粉煤灰指标对混凝土性能的影响

合集下载

粉煤灰品质对混凝土的质量影响

粉煤灰品质对混凝土的质量影响

粉煤灰品质对混凝土的质量影响1粉煤灰在预拌混凝土中的应用据估计,全球只有约20%的粉煤灰正在用于水泥和商品混凝土工业,总体利用率还在一个比较低位的水平。

究其主要原因,一是粉煤灰的品质与煤矿的品种和成分关系密切;二是煤的燃烧技术决定了粉煤灰的含炭量大小;三是粉煤灰在混凝土中的掺量受到较多限制。

我国建设部标准《粉煤灰混凝土应用技术规范》(GBJ146-2014)中规定,用于混凝土中的粉煤灰质量指标划分为三个等级。

2粉煤灰的主要特性2.1物理特性一般来说较小粒径级别的粉煤灰颗粒在显微镜下光滑的玻璃球状较多,较大粒径级别的颗粒表面不规则但也大致呈球状。

真的粉煤灰有严格的国家标准和应用规范,有严格的化学成分、放射性标准。

有完整的合格证和检验报告,明确的等级标准。

颜色为青灰色,有的为灰色带浅黄,粉状,颗粒很细,手感细滑、干爽,含水率很低。

2.2主要化学成份一般来讲,在机理上,矿物掺合料对新拌混凝土和硬化混凝土性能的影响主要取决于颗粒的粒径、形状和结构,而非化学成分。

然而粉煤灰的火山灰特性或胶凝特性决定着水泥的强度发展和渗透性,这主要受控于粉煤灰的颗粒粒径和矿物特性。

3优质粉煤灰在预拌混凝土中的积极效应优质粉煤灰一般指符合《粉煤灰混凝土应用技术规范》(GBJ146-2014)标准的Ⅰ级灰和Ⅱ级灰,下面将列举优质粉煤灰在预拌混凝土中发挥的积极作用:(1)优质粉煤灰能起到减水作用,降低预拌混凝土的用水量,变相减小水胶比,从而改善混凝土的性能。

(2)钢筋混凝土结构对锈蚀和化学侵蚀的抵抗能力主要取决于混凝土的水密性。

只要按照标准掺量使用优质粉煤灰,就能够获得优异的水密性和耐久性。

(3)优质粉煤灰可以延缓水泥的水化反应,降低水化热,在高温天气下施工与浇筑大体积混凝土时都能得到良好的效果。

(4)优质粉煤灰对混凝土的工作性有良好的改善。

混凝土的工作性能主要包括坍落度、坍落度损失、流动性、泌水等。

粉煤灰对混凝土工作性能的改善主要是通过其中的玻璃微珠及细小颗粒的形态效应及微集料效应进行的。

粉煤灰对混凝土性能影响

粉煤灰对混凝土性能影响

粉煤灰对混凝土性能影响粉煤灰是在燃煤电厂烟囱中收集的灰尘,在从高温到温度急剧下降的过程中形成了大量表面光滑的球状玻璃体,其颗粒比水泥细,比表面积很大,因此具有很大的活性。

主要化学成分是无定型的Al2O3、SiO2,在碱性环境下极易发生反应,生成凝胶,而水泥水化过程中产生的Ca(OH)2正提供了这样的碱性环境,使粉煤灰在混凝土中的应用成为可能,并且对混凝土的性能有很大的影响!1.粉煤灰对水泥的水化和强度的影响1.1提高混凝土的强度虽然由于粉煤灰的水化速度慢而会导致混凝土的早期强度偏低,但粉煤灰混凝土的最终强度肯定不会低于普通混凝土。

粉煤灰的活性是在碱性环境下才能激发出来的,因此它的水化速度比水泥慢,待水泥水化后,粉煤灰和水泥水化后产生的Ca(OH)2反应形成硅酸钙凝胶,既改善了水泥石和粗骨料间的界面结构,增强了界面薄弱层,又对水泥石孔结构起到填实的作用,而且消耗了强度和稳定性都较差的Ca(OH)2,从而提高了混凝土的强度。

混凝土的工作性能主要表现在混凝土的流动性、粘聚性和保水性等方面。

论文发表。

粉煤灰掺入混凝土后,降低了混凝土的砂率,从而可以减少细骨料对运输管壁的摩擦;粉煤灰对水泥颗粒起到物理分散作用,使它们分布得更均匀,阻止了水泥颗粒的粘聚。

这些都有效提高了混凝土的流动性。

由于粉煤灰的活性是在水泥水化后的碱性环境中被激发的,因此它并不参加初期的水化反应,在相同水胶比和胶凝材料用量的情况下,就相对提高了混凝土水化初期的水灰比,从而提高了混凝土的流动性和粘聚性。

粉煤灰延缓了初期的水化反应,还可以明显减少坍落损失,满足混凝土运输、浇筑的要求。

粉煤灰在混凝土中可以弥补水泥用量和细集料的细粉部分的不足,有利于提高混凝土的保水性,还可以堵截泌水的通道,从而减少泌水现象。

粉煤灰有效地改善了混凝土的工作性能,提高了混凝土的施工质量,也使混凝土的自密实和高可泵性成为可能。

1.2对水泥水化的影响水泥浆体各个龄期的化学结合水含量均随着粉煤灰的增加而降低,但是水泥浆体各个龄期的等效化学结合水量却随着粉煤灰掺入的增加而逐渐的增大。

浅述粉煤灰对混凝土性能的影响

浅述粉煤灰对混凝土性能的影响

浅述粉煤灰对混凝土性能的影响随着我国建筑科学技术的发展及近年来混凝土的高强化和高性能化,矿物细掺料已成为制备高性能混凝土必不可少的组分之一,其中,粉煤灰是一种具一定物理性质和经济效益的材料。

而我国目前煤灰的年排放量为3亿吨,因此积极推动粉煤灰的综合利用,可获得巨大的社会效益和经济效益.1.粉煤灰的三大效应及其对混凝土性能的影响根据文献资料,粉煤灰在混凝土中发挥作用主要依靠三大效应:即形态效应,活性效应,微集料效应。

