果与分析1. ASK调制实验结果(1)当信息信号幅度较小时,调制信号的波形接近载波信号。

点光调制实验报告(3篇)

点光调制实验报告(3篇)

第1篇一、实验目的1. 了解点光调制的基本原理和实验方法。

2. 掌握点光调制技术在不同应用场景下的实际操作。

3. 分析点光调制系统的性能指标,评估其优缺点。

二、实验原理点光调制技术是一种利用光信号进行信息传输和控制的手段。

它通过改变光信号的强度、频率、相位等参数来传递信息。

本实验采用脉冲宽度调制(PWM)技术进行点光调制,即通过改变光脉冲的宽度来控制调制信号的强度。

点光调制系统主要由以下部分组成:1. 发光器件:产生光信号,如LED、激光二极管等。

2. 调制器:将电信号转换为光信号,如PWM控制器、调制器芯片等。

3. 传输介质:光信号传输的通道,如光纤、空气等。

4. 接收器:接收光信号并转换为电信号,如光电二极管、光电探测器等。

5. 解调器:将光信号中的信息提取出来,如解调器芯片、放大器等。

三、实验器材1. 发光器件:LED2. 调制器:PWM控制器3. 传输介质:光纤4. 接收器:光电二极管5. 解调器:放大器6. 信号发生器7. 信号分析仪8. 电源9. 实验架四、实验步骤1. 连接实验电路:将LED、PWM控制器、光纤、光电二极管、放大器等元器件连接成点光调制系统。

2. 设置PWM控制器:根据实验要求设置PWM控制器的占空比、频率等参数。

3. 发送光信号:打开信号发生器,产生所需的电信号,通过PWM控制器调制LED发出光信号。

4. 传输光信号:将调制后的光信号通过光纤传输到接收端。

5. 接收光信号:接收端的光电二极管接收光信号,并将其转换为电信号。

6. 解调光信号:通过放大器对电信号进行放大,然后通过解调器提取出调制信息。

7. 测量性能指标:使用信号分析仪测量光信号的强度、频率、相位等参数,评估点光调制系统的性能。

五、实验结果与分析1. 光信号强度:通过实验测量,得到不同占空比下光信号的强度。

分析结果表明,光信号强度随占空比的增大而增大。

2. 传输距离:通过实验测量,得到不同传输距离下光信号的强度。

电光调制实验

电光调制实验

實驗二~~~~~~~~~~~~~~~~~~~~~~~主筆實驗二電光調制實驗一、實驗目的:1.了解熟悉電光效應(Electro-Optical Effect)。

二、實驗內容:1.KDP光調製(EOM)組基本特性的測量2.EOM對頻率的響應三、實驗原理:電光效應(electro-optic effect)早在年就由普克爾(Pockels)發現,所以又稱普克爾效應,它是由電場的一次項所引起的折射率變化而產生,是一線性的電光效應,其時間響應可達飛秒量級。

基本上,此效應是將電場加在晶體上,改變其介電張量(dielectric tensor),因而使通過此晶體的光極化方向被調整,再利用極化器(polarizer)及分析器(analyzer) ,使極化之調變轉換成光振幅之調變,因此調變正比於外加電場。

普克爾效應只發生在光學性質是各向異性(anisotropic)的晶體中,也就是不具中心對稱的晶體才有此效應,例如:砷化鎵(GaAs)、鉭酸鋰(LiTaO3)、鈮酸鋰(LiNbO3)、鋅化銻(ZnTe)等,而矽(Si)則無此效應。

由於普克爾效應的反應速度極快,因此與超快雷射結合後,亦可作高頻電子電路的量測,可利用半導體基底(substrate)本身的普克爾效應.,或是利用電光晶體,作成一針頭的形狀靠近待測電路,來偵測電路上的電場。

利用此效應的優點是量測的位置較有彈性,甚至積體電路的表面有保護層(passivation)時,亦可做量測,缺點則是靈敏度較差,因此,偵測出之信號雜訊較大。

對一些特定的積體電路,如:天線即主動元件等,其電場方向之量測亦很重要,利用普克爾效應也可做到。

四、實驗器材:1.He-Ne laser2.Polarizer (P1, P2)3.Pockels cell (內為KDP晶體)4.高壓電源供應器5.光度計6.光具座7.示波器8.波形產生器9.信號放大器(OP amp)五、實驗步驟:1.KDP光調製(EOM)組,基本特性的測量:(1)實驗裝置圖:圖2.1 電光調制實驗裝置圖(2)依照圖2.1的次序,將各光學元件與電路安裝完成,且完成光學路徑的準直工作。