此三项效应主导着粉煤灰对混凝土性能的影响,此三项效应主导着粉煤灰对混凝土性能的影响,其他作用大多源于这三项效应。

形态效应是指粉煤灰的颗粒形状、细度、级配等物理特性的综合作用,在新鲜混凝土的和易性、需水量、含气量等性能方面有显著的影响。

一般情况下,级配合理,颗粒形态良好的粉煤灰,会降低混凝土集料的空隙率,同时由于其细微颗粒在混凝土中起一定的润滑作用。

相反,颗粒形态不良的粉煤灰,通常含有杂质煤并且结构疏松,其颗粒形态不良,表面粗糙,致使混凝土单方用水量的增大。

形态效应较差的粉煤灰在早期混凝土的硬化过程中使水化反应迟缓,故而骨料周围的间隙不能够充分填实。

活性效应是指粉煤灰的火山灰效应。

据资料表明,粉煤灰中有些成份具有胶凝作用。

粉煤灰的活性效应,主要影响到混凝土的强度,尤其是长龄期的强度。

因此,混凝土的设计龄期应采用较长龄期。

粉煤灰混凝土的强度主要是要求28天龄期与基准混凝土等强度。

试验表明,与基准混凝土等强度的28天龄期的粉煤灰混凝土的其他性能,基本上与同龄期的基准混凝土接近。

基于上述的活性效应的试验表明,这种28天龄期等强度的粉煤灰混凝土处于非成熟期,其后期强度潜力巨大。

粉煤灰混凝土90~180天龄期的后期强度可提高25%~30%;180天~360天龄期的强度可能增长55%~70%。

若按后期强度设计,采用添加粉煤灰的混凝土可节约20~50kg/m3水泥用量。

微集料效应是指粉煤灰玻璃微珠分散于混凝土中,起微细骨料的作用,对新鲜混凝土与硬化混凝土均产生影响。

浅谈粉煤灰对混凝土强度的影响

浅谈粉煤灰对混凝土强度的影响

广东建材2008年第4期1前言粉煤灰又称飞灰,是指燃煤电厂中磨细煤粉在锅炉中燃烧后从烟道排出,被收尘器收集的物质,粉煤灰呈灰褐色,通常呈酸性,比表面积在2500~7000cm2/g,尺寸从几百微米到几微米,通常为球状颗粒,我国大多数粉煤灰的主要化学成分为:SiO240%~60%;Al2O315%~40%;Fe2O34%~20%;CaO2%~7%;烧失量3%~10%。

此外,还有少量的Mg、T i、S、K、Na等氧化物。

我国是产煤和烧煤大国,火电厂每年排放的粉煤灰总量逐年增长,预计2005年排粉煤灰量约2亿吨左右,如果这些粉煤灰得不到利用,将污染环境,影响气候,破坏生态。

从目前有关资料来看,粉煤灰在建筑工程和基础工程的应用,是最主要的利用方式,也是提高其利用率的根本途径。

至今比较成熟的技术和已建成生产线的有:粉煤灰加气混凝土、粉煤灰混凝土、粉煤灰砌筑水泥、粉煤灰硅酸盐水泥、粉煤灰粘土砖、粉煤灰硅酸盐砌块、粉煤灰地面砖、粉煤灰免烧砖、粉煤灰筑路和粉煤灰充填等,由此可见,开发研究以粉煤灰为掺合料的混凝土具有重要意义,配制粉煤灰混凝土是粉煤灰综合利用的主要途径之一[1]。

2粉煤灰的主要性质2.1火山灰效应粉煤灰的矿物相主要是铝硅玻璃体,含量一般为50%~80%,是粉煤灰具有火山灰活性的主要组成部分,其含量越多,活性越高,其矿物结构为硅氧四面体、铝氧四面体和铝氧三面体,该结构的聚合度很大,键能很高,因而在通常状态下,粉煤灰所表现出的活性很低。

粉煤灰的化学活性在于铝硅玻璃体在碱性介质中,OH-离子打破了Si-O,Al-O键网络,降低了硅氧、铝氧聚合度,并与水泥水化产生的Ca(OH)2发生反应,生成水化硅酸钙和水化铝酸钙,其化学方程式:XCa(OH)2+SiO2+nH2O→XCaO・SiO2・nH2OYCa(OH)2+Al2O3+mH2O→YCaO・Al2O3・mH2O粉煤灰的火山灰活性表现出来的技术性质为:①反应是缓慢的,所以放热速率和强度发展也相应较慢.②反应消耗了层状结构的Ca(OH)2生成了致密结构的水化硅酸钙和水化铝酸钙,粒径细化有利于提高混凝土的强度。

粉煤灰对混凝土性能有何影响

粉煤灰对混凝土性能有何影响

粉煤灰具有三大效应:(1)表面效应:粉煤灰表面可吸附浆体中的某些离子,有利于粉煤灰固化混凝土中的某些有害离子以及作为晶核形成水化产物。

(2)填充效应:粉煤灰与水泥颗粒粒径的差异可以填充水泥和骨料孔隙中,减小混凝土的孔隙率,增加混凝土密实性;(3)火山灰活性效应:粉煤灰中的活性SiO2与水泥水化产物CH发生二次反应,生成C-S-H凝胶填充骨料—水泥浆体界面层孔隙,改善混凝土界面结构,提高强度和耐久性。

劣质粉煤灰的主要特点是:玻璃珠体少,需水量大,使用后易造成混凝土泌水或滞后泌水,降低混凝土的工作性能,易导致混凝土28d强度不足,后期强度增长低,造成混凝土工程质量不合格。

优质粉煤灰对混凝土的性能影响(1)工作性能粉煤灰可以改善胶凝材料体系的颗粒级配,降低空隙率,释放水泥颗粒间的“填充水”,改善混凝土工作性。

粉煤灰中含有大量球形玻璃体,起到“滚珠、轴承”润滑效应,减少颗粒间的摩擦力,改善混凝土的工作性。

粉煤灰活性大大低于水泥活性,可以降低混凝土坍落度损失。

优质粉煤灰对外加剂的吸附低于水泥,使用优质粉煤灰相当于增加外加剂用量,混凝土初始坍落度及保持能力都有提高。

粉煤灰的密度小于水泥,等量取代水泥后,混凝土中的浆体量增加,改善混凝土的粘聚性,提高抗离析能力,减水泌水,改善混凝土工作性能,使混凝土具有更好的流动性、密实性、匀质性,便于混凝土的施工。

(2)力学性能粉煤灰自身不能进行水化反应,只能与水泥水化产物进行二次水化,因此,用粉煤灰等量替代水泥后,早期强度将会降低,随着二次水化的进行,中后期会达到甚至超过不掺粉煤灰的混凝土。

随着粉煤灰替代水泥量的增加,早期强度逐渐降低,但掺加粉煤灰的混凝土后期强度增长较快,而且在一定范围内(<50%)随粉煤灰掺量增加而增大。

(3)耐久性能以粉煤灰代替部分水泥,降低水灰比或在保持水灰比不变前提下提高粉煤灰用量,可以提高混凝土的抗渗性能。

粉煤灰混凝土的早期碳化深度值增大较快,碳化深度的后期增长相对较慢。

粉煤灰烧失量细度需水量比对混凝土性能的影响

粉煤灰烧失量细度需水量比对混凝土性能的影响

粉煤灰烧失量/细度/需水量比对混凝土性能的影响细度:对和易性的影响主要体现在粘聚性方面,另外掺量过高对强度也有影响。

对耐久性也有影响,细度大的粉煤灰耐久性差,实体中混凝土碳化较大。

烧失量:粉煤灰中的未燃碳是有害成分,烧失量越大,含碳量越高,混凝土的需水量就越大,从而导致水胶比提高,严重影响了粉煤灰效用的充分发挥,同时粉煤灰烧失量过高会严重影响对混凝土中含气量的控制。