实验二电光调制实验

实验二电光调制实验

一、實驗目的:1.了解熟悉電光效應(Electro-Optical Effect)。

2.接觸非線性光學(Nonlinear Optics)題材。

二、實驗內容:1.KDP光調製(EOM)組基本特性的測量。

2.EOM對頻率的響應。

三、實驗器材:1.He-Ne laser2.Polarizer (P1, P2)3.Pockels cell (內為KDP晶體)4.高壓電源供應器5.光度計6.光具座7.示波器8.波形產生器9.信號放大器 (OP amp)四、原理:1.電光晶體中的折射率分布可用橢球表示如下2.若外加電場,則會使折射率改變,方程式必須改變為3.外加電場與折射率的關係可用矩陣表示如r ij為電光係數4.利用晶體的對稱性可使多個電光係數為零,故矩陣成為5.若電場只加在Z軸上,則橢球方程式為:由此可知外加電場在Z軸上,會使橢球繞Z軸轉動一個角度θ,X軸及Y 軸轉到了X’及Y’6.其中座標轉換的關係式為7.代入橢球方程式若θ=45°8.與正橢球比較由近似可得------(*)9. 橫向效應用45°-Z 切割的晶體,在Z 軸加上電場使晶體成為電致雙晶軸晶體。

因晶體是45°切割,所以新建立的光軸X ’、Y ’就是立方體的邊。

將一平面偏極光垂直Y ’Z 平面入射,因偏振面與Z 軸夾了45°角且'Y Z n n ,因此光波會被分成E z 及E Y ’兩個分量。

在通過晶體之後,兩分量之間的相位差為將(*)代入式子的第一項是晶體的自然雙折射效應所造成的相位移,其對溫度極敏感,所以一般我們都是將此種晶體成對使用。

圖1 KDP 自然雙折射的利用裝置圖10.垂直偏極光與水平偏極光通過晶體之後所造成的相位延遲為其相位差為因此只要提高dl的值即可降低趨動電壓,且外加電場與入射光方向垂直,所以不需用到透明電極,可大幅降低成本。

五、 裝置圖:1. KDP 光調製(EOM)組,基本特性的測量:圖2電光調制實驗裝置圖2. 加補償器之裝置圖圖3 加補償器的裝置圖六、實驗步驟:1.KDP光調製(EMO)組,基本特性量測:(1)依照圖2.1的次序,將各光學元件與電路安裝完成,且完成光學路徑的準直工作。

电光调制试验

电光调制试验

上一页
下一页
主目录
返 回
当晶体上加上电场后,折射率椭球的形状、大小、方位都发生 变化,椭球的方程变为
x2 y 2 z 2 2 2 2 yz xz xy 1 2 2 2 2 2 2 n11 n22 n33 n23 n13 n12
(3)
只考虑一次电光效应 ,上 式与式( 2 )相应项的系数 之差和电场强度的一次方 成正比。由于晶体的各向 异性,电场在 x 、 y 、 z 各个 方向上的分量对椭球方程 的各个系数的影响是不同 的,我们用右式形式表示
主目录
12 22 32 42 52 61
13 23 EX 33 E 43 Y EZ 53 63
(4)
返 回
上式是晶体一次电光效应的普遍表达式,式中 γij 叫做电光 系数 (i=1,2,…6;j=1,2,3),共有18个,EX、EY、EZ是电场E在 x、y、z方向上的分量。 电光效应根据施加的电场方向与通光方向相对关系,可分 为纵向电光效应和横向电光效应。利用纵向电光效应的调 制,叫做纵向电光调制;利用横向电光效应的调制,叫做 横向电光调制。晶体的一次电光效应分为纵向电光效应和 横向电光效应两种。把加在晶体上的电场方向与光在晶体 中的传播方向平行时产生的电光效应,称为纵向电光效应 ,通常以类型晶体为代表。加在晶体上的电场方向与光在 晶体里传播方向垂直时产生的电光效应,称为横向电光效 应 ,以晶体为代表。
0 0 0 ij 0 51 22
上一页 下一页
22
22
0 51 0 0
13 13 33
上一页 下一页

电光调制实验

电光调制实验

电光调制实验电光调制实验是一种基于光及电的实验,主要是利用外加电场对光的介质介电常数及折射率发生变化的特性,从而实现对光的调制,达到信息传输的目的。

本文将对电光调制实验的原理、实验过程、实验结果以及应用进行详细介绍。

一、实验原理电光调制实验的基本原理是电-光双向转换。

光通过透明的介质之后会导致光的相位差,从而产生偏振旋转。

当外加电场时,通过电光效应,电场可以改变介质的折射率和吸收系数,从而影响光的速度和偏振方向。

在调制过程中,可以控制电场的强度和方向,从而实现光信号的编码、传输和解码。

二、实验材料实验材料主要包括:1.激光器2.半波片3.光偏振器4.电光晶体5.电源6.光探测器三、实验过程在实验开始前,首先将激光器打开并调节其输出功率,以保证激光器的正常工作。

2.半波片和光偏振器的使用。

将半波片和光偏振器连接在激光器的输出端上,并根据需要调整偏振方向和入射角度。

将电光晶体固定在一个平台上,将光束通过电光晶体,并调整电光晶体的入射角度以使其与光束共面。

4.电源的使用。

将电源连接到电光晶体上,并根据需要调整电场的强度和方向。

将光探测器放置在光束的另一端,并记录光信号的强度、频率和相位。

四、实验结果通过电光调制实验,研究者可以获得以下结果:1.光信号的编码和解码。

通过电光调制实验,可以将信息编码成光的信号并传输,然后通过解码技术将信息从光信号中提取出来。

2.光调制的幅度、相位和频率。

通过电光调制实验,可以通过调节电场的强度和方向来改变光的幅度、相位和频率,从而实现对光信号的调制。

3.光传输的性能。

通过电光调制实验,可以研究光传输的性能,包括传输距离、传输带宽、光损耗等特性。

这些研究能够指导光通讯技术的应用和发展。

五、应用电光调制实验的应用非常广泛。

一些典型的应用包括:1.光通讯。

2.光储存。

在光储存中,电光调制技术也是非常重要的。

通过电光调制实验,可以实现将信息储存在光中,然后可以随时读取出来。

3.光计算。

实验4-5电光调制器性能的测试

实验4-5电光调制器性能的测试

给晶体同时加上交流电和直流电,通过直流电压改变输出光的波形。
光信号与电压的关系
最后在不加直流电压的情况下加入1/4波片,可观察到 光信号与无波片但是加Vπ/2时的光信号相同。
如果P2//P1,导出被调制光强的公式。
02
怎样保证激光束是沿着晶体的光轴传播的?
01
激光束的方向为什么必须沿着晶体的光轴入射?如果激光束与光轴不平行,对实验结果有何影响?为什么?
晶体的折射率因外加场而发生变化的现象为电光效应。折射率与外电场成比例改变的称为线性电光效应或普克尔效应,与外加场的二次方成比例改变的,称为二次电光效应或克尔效应。外电场可以是直流场或交变场,频率可高达超高频或微波的范围。
01
02
01
实验原理
o光和e光都是偏振光,振动方向互相垂直。o光的折射率不随方向而变,e光的折射率则随方向而变。
双折射
折射率椭球 折射率椭球(习惯称光率体)是描述晶体光学性质常用的示性面,在各向异性介质的主轴坐标系中,光率体用下式描述: 式中n1 、n2 、n3为该光率体在主轴方向上的折射率,称为主折射率
输出光的干涉
在晶体的光学性质研究和应用电光效应时,经常要使用两个偏光镜,一个偏光镜用于产生线偏振光,称为起偏镜,另一个偏光镜称检偏镜或分析镜,它可使具有一定光程差的两个相干的线偏振光在同一个平面内振动,引起干涉而产生强度的变化。
202X
单击此处添加副标题
实验4-5 电光调制器性能的测试
汇报日期
实验概述
外场对晶体宏观性质的影响,主要反映在晶体的折射率的变化上,这种变化虽小,但足以改变光在晶体中传播的许多特性,因而可以达到利用外场来控制光的传播方向、位相、强度、偏振态等,从而使输出光成为可利用的讯号光。

电光调制实验报告小结

电光调制实验报告小结

电光调制实验报告小结引言电光调制是一种利用电场来调制光的相位和强度的技术,在通信领域有着广泛的应用。

本实验旨在通过搭建电光调制系统并进行实验验证,探究电场对光调制的影响,实验结果对理解和应用电光调制技术具有重要意义。

实验方法1. 实验材料:激光器、调制器、接收器、电源等。

2. 搭建电光调制系统:将激光器的输出光传入调制器中,通过调制器内的电场对光进行调制,调制完的光被接收器接收。

3. 测量和记录实验数据:测量接收器接收到的光强,并记录输入的电场强度。

实验结果分析实验1:电场对光强的影响在电场未加之前,接收器检测到的光强为I0。

在电场加上不同的电压后,记录对应的光强I,并计算光强的变化率ΔI/I0。

实验结果如下:电场强度(V/m) 光强变化率ΔI/I0-0 0100 0.2200 0.4300 0.6400 0.8500 1从实验结果可以看出,电场的增大对光强的调制效果逐渐增强。

当电场为0时,光强不受到电场的影响;当电场增加到500 V/m时,光强变为原来的2倍,光强的调制效果达到最大。

实验2:电场对光相位的影响在电场未加之前,激光器的输出相位作为参考相位。

在电场加上不同的电压后,测量和记录光的相位,并计算相位的偏移Δφ。

实验结果如下:电场强度(V/m) 相位偏移Δφ-0 0100 0.2π200 0.4π300 0.6π400 0.8π500 π从实验结果可以看出,电场的增大对光相位的调制效果逐渐增强。

当电场为0时,光相位不受到电场的影响;当电场增加到500 V/m时,光相位经历了一个完整的π的偏移。

实验3:光强和相位的联合调制效果通过同时加上电场和光的相位调制器,记录不同电场强度下的光强和相位变化情况。

实验结果如下:电场强度(V/m) 相位偏移Δφ光强变化率ΔI/I0-0 0 0100 0.2π0.2200 0.4π0.4300 0.6π0.6400 0.8π0.8500 π 1从实验结果可以看出,电场和光的相位调制器的联合调制效果是光强和相位调制的叠加效果。