需水量比:需水量比是核心,关系到外加剂掺量/混凝土需水量等。

影响需水量比的因素除了烧失量和细度外,还有含珠率、微珠的粒形状等等因素,是“先天”条件所决定,难以“后天”弥补。

粉煤灰质量对混凝土的影响可以通过试配来消除或发扬。

混凝土是由水泥为胶结料,砂石为骨料,加水或适量外加剂和外掺料拌制而成的。

三氧化硫含量影响水泥体积安定性(水泥体积安定性是表征水泥硬化后体积变化均匀性的物理性能指标),说白了就是若水泥发生不均匀体积变化会导致水泥膨胀、开裂、翘曲等,另外影响体积安定性的主要因素还有水泥中的游离氧化镁、游离氧化钙含量。

粉煤灰是火力发电厂以煤粉为燃料时排出的细颗粒废渣。

粉煤灰细度、需水量应该是影响混凝土的粘结力。

烧失量大的话,主要降低粉煤灰的减水效应和活性效应,国家对粉煤灰分级有规定的,烧失量大会降级的主要是影响强度.粉煤灰本身没有强度,在砼中只是增加和易性的,因此如果粉煤灰细读、含水量过高,只要不结块影响使用,是对强度影响不大的。

一、粉煤灰烧失量(%)试验取样方法及数量以连续供应的200t相同等级的粉煤灰为一批,不足200t亦按一批论,粉煤灰的数量按干灰(含水率小于1%)的重量计算。

散装灰取样——从不同部位取15份试样,每份试样1~3kg,混合均匀,按四分法缩取比试验所需量大一倍的试样(称为平均试样)。

袋装灰取样——从每批中抽10袋,并从每袋中各取试样不少于1kg,混合均匀,按四分法缩取比试验所需量大一倍的试样(称为平均试样)。

二、试验方法:按四分法取样,准确称取1g试样,置于已灼烧恒重的瓷坩埚中,将盖斜置与坩埚上,防在高温炉内从低温开始逐渐升高温度,在950~1000℃以灼烧15~20min,取出坩埚,置于干燥器中冷至室温。

粉煤灰对混凝土性能的作用

粉煤灰对混凝土性能的作用

粉煤灰对混凝土性能的作用1、粉煤灰是燃煤电厂中磨细煤粉在锅炉中燃烧后从烟道排出、被收尘器收集的物质。

粉煤灰混凝土是指掺加粉煤灰的混凝土,包括用水泥厂生产中掺粉煤灰的硅酸盐水泥制备的混凝土。

通常所讲的粉煤灰混凝土是指配制混凝土混合料时将粉煤灰作为一种组分加入搅拌机配制而成的混凝土。

粉煤灰作为一种重要而已被普遍利用的混凝土辅料,一般具备改变基准混凝土的新拌、硬化和使用诸性能的能力。

随着对粉煤灰认识的逐渐深入,人们充分认识到利用粉煤灰已不仅仅是取代水泥、节约能源以及减少环境污染的问题,粉煤灰已经成为对混凝土改性的一种重要组分。

2、粉煤灰的特性2.1粉煤灰的物理性质粉煤灰的比重在1.95~2.36之间,松干密度在450 kg/m3~700kg/m3范围内,比表面积在220 kg/m3~588 kg/m3之间。

由于粉煤灰的多孔结构、球形粒径的特性,在松散状态下具有良好的渗透性,其渗透系数比粘性土的渗透系数大数百倍。

粉煤灰在外荷载作用下具有一定的压缩性,同比粘性土其压缩变形要小的多。

粉煤灰的毛细现象十分强烈,其毛细水的上升高度与压实度有着密切关系。

粉煤灰是一种高度分散的微细颗粒集合体,主要由氧化硅玻璃球组成,根据颗粒形状可分为球形颗粒与不规则颗粒。

球形颗粒又可分为低铁质玻璃微珠与高铁质玻璃微珠,若据其在水中沉降性能的差异,则可分出飘珠、轻珠和沉珠;不规则颗粒包括多孔状玻璃体、多孔碳粒以及其他碎屑和复合颗粒。

2.2粉煤灰的化学成分粉煤灰是一种火山灰质材料,来源于煤中无机组分,而煤中无机组分以粘土矿物为主,另外有少量黄铁矿、方解石、石英等矿物。

因此粉煤灰化学成分以氧化硅和氧化铝为主(含量约氧化硅48%,氧化铝含量约27%),其他成分氧化铁、氧化钙、氧化镁、氧化钾、氧化钠、三氧化硫及未燃尽有机质(烧失量)。

不同来源的煤和不同燃烧条件下产生的粉煤灰,其化学成分差别很大。

3、粉煤灰对混凝土施工性能的影响掺加粉煤灰可以改变混凝土和易性,增加混凝土粘性,减少离析与泌水,降低由于水化热带来的混凝土温度升高,减少或消除混凝土中碱基料反应,同时,也可以节省水泥的用量。

粉煤灰对混凝土性能的影响

粉煤灰对混凝土性能的影响

粉煤灰对混凝土性能的影响粉煤灰是从燃煤粉电厂的锅炉烟气中收集到的细粉末,是一种具有潜在活性的火山灰掺和料,含有大量玻璃体,这种玻璃体主要由具有化学活性的SiO2和Al2O3组成。

从外观看,其颗粒呈球型,表面光滑。

粉煤灰是我国当前排量较大的工业废渣之一,现阶段我国年排渣量已达3000万t。

随着电力工业的发展,燃煤电厂的粉煤灰排放量逐年增加。

大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入水系会造成河流淤塞,而其中的有毒化学物质还会对人体和生物造成危害。

因此,粉煤灰的处理和利用问题引起人们广泛的注意。

一、粉煤灰的性质1.1 物理性质粉煤灰的物理性质包括密度、堆积密度、细度、比表面积、需水量等,这些性质是化学成分及矿物组成的宏观反映。

由于粉煤灰的组成波动范围很大,这就决定了其物理性质的差异也很大。

粉煤灰的基本物理性质见表。

粉煤灰的基本物理特性项目范围均值密度/(g/cm3)1.9~2.9 2.1堆积密度/(g/cm3)0.531~1.261 0.780比表面积(cm2/g)氧吸附法800~19500 3400透气法1180~6530 3300原灰标准稠度/% 27.3~66.7 48.0需水量/% 89~130 10628d抗压强度比/% 37~85 66粉煤灰的物理性质中,细度和粒度是比较重要的项目。

它直接影响着粉煤灰的其他性质,粉煤灰越细,细粉占的比重越大,其活性也越大。

粉煤灰的细度影响早期水化反应,而化学成分影响后期的反应。

1.2 化学性质粉煤灰是一种人工火山灰质混合材料,它本身略有或没有水硬胶凝性能,但当以粉状及水存在时,能在常温,特别是在水热处理(蒸汽养护)条件下,与氢氧化钙或其他碱土金属氢氧化物发生化学反应,生成具有水硬胶凝性能的化合物,成为一种增加强度和耐久性的材料二、粉煤灰使用的优点在混凝土中掺加粉煤灰节约了大量的水泥和细骨料;减少了用水量;改善了混凝土拌和物的和易性;增强混凝土的可泵性;减少了混凝土的徐变;减少水化热、热能膨胀性;提高混凝土抗渗能力;增加混凝土地修饰性。