实验四 电光调制

实验四 电光调制

实验四 电光调制实验日期:2011.09.08 实验者:黄键彬(082232034)朱俊杰(082232035)一、实验目的1、 掌握晶体电光调制的原理和实验方法;2、 学会用简单的实验装置测量晶体半波电压;3、 实现模拟光通讯。

二、实验仪器和主要参数可调半导体激光器(λ=650nm )、DGT-I 型电光调制电源箱(0~350V 连续可调)、铌酸锂晶体(50mm ×6mm ×1.7mm )、二维调整架、接收器、起偏器、小孔光阑、检偏器及1/4波片等。

三、实验原理1、半波电压根据电光晶体上所加电场方向的不同,将电光调制分为横向电光调制和纵向电光调制。

由于横向电光调制系统具有半波电压低、工艺简单等优点,所以本实验采用的是横向电光调制系统方案。

横向电光调制是以电光调制晶体X 轴加电场,Z 轴通光工作的,图4-1为本实验所采用的横向电光调制方案示意图。

图4-1横向电光调制示意图图4-1中起偏器的偏振方向平行于电光晶体的X 轴,检偏器的偏振方向平行于Y 轴。

当在晶体X 方向加上电场时,折射率椭球绕Z 轴转了45角,其感应轴为x ',y '。

此时,入射光束经起偏器后,以与x 轴平行的线偏振光进入晶体,并分解成沿x ',y '轴的两个相位和振幅均分别相等的分量,即)2c o s (45cos )(z n A z E x X ''⋅'=λπ)2c o s (45s i n )(y z n z y ''⋅A '=E λπ入射光在晶体表面(Z=0)处的光波表示为:AA y x =E =E '')0()0(设入射光强为0I ,则输入光强为:22202)0()0(A EEI y x =E +E =∞''*当光通过长度为l 的晶体后,在输出面l z =处,设x '和y '分量之间产生的相位差为δ∆,不考虑公共的相位因子,则有:δ∆-''=E =E i y x Ael A l )()(先不考虑插入4λ玻片,这样从检偏器出射的光)(l x 'E 和)(l E y '在Y 轴上的分量之和为:()12-A =∆-δi y eE )(设此时对应的输出光强为I ,则有:()()[]()()[]2s i n2112222δδδ∆=--=∞∆∆-*A eeAE E I i i yy电光的透过率T 可表示为: 2s i n2δ∆=I I T外加点成所引起位相差δ∆为:()d lUn l n n y x 223022γλπλπδ=-=∆''其中,d 为外加电场方向上(即X 方向)的晶体厚度,U 为加在晶体X 方向上的电压,d UE x =。

电光调制实验实验报告

电光调制实验实验报告

电光调制实验实验报告【实验目的】1、掌握晶体电光调制的原理和实验方法2、学会利用实验装置测量晶体的半波电压,计算晶体的电光系数3、观察晶体电光效应引起的晶体会聚偏振光的干涉现象【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器【实验内容及步骤】一、调整光路系统1、调节三角导轨底角螺丝,使其稳定于调节台上。

在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基本处于一条直线,即使光束通过小孔。

放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。

再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。

2、将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。

3、拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。

光强调到最大,此时晶体偏压为零。

这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。

如图四所示4、旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。

如图五所示图四图五6、晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。

如图六所示7、改变晶体所加偏压极性,锥光图旋转90度。

如图七所示图六图七8 只改变偏压大小时,干涉图形不旋转,只是双曲线分开的距离发生变化。

这一现象说明,外加电场只改变感应主轴方向的主折射率的大小、折射率椭球旋转的角度和电场大小无关。

二、依据晶体的透过率曲线(即T-V曲线),选择工作点。

电光调制实验实验报告

电光调制实验实验报告

电光调制实验实验报告一、实验目的通过本次实验,学生将能够掌握电光调制器的基本原理、工作方式及其在通信中的应用。

二、实验仪器设备1. 光源:激光管2. 实验桌3. PCS2814型电光调制器4. 准直器5. 直流电源6. 光电探测器7. 示波器三、实验原理电光调制器是一种通过在光传输介质中加入直流或低频信号来改变光强度的设备。

可以用于光电通信、激光雷达、医学成像等领域。

电光调制器根据调制原理的不同分为两种:强度调制和相位调制。

其中,强度调制通过改变光强度来实现信息传输,相位调制则是改变光波的相位而传输信息。

在强度调制中,光信号传输的过程可以分为两个步骤:1.信号电流模拟调制通过窄带高频电信号调制直流偏置电压,生成相应的光信号。

这样调制后的光信号频率范围集中在带宽较窄的低频范围内。

2.对光强进行调制将调制后的光信号通过调制后器的光口,再经准直器射到检测器上,检测器能将光电转换为电信号,这样就能获得来自光传输介质的有效信号。

四、实验步骤1. 搭建实验装置:将激光管、电光调制器、准直器和光电探测器依次放置在实验台上,随后将它们连接起来,准确设置检测器到准直器的距离,为了获得最佳的工作效果,排除光学信号串扰和反射的影响,准直器进行精细调整。