不同粉煤灰掺量对混凝土强度及碳化深度的影响

不同粉煤灰掺量对混凝土强度及碳化深度的影响

不同粉煤灰掺量对混凝土强度及碳化深度的影响摘要:本文在水灰比一致的条件下,在胶凝材料中分别掺入0%、10%、20%、30%、40%的二级粉煤灰进行试验,在标准养护室养护28天后做抗压强度并留一组试件烘干放入碳化养护箱养护28天后测其碳化深度。

关键词:混凝土;不同粉煤灰掺量;强度;碳化深度1 概述粉煤灰是煤炭燃烧并经过处理得到的一种粉质资源。

混凝土中掺粉煤灰不但能减少电厂对环境的破坏,同时对于降低混凝土成本,降低混凝土水化热的产生,提高混凝土的耐久性有一定的帮助,对资源环境以及混凝土产品本身都有一定的好处。

随着人民对混凝土耐久性越来越关心,外掺料对混凝土耐久性的影响也越发引人关注,本文通过试验对混凝土中掺不同用量的粉煤灰来验证不同掺量的粉煤灰对混凝土性能及抗碳化能力的影响。

混凝土碳化是因为空气中大二氧化碳与混凝土中的化学成分产生反应,使混凝土在水化过程中产生的水化硅酸钙与氢氧化钙被消耗掉,造成混凝土内部环境发生酸化等过程[1]。

混凝土碳化在很大程度上会造成混凝土中的钢筋锈蚀,对建筑物耐久性产生极大危害[2],当前,我们生活环境的大气中CO2浓度约为0.035%,预测到2090年达到0.1%,因此,混凝土碳化是一个不可忽视的问题[3]。

本文通过在人工干扰条件下提高试验环境二氧化碳浓度的方法探究粉煤灰掺量对混凝土强度及碳化的影响,为提高公司混凝土耐久性质量提供参考。

2 原材料及混凝土配制2.1 试验原材料1) 水泥:本次试验所用水泥为天山P·Ⅱ42.5R型水泥,其各项性能指标见表1表1 水泥的各项性能指标初凝/min终凝/min标稠用水量/g28天抗压强度/Mpa安定性150********.6合格2) 煤灰:本次试验用的为Ⅱ级粉煤灰灰,其各项性能见表2表2 粉煤灰的各项性能指标45μm筛余/%烧失量/%需水量比/%活性指数/%密度/(kg/m3)28.80.210471合格3) 粒化高炉矿渣粉:本次试验所用S95级粒化高炉矿渣粉,其各项性能见表3表3 矿渣粉的各项性能指标比表面积烧失量/%三氧化硫/%活性指数/%等级4680.1 2.2106S954) 细掺合料:细掺合料采用人工砂与天然砂各掺50%的用量,其各项性能见表4表4砂的颗粒级配、细度模数砂类型筛孔直径5.02.51.25.630.315.16盘底细度模量河砂筛余量835639917467542.3累计筛余1.68.621.241.075.889.2100机制砂筛余量4124104917825743.0累计筛余.825.646.464.680.285.21005) 粗骨料:其各项性能见表5表5石灰岩的颗粒级配、细度模数颗粒级配(mm)压碎指标/%针片状/%吸水率/%表观密度紧密堆积密度5~25 6.8 2.90.66264015706) 减水剂:高性能具有低水胶比、强度高等特点,且要求坍落度较大,坍落度损失较小等,等过试验确定使用红墙公司的csp-9型号高效减水剂,含固量为10%。

粉煤灰对水泥混凝土性能的影响分析

粉煤灰对水泥混凝土性能的影响分析

粉煤灰对水泥混凝土性能的影响分析摘要:将适量的粉煤灰掺入在施工中,能够使混凝土具有更好的性能,实现预期的目标,而且粉煤灰是影响水泥混凝土性能的重要因素,必须要引起注意。

基于此,本文主要从粉煤灰对水泥性能的影响、粉煤灰对混凝土性能的影响以及粉煤灰混凝土配合比设计三个方面进行详细分析,以供大家参考。

关键词:粉煤灰;水泥;混凝土;性能就粉煤灰来看,是燃煤电厂中磨细煤粉在锅炉中燃烧,再通过烟道排除,利用收尘器收集起来的一种物质。

燃煤电厂在生产中必须要将很多粉煤灰排放出来,导致污染受到污染,也将很多土地占用,是常见的工业废料之一。

而粉煤灰属于火山灰质材料,在进行磨细加工后,当做混合材,将一些水泥直接代替,除了能够减少水泥用量,减少工程成本也能加强混凝土性能,显著提升工程质量,让粉煤灰真正做到“变废为宝”。

因此,当前粉煤灰已经成为主要的混凝土辅料。

一、粉煤灰对水泥性能的影响粉煤灰在水泥行业中应用通常包括两点:第一,用于生料配料。

第二,用于水泥活性混合材。

有关文件中明确提出,在普通硅酸盐水泥中能够添加5%到20%的粉煤灰,而且在粉煤灰硅酸盐水泥中能够添加20%到40%的粉煤灰。

对复合硅酸盐水泥进行生产时,也能加入适量的粉煤灰。

相对于普通硅酸盐水泥来说,粉煤灰水泥的特征有很多,具体如下:第一,减少水泥成本。

第二,早期强度低后期强度增长率较大。

通常,粉煤灰中的玻璃体相当稳定,在水泥水化中粉煤灰颗粒不容易被破坏以及侵蚀,粉煤灰水泥强度发展具体表现在后期,而且能够大于对应硅酸盐水泥。

第三,和易性较好,干缩性很小。

很多粉煤灰颗粒都是球形,而且内表面及以及单分子吸附水很小,让粉煤灰具有不错的和易性,干缩性很小。

第四,水化热较低。

通常,粉煤灰水泥不会迅速水化,水化热较低,特别是粉煤灰掺加量很大的情况,水化热显著下降[1]。

二、粉煤灰对混凝土性能的影响粉煤灰在混凝土中应用,除了能节省水泥,减少成本,保证粉煤灰质量,也能使混凝土有更好的工作性能,对离析以及泌水起到抑制的作用,增加强度,提升抗冻性等等,是混凝土必不可少的矿物掺合料。

粉煤灰对混凝土性能的影响

粉煤灰对混凝土性能的影响

1、粉煤灰对混凝土和易性的影响在优质(如I级)粉煤灰中大量的微型颗粒对混凝土中较大颗粒骨料之间的啮合产生润滑作用,减少用水量,一般优质灰可减少用水量5%~8%:另一方面由于粉煤灰的密度较低(只相当水泥密度的2/3)在用等量取代水泥时,掺加粉煤灰后混凝土体积中胶凝材料增加,从而增大了混凝土的塑性。