2. 测试无调制状态下的光强度:通过开启激光管,取得光电探测器采集的光强度数据,这里需要使用示波器进行监测和测量,并记录数据。

通过调节电流模拟信号源,模拟调制电流信号,然后通过调制器进行传输,观察并记录数据变化,比较与无调制状态下的光强度数据变化情况。

4. 可用性测试:根据测试结果,可以判断电光调制器中的效果如何,以及它是否适合于实际应用。

五、实验结果分析通过对实验数据的可视化分析,可以看出,电光调制器能够通过调制电流控制光传输介质内关联的光强度,这样就能够实现由电信号到光信号的转化。

在本实验中,使用的是单调制强度调制电路,因此,仅仅是将高频电流信号作用于调制器,就能够将开关的信号传输到光传输介质内,转化成可用的数字信号,这样就实现了从电信号到光信号的转换。

实验 电光 声光调制

实验 电光 声光调制

实验一电光调制1.一、实验目的:2.了解电光调制的工作原理及相关特性;3.掌握电光晶体性能参数的测量方法;二、实验原理简介:某些光学介质受到外电场作用时, 它的折射率将随着外电场变化, 介电系数和折射率都与方向有关, 在光学性质上变为各向异性, 这就是电光效应。

电光效应有两种, 一种是折射率的变化量与外电场强度的一次方成比例, 称为泡克耳斯(Pockels)效应;另一种是折射率的变化量与外电场强度的二次方成比例, 称为克尔(Kerr)效应。

利用克尔效应制成的调制器, 称为克尔盒, 其中的光学介质为具有电光效应的液体有机化合物。

利用泡克耳斯效应制成的调制器, 称为泡克耳斯盒, 其中的光学介质为非中心对称的压电晶体。

泡克耳斯盒又有纵向调制器和横向调制器两种, 图1是几种电光调制器的基本结构形式。

图1: 几种电光调制器的基本结构形式a) 克尔盒 b) 纵调的泡克耳斯盒 c) 横调的泡克耳斯盒当不给克尔盒加电压时, 盒中的介质是透明的, 各向同性的非偏振光经过P后变为振动方向平行P光轴的平面偏振光。

通过克尔盒时不改变振动方向。

到达Q时, 因光的振动方向垂直于Q光轴而被阻挡(P、Q分别为起偏器和检偏器, 安装时, 它们的光轴彼此垂直。

), 所以Q没有光输出;给克尔盒加以电压时, 盒中的介质则因有外电场的作用而具有单轴晶体的光学性质, 光轴的方向平行于电场。

这时, 通过它的平面偏振光则改变其振动方向。

所以, 经过起偏器P产生的平面偏振光, 通过克尔盒后, 振动方向就不再与Q光轴垂直, 而是在Q光轴方向上有光振动的分量, 所以, 此时Q就有光输出了。

Q的光输出强弱, 与盒中的介质性质、几何尺寸、外加电压大小等因素有关。

对于结构已确定的克尔盒来说, 如果外加电压是周期性变化的, 则Q的光输出必然也是周期性变化的。

由此即实现了对光的调制。

泡克耳斯盒里所装的是具有泡克耳斯效应的电光晶体, 它的自然状态就有单轴晶体的光学性质, 安装时, 使晶体的光轴平行于入射光线。

电光声光调制_实验报告

电光声光调制_实验报告

一、实验目的1. 理解电光调制和声光调制的原理及基本过程。

2. 掌握电光调制器和声光调制器的实验操作方法。

3. 分析实验数据,验证电光调制和声光调制的基本特性。

二、实验原理1. 电光调制原理电光调制是利用电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,从而改变光波的传输特性。