由于优质粉煤灰具有减水作用,使用水量降低,同时,粉煤灰中微型颗粒填充混凝土的内部孔隙,从而改善混凝土内部结构,进而使混凝土内部的原先相互连通的孔隙被其阻隔,内部自由水不易流动,泌水性能得到改善,而富有粘聚性,提高混凝土搅拌过程中的各项性能,这种性能的提高尤其适用于混凝土用于泵送运输方式。

混凝土泵送运输情况下,掺入一定比例的粉煤灰,可以有效提高混凝土的可输送性,节省混凝土中的水泥用量,并一定程度上对泵送机械起到保护作用。

2、粉煤灰对混凝土含气量的影响混凝土工程中掺入粉煤灰会导致混凝土中含碳量增加,进而引起混凝土搅拌过程中含气量的降低,比如在碾压混凝土中由于粉煤灰掺量较多,往往使要达到一定要求含气量,必须掺加比普通混凝土多数倍的引气剂用量。

由于粉煤灰有一定的缓凝作用,混凝土掺加粉煤灰后,会增长混凝土的凝结时间,粉煤灰掺量越大,混凝土凝结时间越长。

3、粉煤灰对混凝土强度的影响粉煤灰火山灰效应和减水效果是粉煤灰影响混凝土强度的两个决定性因素。

粉煤灰品质越好,其减水效果越明显,在某些一定的和易性和胶材用量条件下,减水意味着减小水胶比,有利于提高强度。

由于水泥的胶凝性比粉煤灰的胶凝性高,所以粉煤灰需要在催化剂的作用下产生二次水化反应。

因此,混凝土在掺入粉煤灰后会出现早期混凝土强度提升缓慢,后期提升快的特点。

掺加粉煤灰混凝土的3,7d 强度低于不掺的混凝土,但是到了90d,粉煤灰的水化反应加快,可能接近或达到不掺粉煤灰的混凝土。

随着龄期延长,粉煤灰的活性发挥更快些,到180d就有可能超过不掺粉煤灰的混凝土。

水工混凝土工程中,利用掺入粉煤灰后混凝土后期强度提升快的特点,可以有效提高和改善混凝土的各项性能。

粉煤灰特性及其对砼性能的影响

粉煤灰特性及其对砼性能的影响

粉煤灰特性及其对砼性能的影响0 引言粉煤灰是燃煤发电站锅炉中煤粉充分燃烧后所产生的细粒灰尘,即通常所说的飞灰,在中国燃煤发电站于本世纪30年代,当时粉煤灰作为一种废料不经任何处理就排入大气。

50年代初,有关部门开始着手于粉煤灰的综合利用研究,至1989年已达26%,但利用率远跟不上排放量的增长,预计本世纪末将达到1.2~1.5亿吨/年,不仅占用了大量宝贵的可耕地资源,而且严重污染环境,基于以上原因,笔者认为粉煤灰砼将会使人们认识到粉煤灰的另一方面。

1 粉煤灰的性能及其品质1.1 粉煤灰的外观和颜色粉煤灰类似水泥,颜色因组成、细度变化很大,低钙粉煤灰随组分中碳的含量变化,颜色可由乳白色变到灰黑色,高钙粉煤灰因大量氧化钙的存在,一般呈浅黄色。

在商品粉煤灰的生产控制中,粉煤灰的颜色是质量评定指标比较关键,含碳量多少和细度可以通过颜色体现出来。

1.2 需水量比相较于其它品种火山灰来说,粉煤灰在很多方面都占有绝对的优势。

将粉煤灰掺入灰混凝土中,往往能节省混凝土所需水量。

近几年来,很多单位和部门开始关注粉煤灰的用水量,对于砼基本组分而言,除胶凝材料是活性组分外,水其实也是活性组分的一种。

水在水泥和粉煤灰的水化反应中发挥着相当重要的作用,而且混凝土中的多余水份形成毛细孔、凝胶孔等孔隙,这会大大妨碍混凝土的结构及使用性能。

1.3 火山灰活性指数粉煤灰是由各种性状的颗粒混合堆聚的粒群,只有硅酸盐、铝硅酸盐玻璃体的微细颗粒才能在碱性溶液中显示出火山灰反应的性质,以及具有生成胶凝性能的水化产物的性能。

1.4 安定性和干缩性粉煤灰品质指标中安定性指标也是一个与化学性质有关的物理指标,测定粉煤灰安定性的目的主要是避免粉煤灰中有害的化学成分影响混凝土的耐久性。

其试验方法往往与水泥安定性的试验方法相同。

astmc618规定:蒸压后试件的膨胀和收缩值不超过0.8%,astm标准中对粉煤灰的碱反应作为非常强制性指标,还规定,14d 龄期砂浆试件的膨胀不大于0.02%。

粉煤灰对混凝土的影响

粉煤灰对混凝土的影响

一、粉煤灰对混凝土的正面作用(1)混凝土拌和料和易性得到改善掺加适量的粉煤灰可以改善混凝土拌和料的流动性、粘聚性和保水性,使混凝土拌和料易于泵送、浇筑成型,并可减少坍落度的经时损失。

(2)混凝土的温升降低掺加粉煤灰后可减少水泥用量,且粉煤灰水化放热量很少,从而减少了水化放热量,因此施工时混凝土的温升降低,可明显减少温度裂缝,这对大体积混凝土工程特别有利。

(3)混凝土的耐久性提高由于二次水化作用,混凝土的密实度提高,界面结构得到改善,同时由于二次反应使得易受腐蚀的氢氧化钙数量降低,因此掺加粉煤灰后可提高混凝土的抗渗性和抗硫酸盐腐蚀性和抗镁盐腐蚀性等.同时由于粉煤灰比表面积巨大,吸附能力强,因而粉煤灰颗粒可以吸咐水泥中的碱,并与碱发生反应而消耗其数量。

游离碱数量的减少可以抑制或减少碱集料反应。

通常3既的粉煤灰掺量即可避免碱集料反应。

(4)变形减小粉煤灰混凝土的徐变低于普通混凝土。

粉煤灰的减水效应使得粉煤灰混凝土的干缩及早期塑性千裂与普通混凝土基本一致或略低,但劣质粉煤灰会增加混凝土的干缩。

(5)耐磨性提高粉煤灰的强度和硬度较高,因而粉煤灰混凝土的耐磨性优于普通混凝土。

但混凝土养护不良会导致耐磨性降低。

(6)成本降低掺加粉煤灰在等强度等级的条件下,可以减少水泥用量约10%~15%,因而可降低混凝土的成本。

二、粉煤灰对混凝土的负面作用(1)强度发展较慢、早期强度较低由于粉煤灰的水化速度小于水泥熟料,故掺加粉煤灰后混凝土的早期强度低于普通混凝土,且粉煤灰掺量越高早期强度越低。