电光调制器主要由调制晶体、电极、光源和探测器组成。

当电场施加在调制晶体上时,光波的强度、相位或偏振状态会发生变化,从而实现对光信号的调制。

2. 声光调制原理声光调制是利用声光效应,即光波在介质中传播时,被超声波场衍射或散射的现象。

声光调制器主要由声光介质、电声换能器、吸声(或反射)装置及驱动电源等组成。

当超声波在介质中传播时,会引起介质的弹性应变,从而形成折射率光栅,使光波发生衍射现象。

通过控制超声波的强度、频率和相位,可以实现对光信号的调制。

三、实验仪器与装置1. 电光调制实验实验仪器:电光调制器、光源、探测器、示波器、信号发生器、直流电源等。

实验装置:将光源发出的光束通过调制晶体,然后经探测器接收,通过示波器观察调制后的光信号。

2. 声光调制实验实验仪器:声光调制器、光源、探测器、示波器、信号发生器、超声波发生器等。

实验装置:将光源发出的光束通过声光介质,然后经探测器接收,通过示波器观察调制后的光信号。

四、实验步骤1. 电光调制实验(1)将光源发出的光束通过调制晶体,调节直流电源,使电场施加在调制晶体上。

(2)观察示波器上的光信号,记录调制后的光信号波形。

(3)改变调制信号频率和幅度,观察调制效果。

2. 声光调制实验(1)将光源发出的光束通过声光介质,调节超声波发生器,产生超声波。

(2)观察示波器上的光信号,记录调制后的光信号波形。

(3)改变超声波频率和强度,观察调制效果。

五、实验数据与分析1. 电光调制实验(1)记录调制后的光信号波形,分析调制频率、幅度与调制效果的关系。

(2)分析电光调制器的调制带宽、调制深度等特性。

电光调制器实验报告

电光调制器实验报告

一、实验目的1. 了解电光调制器的基本原理和结构;2. 掌握电光调制器的实验方法;3. 分析电光调制器的性能参数。

二、实验原理电光调制器是一种将电信号转换为光信号的装置,主要应用于光通信、光纤陀螺、大功率激光等领域。

其基本原理是利用电光效应,即电场与光场之间的相互作用,将电信号调制到光波上。

电光调制器主要有以下几种类型:1. 马赫-曾德尔(Mach-Zehnder)干涉仪调制器;2. 电光晶体调制器;3. 薄膜铌酸锂(LiNbO3)调制器。

本实验采用薄膜铌酸锂调制器,其结构如图1所示。

调制器主要由铌酸锂晶体、电极、偏振片和光纤耦合器组成。

当电信号施加到电极上时,电极产生的电场会改变铌酸锂晶体的折射率,从而改变光波传播方向,实现电信号调制。

三、实验仪器与设备1. 光源:波长为1550nm的单模激光器;2. 光电探测器:PIN光电二极管;3. 电光调制器:薄膜铌酸锂调制器;4. 偏振片;5. 光纤耦合器;6. 信号发生器;7. 信号分析仪;8. 电源。

四、实验步骤1. 将光源输出端连接到电光调制器的输入端,调制器的输出端连接到光电探测器;2. 打开信号发生器,产生一定频率和幅值的电信号;3. 将电信号输入到电光调制器的电极上,观察光电探测器输出端的信号变化;4. 改变电信号幅度和频率,观察光电探测器输出端的信号变化;5. 测量电光调制器的调制深度、调制速率等性能参数。

五、实验结果与分析1. 电光调制器调制深度:调制深度是指电光调制器输出端信号变化的最大幅度与输入端信号幅度之比。

本实验中,调制深度约为80%。

2. 电光调制器调制速率:调制速率是指电光调制器在单位时间内能调制的最大信号频率。

本实验中,调制速率约为100MHz。

3. 电光调制器线性度:线性度是指电光调制器输出端信号变化与输入端信号变化之间的比例关系。

本实验中,线性度约为0.98。

4. 电光调制器噪声:噪声是指电光调制器输出端信号中的随机波动。

最新电光调制实验实验报告

最新电光调制实验实验报告

最新电光调制实验实验报告实验目的:本实验旨在探究电光调制器的工作原理及其在光通信中的应用。

通过实验,我们将了解电光效应的基本理论,并观察电光调制器如何根据外加电压的变化调制光信号。

实验原理:电光效应是指某些晶体材料在外加电场作用下,其折射率发生变化的现象。

这种变化可以通过改变通过晶体的光波的相位或强度来实现对光信号的调制。

在本实验中,我们将使用液晶材料作为电光调制器,通过改变施加在其上的电压来控制光的透过率。

实验设备:1. 激光源(如氦氖激光器)2. 电光调制器(液晶调制器)3. 光电探测器(如光电二极管)4. 电源及电压调节器5. 光束准直器和光束分析仪6. 数据采集系统实验步骤:1. 搭建实验装置,确保激光源发出的光束经过电光调制器,并被光电探测器接收。

2. 调整激光源,使其发出稳定的光束,并保证光束完全通过电光调制器。

3. 将光电探测器连接到数据采集系统,以便记录光强度的变化。

4. 打开电源,逐渐增加施加在电光调制器上的电压,并记录不同电压下光电探测器的输出信号。

5. 分析数据,绘制电压与光强度之间的关系曲线,观察电光调制效果。

6. 通过改变激光的波长,重复步骤4和5,研究波长对电光调制效果的影响。

实验结果:实验数据显示,随着施加电压的增加,光电探测器接收到的光强度呈现出周期性变化,这与电光调制器的调制特性相符。

在特定电压下,光强度达到最小值,表明此时调制器对光信号实现了有效调制。

通过改变激光波长,发现不同波长的光在相同的电压下表现出不同的调制深度,这与液晶材料的光谱特性有关。

结论:通过本次实验,我们成功验证了电光调制器的工作原理,并观察到了外加电压对光信号调制的影响。

实验结果表明,电光调制器可以作为一种有效的光通信工具,用于控制和调节光信号的传输。

此外,实验还揭示了不同波长光在电光调制中的性能差异,为未来调制器的设计和应用提供了重要参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 电光调制实验激光是一种光频电磁波,具有良好的相干性,与无线电波相似,可作为传递信息的载波。

激光具有很高的频率(约1013~1015Hz ),可供利用的频带很宽,故传递信息的容量很大。

再有,光具有极短的波长和极快的传递速度,加上光波的独立传播特性,可以借助光学系统把一个面上的二维信息以很高的分辨率瞬间传递到另一个面上,为二位并行光信息处理提供条件。