但对于高强混凝土,掺加粉煤灰后混凝土的早期强度降低相对较小。

粉煤灰混凝土的强度发展相对较慢,故为保证强度的正常发展,需将养护时间延长至14d以上。

(2)抗碳化性、抗冻性有所降低粉煤灰的二次水化使得混凝土中氢氧化钙的数量降低,因而不利于混凝土的抗碳化性和钢筋的防锈。

而粉煤灰的二次水化使混凝土的结构更加致密,又有利于保护钢筋。

因此,粉煤灰混凝土的钢筋锈蚀性能并没有比普通混凝土差很多。

粉煤灰细度对混凝土强度的影响

粉煤灰细度对混凝土强度的影响

粉煤灰细度对混凝土强度的影响摘要:我国是一个产煤大国,煤炭作为火力发电主要燃料,其副产物粉煤灰的大量排放对生态环境和人民大众的健康造成了较大的危害。

合理地利用粉煤灰不仅能有效解决粉煤灰带来的环境污染,同时能变废为宝,节省自然资源。

粉煤灰的一个用途是掺入到混凝土中能代替部分水泥的掺入,节省水泥,同时还能有效增加粉煤灰的强度。

本文详细介绍了粉煤灰对混凝土强度的影响。

关键字:粉煤灰;细度;混凝土强度;影响一、概述粉煤灰是火电厂排放的主要固体粉状废弃物。

不同火电厂出产的粉煤灰成分都不一样,总体来看我国粉煤灰主要成分是SiO2、Al2O3、FeO、Fe2O3、CaO、Ti2O3等氧化物组成。

从重量百分比来看主要是SiO2、Al2O3。

表1 粉煤灰的成分二、粗细颗粒粉煤灰性质分析细颗粒粉煤灰中的活性火山灰玻璃珠成分会与水泥中析出的氢氧化钙反应生成水化硅酸钙和水化氯酸钙等胶凝物质,能有效增加混凝土的塑性和强度;同时火山灰玻璃微小珠成分会在混凝土中起到滚珠作用和解絮作用,从而减少混凝土的水量改善和易性,提高密实性;这些玻璃珠均匀分布在水泥砂浆中,增加了硬化浆体的结构强度,改变了混凝土的均匀性,填充和细化了混凝土浆体的缝隙和孔洞。

粉煤灰做为掺加料被加入到混凝土中对混凝土的强度影响与粉煤灰的细度紧密相关。

掺入这种粉煤灰不仅能取代部分水泥,节省材料成本的同时还能增强混凝土的性能,提高工程质量。

然而不是所有粉煤灰掺入到混凝土中都能提高混凝土的性能。

粗颗粒粉煤灰微观状态多为海绵状多孔体,或没烧透的碳粒。

粗颗粒粉煤灰强度低、强度小,掺入到混凝土中不仅增加了混凝土的疏松颗粒和微孔,还会增加混凝土的含水量。

这样的混凝土将对工程质量造成较大的不良影响。

因此粉煤灰的细度被作为一项总要的指标。

三、粉煤灰细度对混凝土强度的影响试验1、试验目的选用三种细度的粉煤灰与同规格标号的水泥制作混凝土来比较不同细度粉煤灰对混凝土的强度影响。

2、试验材料华新水泥和榆林粉煤灰;将粉煤灰分为三等份,其中两份分别磨细,最后三份粉煤灰的细度分别为13.2、11.0、9.3um;5-15mm的连续级配的碎石子作为粗料集,模数为2.3沙子作为细料集;聚羧酸减水剂;自来水。

粉煤灰对混凝土性能影响试验研究

粉煤灰对混凝土性能影响试验研究

粉煤灰对混凝土性能影响试验研究摘要:粉煤灰是一种常用的混凝土掺合料,对混凝土的整体具有十分重要的影响。

本文通过试验,研究了两种粉煤灰对混凝土性能的影响,并进行了比较,分析其对混凝土性能的影响原理,旨在为有关需要提供参考。

关键词:粉煤灰;混凝土;性能影响;潜在活性;激发引言随着我国国民经济的快速发展以及建筑行业的不断进步,混凝土作为建筑施工中用量最大的施工材料,也得到了越来越多的应用。

而粉煤灰作为混凝土制作过程中的一种掺合料,其品质直接影响到混凝土的整体性能。

因此,研究粉煤灰对混凝土性能的影响具有十分重要的意义。

1.原材料和试验方法1.1 原材料试验选用P•O42.5R水泥,表观密度 3100kg/m3,28d 抗压强度 50.2MPa;S95 级矿粉,表观密度2920kg/m3,28d 活性指数 102%;细集料为河砂,表观密度2610kg/m3,细度模数 2.6;粗集料为普通碎石,表观密度 2670kg/m3,粒径 5~20mm(石 1)和16~31.5mm(石 2)两种;外加剂采用聚羧酸高性能减水剂,减水率 30%;试验用水为自来水,满足现行行业标准 JGJ 63—2006《混凝土用水标准》的要求。

试验研究了某公司生产的黄色和灰白色两种颜色的粉煤灰,如图 1 和图 2 所示。

两种粉煤灰的部分技术指标如表 1 所示。

图1 黄色粉煤灰图2 灰白色粉煤灰表1 粉煤灰技术指标1.2 试验方法粉煤灰的细度、需水量比按照 GB/T 1596—2005《用于水泥和混凝土中的粉煤灰》进行试验;混凝土坍落度按照GB/T 50080—2016《普通混凝土拌合物性能试验方法标准》进行测试;混凝土的力学性能按照 GB/T 50081—2016《普通混凝土力学性试验能方标准》进行测试。

1.3 试验方案为了充分研究两种颜色的粉煤灰对混凝土性能的影响,分别用两种粉煤灰配制了 C40、C45、C50 三个强度等级的混凝土,并进行试验,具体配合比见表2。

混凝土强度与粉煤灰掺量的关系

混凝土强度与粉煤灰掺量的关系

混凝土强度与粉煤灰掺量的关系混凝土是一种常见的建筑材料,其强度是衡量其质量的重要指标之一。

粉煤灰是一种常用的混凝土掺合料,能够有效地改善混凝土的性能,同时降低其成本。

本文将探讨混凝土强度与粉煤灰掺量的关系,包括掺入粉煤灰对混凝土强度的影响、粉煤灰的物理化学特性、粉煤灰掺量的选择和掺入粉煤灰后混凝土的性能改善机制等方面。

一、掺入粉煤灰对混凝土强度的影响粉煤灰是一种细粉状的矿物质,由燃烧煤炭时产生的煤灰经过细磨而成。

它的主要成分是氧化硅、氧化铝和氧化铁等,具有高度的活性,能够与水中的钙离子反应生成硅酸钙胶凝材料,从而提高混凝土的强度和耐久性。

粉煤灰掺量的多少会直接影响混凝土的强度。

掺入较少的粉煤灰可以提高混凝土的早期强度,但长期强度提高的效果不明显。

而当掺入量逐渐增加时,混凝土的强度也会随之提高。

然而,当掺入量超过一定比例时,混凝土的强度反而会下降,这是因为过多的粉煤灰会影响混凝土的性能,使其难以达到设计强度。

二、粉煤灰的物理化学特性为了更好地理解粉煤灰对混凝土性能的影响,我们需要了解其物理化学特性。

1.粉煤灰的粒度特性粉煤灰的粒度特性是影响其胶凝性能的重要因素。

通常将粉煤灰分为三类:I类粉煤灰的平均粒径小于10微米,II类粉煤灰的平均粒径在10-30微米之间,III类粉煤灰的平均粒径大于30微米。

在混凝土生产中,一般采用I类和II类粉煤灰,因为它们的活性较高,能够更好地与水中的钙离子反应。

2.粉煤灰的化学成分粉煤灰的化学成分直接影响其胶凝性能。

其中,SiO2、Al2O3和Fe2O3是粉煤灰的主要成分,它们能够与水中的钙离子反应生成硅酸钙胶凝材料。

此外,粉煤灰中还含有一定量的无机盐、重金属和放射性元素,需要进行严格的控制,以确保混凝土的安全性和可靠性。

3.粉煤灰的活性粉煤灰的活性是指其与水中的钙离子反应生成硅酸钙胶凝材料的能力。

活性越高,胶凝能力就越强,能够更好地改善混凝土的性能。

活性主要受粉煤灰的成分、粒度、烧结温度等因素的影响。

粉煤灰对混凝土性能的影响

粉煤灰对混凝土性能的影响

粉煤灰对混凝土性能的影响摘要:粉煤灰对混凝土性能的改变分为三个阶段,在这三个阶段以后,会逐渐对混凝土的下列性能产生影响,如强度,和易性,收缩,徐变,碳化性能,钢筋锈蚀,水化热等。

粉煤灰混凝土的性能粉煤灰对混凝土性能的改变可分为三个阶段: 1 .新拌混凝土阶段: 影响混凝土的凝结时间,改善和易性,改变流变性质,提高可泵性等; 2 .硬化中的混凝土阶段: 调节硬化过程,降低水化热; 3 .硬化后的混凝土阶段: 提高后期强度,提高各项耐久性,如抗渗性、抗硫酸盐侵蚀性,抑制碱—集料反应等。

1强度粉煤灰对混凝土强度有三种影响:减少用水量、增大胶结材含量和通过长期火山灰反应提高其强度。

低钙粉煤灰中的微粒为硅氧四面体结构,自身的活性很低。

在水泥的最终产物中,高碱性水化硅酸钙和Ca(OH)2胶体的结晶强度很低,特别是Ca(OH)2仅是托勃莫来石强度的1-2%,而Ca(OH)2 的体积占整个水泥石体积的25%。

粉煤灰中含有的大量的硅、铝氧化物,能逐步与Ca(OH)2及高碱性水化硅酸钙发生二次反应,生成强度较高的低碱性水化硅酸钙,这样,不但使水泥石中水化胶凝物质的数量增加,而且也使其质量得到大幅度提高,有利于混凝土强度的提高。

同时,粉煤灰的掺入可分散水泥颗粒,使水泥水化更充分,提高水泥浆的密实度,使混凝土中骨料与水泥浆的界面强度提高。

粉煤灰对抗拉强度和抗弯强度的贡献比抗压强度还要大,这对混凝土的抗裂性能有利。

粉煤灰混凝土的弹性模量与抗压强度相类似,早期偏低,后期逐步提高,到28d时可比基准混凝土提高5-10%。

与钢筋的握裹力,粉煤灰混凝土的28d粘结强度基本与等标号的基准混凝土相同,但粉煤灰混凝土的均匀性好,粘结强度试验值的离散性比基准混凝土好粉煤灰的二次水化反应一般在混凝土浇筑14d以后才开始进行,在温度低时,该反应所需的时间更长。

如果对混凝土的早期强度有严格要求,粉煤灰的掺量不宜超过30%,冬季施工非大体积混凝土时,粉煤灰的掺量不宜超过20%。

简述粉煤灰对混凝土性能的影响

简述粉煤灰对混凝土性能的影响

简述粉煤灰对混凝土性能的影响摘要:粉煤灰是煤在经过燃烧之后所产生的固体废料,实现资源化利用后,可实现提升混凝土的抗渗能力,经济价值的循环使用及其他特性,不同的粉煤灰与拌合比重都会对混凝土的性能造成一定的影响。

本文将通过对粉煤灰的特性进行研究,通过比对不同粉煤灰掺量对于混凝土性能的影响,实现混凝土质量的提升和成本的减少,增加粉煤灰的利用率。

关键词:粉煤灰;混凝土;性能;影响火力发电是当前我国主要产生能源的方式,粉煤灰是煤炭燃烧后的产物,其细小的颗粒会产生雾霾等空气污染,而化学物质则会导致化学污染,因此对粉煤灰进行有效的处理是实现煤炭燃烧环保的重要途径。

粉煤灰主要由SiO2、CaO等氧化物组成,这些物质掺杂在混凝土中可以通过其物理和化学特性减少其他原料的比重,从而节省混凝土的成本,并对粉煤灰进行二次利用,实现混凝土制造经济效益的提升。

粉煤灰的钙含量与胶凝体的形成情况,对粉煤灰的性质造成影响,最明显的当属而其中能够对粉煤灰类别进行判定的重要因素是其中CaO的含量[1]。

高钙粉煤灰由于游离的氧化钙较多,因此其安定性能相对较差。

低钙粉煤灰由于游离的氧化钙较低,稳定性较强,也因此被广泛应用于混凝土的掺和以及基建工程建设当中。

一、粉煤灰的发展现状以及适用范围20世纪70年代以后发生的环境污染和能源枯竭问题使得粉煤灰的利用开始步入人们的视野,成为新的可利用资源。

多次召开的国际粉煤灰研究会议,以及不断深入的研究,使得粉煤灰的应用发展取得了长足的进步[2]。

当前的粉煤灰综合运用相较于过去已经发生了较为明显的变化,首先粉煤灰的治理思想有所转变,从过去的治理环境发展为当前的综合治理,将粉煤灰进行资源化的利用。

不仅如此粉煤灰的应用范围也更加广泛,从原先的路基、混凝土掺合料,转变为水泥原料和水泥混合材,实现了对粉煤灰的高级化利用。

二、粉煤灰对于混凝土性能的影响分析(一)粉煤灰的物理化学特性会影响混凝土性能在进行混凝土制造时,需要对掺入的粉煤灰进行技术上的严格把控,首先需要对粉煤灰的细度进行筛选,使用45μm的负压筛析仪法进行筛选不超过3min,并且按照一定的标准执行[3]。