所以激光是传递信息的一种很理想的光源。

电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间(可以跟上1010Hz 的电场变化),可以在高速摄影中作快门或在光速测量中作光束斩波器等。

在激光出现以后,电光效应的研究和应用得到迅速的发展,电光器件被广泛应用在激光通讯,激光测距,激光显示和光学数据处理等方面。

要用激光作为信息的载体,就必须解决如何将信息加到激光上去的问题。

例如激光电话,就需要将语言信息加在与激光,由激光“携带”信息通过一定的传输通道送到接收器,再由光接收器鉴别并还原成原来的信息。

这种将信息加在与激光的过程称之为调制,到达目的地后,经光电转换从中分离出原信号的过程称之为解调。

其中激光称为载波,起控制作用的信号称之为调制信号。

与无线电波相似的特性,激光调制按性质分,可以采用连续的调幅、调频、调相以及脉冲调制等形式。

但常采用强度调制。

强度调制是根据光载波电场振幅的平方比例于调制信号,使输出的激光辐射强度按照调制信号的规律变化。

激光之所以常采用强度调制形式,主要是因为光接收器(探测器)一般都是直接地响应其所接收的光强度变化的缘故。

【实验目的】1. 掌握晶体电光调制的原理和实验方法。

2. 学会利用实验装置测量晶体的半波电压,计算晶体的电光系数。

3. 观察晶体电光效应引起的晶体会聚偏振光的干涉现象。

【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器。

【实验原理】1.电光调制的基本原理某些晶体(固体或液体)在外加电场中,随着电场强度E 的改变,晶体的折射率会发生改变,这种现象称为电光效应。

通常将电场引起的折射率的变化用下式表示:0200n n aE bE =+++⋅⋅⋅⋅⋅⋅(1)式(1)中a 和b 为常数,0n 为E 0=0时的折射率。

由一次项aE 0引起折射率变化的效应,称为一次电光效应,也称线性电光效应或普克尔电光效应(pokells );由二次项引起折射率变化的效应,称为二次电光效应,也称平方电光效应或克尔效应(kerr )。

由(1)式可知,一次电光效应只存在于不具有对称中心的晶体中,二次电光效应则可能存在于任何物质中,一次效应要比二次效应显著。

光在各向异性晶体中传播时,因光的传播方向不同或者是电矢量的振动方向不同,光的折射率也不同。

通常用折射率椭球来描述折射率与光的传播方向、振动方向的关系,在主轴坐标中,折射率椭球方程为1232222212=++n z n y n x (2)式中1n 、2n 、3n 为椭球三个主轴方向上的折射率,称为主 折射率。

如图2-1所示,从折射率椭球的坐标原点O 出发,向 任意方向作一直线OP ,令其代表光波的传播方向k 。

然后,通过O 垂直OP 作椭圆球的中心截面,该截面是一个椭圆,其长短半轴的长度OA 和OB 分别等于波法线沿OP ,电位移 图2-1 晶体折射率椭球矢量振动方向分别与OA 和OB 平行的两个线偏振光的折射率n '和n ''。

显然k 、OA 、OB 三者互相垂直,如果光波的传播方向k 平行于x 轴,则两个线偏光波的折射率等于2n 和3n 。

同样当k 平行于y 轴和z 轴时,相应的光波折射率亦可知。

当晶体上加上电场后,折射率椭球的形状、大小、方位都发生变化,椭球的方程变为2222222221122332313122221x y z yz xz xy n n n n n n +++++= (3) 只考虑一次电光效应,式(3)与式(2)相应项的系数之差和电场强度的一次方成正比。

由于晶体的各向异性,电场在x 、y 、z 各个方向上的分量对椭球方程的各个系数的影响是不同的,用下列形式表示:11x 12y 13z 2211121x 22y 23z 2222231x 32y 33z 2233341x 42y 43z 22351x 52y 53z 21361x 62y 63z 212111111111E E E n n E E E n n E E E n n E E E n E E E n E E E n γγγγγγγγγγγγγγγγγγ⎧-=++⎪⎪⎪-=++⎪⎪⎪-=++⎪⎪⎨⎪=++⎪⎪⎪=++⎪⎪⎪=++⎪⎩(4)式(4)是晶体一次电光效应的普遍表达式,式中ij γ叫做电光系数(i =1,2,…,6;j =1,2,3),共有18个,E x 、E y 、E Z 是电场E 在x 、y 、z 方向上的分量。

式(4)可写成矩阵形式:2211122111213222212223x 22333313233y 4142432z 23515253616163213212111111111n n n n E n n E E n n n γγγγγγγγγγγγγγγγγγ⎛⎫- ⎪ ⎪ ⎪- ⎪⎡⎤ ⎪⎢⎥ ⎪⎢⎥⎡⎤- ⎪⎢⎥⎢⎥⎪=⎢⎥⎢⎥⎪⎢⎥⎢⎥ ⎪⎣⎦⎢⎥ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎪ ⎪ ⎪ ⎪ ⎪⎝⎭(5) 电光效应根据施加的电场方向与通光方向相对关系,可分为纵向电光效应和横向电光效应。

利用纵向电光效应的调制,叫做纵向电光调制;利用横向电光效应的调制,叫做横向电光调制。

晶体的一次电光效应分为纵向电光效应和横向电光效应两种。

把加在晶体上的电场方向与光在晶体中的传播方向平行时产生的电光效应,称为纵向电光效应,通常以KD P *(24KD PO ,磷酸二氘钾)类型晶体为代表。

加在晶体上的电场方向与光在晶体里传播方向垂直时产生的电光效应,称为横向电光效应,以3LiNbO 晶体为代表。

本实验只做3LiNbO 晶体的横向电光强度调制实验。

3LiNbO 晶体属于三角晶系,3m 晶类,主轴z 方向有一个三次旋转轴,光轴与z 轴重合,是单轴晶体,折射率椭球是旋转椭球,其表达式为22222o e1x y z n n ++= (6)式(6)中o n 和e n 分别为晶体的寻常光和非寻常光的折射率。

加上电场后折射率椭球发生畸变,对于3m 类晶体, 由于晶体的对称性,电光系数矩阵形 式为 (7) 2213221333515100000000ij γγγγγγγγ-⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥当x 轴方向加电场,光沿z 轴方向传播时,晶体由单轴晶体变为双轴晶体,垂直于光轴z 方向折射率椭球截面由圆变为椭圆,此椭圆方程为2222x 22x 22x 22o o 1121E x E y E xy n n γγγ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭(8) 进行主轴变换后得到:2222x 22x 22o o 111E x E y n n γγ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭(9) 考虑到2o 22x 1n E γ<<,经化简得到3x o o 22x 12n n n E γ'=+3y o o 22x 12n n n E γ'=- (10)当x 轴方向加电场时,新折射率椭球绕z 轴转动45°。

图2-2为典型的利用3LiNbO 晶体横向电光效应原理的激光强度调制器。

图2-2 晶体横向电光效应原理图其中起偏器的偏振方向平行于电光晶体的x 轴,检偏器的偏振方向平行于y 轴。

因此入射光经起偏器后变为振动方向平行于x 轴的线偏振光,它在晶体的感应轴x '和y '轴上的投影的振幅和位相均相等,设分别为00cos cos x y e A t e A tωω''== (11)或用复振幅的表示方法,将位于晶体表面(z =0)的光波表示为(0)(0)x y E A E A''== (12)所以,入射光的强度是222(0)(0)2x y I E E E E A *''∝⋅=+= (13)当光通过长为l 的电光晶体后,x '和y '两分量之间就产生位相差δ,即()()x i y E l A E l Aeδ'-'== (14)通过检偏器出射的光,是这两分量在y 轴上的投影之和())1(2-=δi y e A E (15)其对应的输出光强1I ,可写成()()()()222100112sin 22i i y y A I E E e e A δδδ*-⎡⎤⎡⎤∝⋅=--=⎣⎦⎢⎥⎣⎦ (16) 由式(13)、(16),光强透过率T 为2sin 21δ==i I I T (17)2()x y n n l πδλ''=-30222ln Vdπγλ=(18)由此可见,δ和V 有关,当电压增加到某一值时,x '、y '方向的偏振光经过晶体后产生2λ的光程差,位相差00100T δπ==,,这一电压叫半波电压,通常用V π或2V λ表示。

V π是描述晶体电光效应的重要参数,在实验中,这个电压越小越好,如果V π小,需要的调制信号电压也小,根据半波电压值,可以估计出电光效应控制透过强度所需电压。

由式(18)得 3o 222d V n l πλγ⎛⎫= ⎪⎝⎭(19) 其中d 和l 分别为晶体的厚度和长度。

由式(18)、(19)ππδV V= (20)因此,将式(17)改写成()t V V V V V T m ωππππsin 2sin 2sin 022+== (21)其中0V 是直流偏压,sin m V t ω是交流调制信号,m V 是其振幅,ω是调制频率,从式(21)可以看出,改变0V 或m V 输出特性,透过率T 将相应的发生变化。

对于单色光,3o 22n πγλ为常数,因而T 将仅随晶体上所加电压变化,如图2-3所示,T 与V 的关系是非线性的,若工作点选择不适合,会使输出信号发生畸变。

但在2Vπ附近有一近似直线部分,这一直线部分称作线性工作区,由式(21)可以看出:当12V V π=时,00502T πδ==,。

图2-3 T 与V 的关系曲线图2.改变直流偏压选择工作点对输出特性的影响 (1)当02V V π=,m V V π时,将工作点选定在线性工作区的中心处,此时,可获得较高频率的线性调制,把02mV V =代入式(16),得21sin sin 1cos sin 422211sin sin 2m mm T V t V t V V V t V πππππππωωπω⎡⎤⎡⎤⎛⎫⎛⎫=+=-+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎣⎦(22)当m V V π时⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛+≈t V V T m ωππsin 121 (23)即sin m T V t ω∝。

相关文档
最新文档