粉煤灰各项指标对混凝土的影响

粉煤灰各项指标对混凝土的影响

粉煤灰各项指标对混凝土的影响施工中常见质量问题1、细度不合格。

用静电收尘法的产量很低,厂家为了增加产量,经常会出现细度超标的现象,要求现场加大抽检频次。

细度值越小,需水量越小。

但是,粉煤灰的品质,应该首先关注烧失量和需水量比,细度不能作为评价粉煤灰质量的唯一标准。

2、烧失量超标。

粉煤灰中的未燃碳是有害成分,烧失量越大,含碳量越高,商品混凝土的需水量就越大,从而导致水胶比提高,严重影响了粉煤灰效用的充分发挥,同时粉煤灰烧失量过高会严重影响对商品混凝土中含气量的控制。

粉煤灰的含碳量与锅炉性质和燃烧技术有关;同一台设备生产的粉煤灰,其烧失量的大小与煤的品种及产地有关,电厂使用煤的产地,粉煤灰加工厂是很难控制的,所以在采购粉煤灰时应该确认电厂主要煤产地,以便适时掌握烧失量的变化。

一般情况下,用同一产地的煤生产的粉煤灰,表观颜色越深,烧失量越大。

3、商品混凝土含气量变化。

粉煤灰质量出现波动时,会导致商品混凝土含气量超标。

粉煤灰的烧失量对商品混凝土的含气量影响很大,所以抗冻商品混凝土要尽量降低粉煤灰的烧失量。

4、自燃煤矸石粉。

在南方,火力发电厂较少,粉煤灰资源匮乏,价格甚至高于水泥,一些不法供应商利用煤渣和煤矸石灰渣等材料自燃并磨细后冒充粉煤灰,这种产品从细度和烧失量等指标上和粉煤灰没有什么差别,但是在显微镜下基本上看不见粉煤灰的核心物质——玻璃体,其火山灰活性极其有限。

防止假粉煤灰出现,必须从源头上进行监控,即检查生产原料是不是火力电厂的产品以及粉煤灰生产厂家是否有必要的分选设备。

5、使用湿排灰和陈灰。

湿排灰在排放过程中加入了一定量的水,含水率大于3%;陈灰是指露天存放的粉煤灰,含水率很高。

湿排灰和陈灰使用价值不高,在客专上应该禁止直接使用。

(四)管理要点1、粉煤灰活性选择。

高钙灰(CaO含量大于10%)活性大于低钙灰(CaO含量小于10%),干排灰活性大于湿排灰,通常高钙粉煤灰的颜色偏黄,低钙粉煤灰的颜色偏灰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粉煤灰对混凝土最直观的影响是新拌混凝土工作性能的需水量比,和对硬化混凝土的力学强度(强度活性指数)。

需水量对于粉煤灰的很多工程应用是非常重要的物理指标,它是指粉煤灰和水的混合物达到某一流动度下所需要的水量,粉煤灰需水量越小工程利用价值就越大。

有的学者[5]采用下列函数表示粉煤灰需水量比Y与粉煤灰细度XM(45μm 筛余%)、密度X2、烧失量X3的关系。

Y=104.3 X10.05 X2-0.261 X30.0054 (1.1)Thomas[6]根据比较多的实验给出需水量比Y与粉煤灰细度XM(45μm筛余%)之间的关系如下式。

当烧失量3~4%时 Y=88.76+ 0.25XM (1.2) 相关系数r=0.86当烧失量5~11%时 Y=89.32+ 0.38XM(1.3) 相关系数r=0.85上述3个实验归纳式说明细粉煤灰可以降低粉煤灰的需水量比,其中的机理可能是磨细粉煤灰粉碎空心颗粒,释放内部的自由水分,另一方面也提高了粉煤灰的堆积密度所致。

因此细磨粉煤灰是改善粉煤灰品质的一项技术措施。

从(1.1)式可以看出影响粉煤灰需水量比的另一因素是烧失量,烧失量越大粉煤灰的需水量比越大,对粉煤灰烧失量贡献最大的物质主要是有机成分的未燃尽的残碳和未变化或变化不明显的煤粒。

K.Wesche[7]试验粉煤灰掺量为20%,结果表明,随烧失量增加粉煤灰水泥砂浆的相对流动扩展度迅速降低,当烧失量超过10%时,粉煤灰的相对扩展度比基准水泥砂浆还低。

烧失量对粉煤灰需水量比的影响是由于未燃尽的残碳的存在,主要以空心碳和网状碳的形貌存在,其存在的状态是单体形式、粘结在粉煤灰颗粒的表面、被包裹在粉煤灰颗粒中三种形式[8]。

这些粗大多孔的碳颗粒不仅使粉煤灰的需水量比增大,而且对混凝土的引气剂效果产生不利的影响,因为这些碳粒更容易吸附引气剂。

因此掺加高烧失量粉煤灰通常需要更大计量的引气剂。

此外高烧失量的粉煤灰因为含炭组分高的颗粒比较轻,在混凝土搅拌、运输和成型过程中容易浮到表面造成混凝土的离析。

由上可见,影响粉煤灰需水量比的因素主要为细度、烧失量。

细度:对和易性的影响主要体现在粘聚性方面,另外掺量过高对强度也有影响。

对耐久性也有影响,细度大的粉煤灰耐久性差,实体中混凝土碳化较大。

烧失量:粉煤灰中的未燃碳是有害成分,烧失量越大,含碳量越高,混凝土的需水量就越大,从而导致水胶比提高,严重影响了粉煤灰效用的充分发挥,同时粉煤灰烧失量过高会严重影响对混凝土中含气量的控制。

需水量比:需水量比是核心,关系到外加剂掺量/混凝土需水量等。

影响需水量比的因素除了烧失量和细度外,还有含珠率、微珠的粒形状等等因素,是“先天”条件所决定,难以“后天”弥补。

2.粉煤灰细度对混凝土强度的影响细度是衡量粉煤灰品质的主要指标,粉煤灰细度大小,对所配制的混凝土性能影响很大。

(1)这是因为细灰中含有大量具有火山灰活性的玻璃微珠,当掺入混凝土中时,能与水泥水化析出的ca(OH)反应,生成水化硅酸钙和水化铝酸钙等胶凝物质。

(2)它们在混凝土中,能起到滚珠作用、解絮作用和致密作用,从而减少混凝土的用水量改善和易性,提高密实性。

(3)这些微珠,均匀分布于水泥浆体中,能增强硬化浆体的结构强度,改交了混凝土的均匀性,填充和细化了混凝土的孔隙和毛细孔(更多关于粉煤灰加气块的技术细节,请咨询河南强源)。

所以,掺用这样的粉煤灰,不仅能取代部分水泥和细集料,降低成本,还能改善混凝土的性能,提高工程质量。

而颗粒较粗的粉煤灰,多为海绵状多孔体、珠连体和没烧透的碳粒,其强度低、活性小,用于拌制混凝土,不但增加水泥浆体中的疏松颗粒,还会增加用水量,对砼质量有不良影响。

为此,国内外有关用于混凝土的粉煤灰技术标准,多把“细度”列为首要考核指标。

我国粉煤灰综合利用现状及粉煤灰在砂浆、混凝土中应用的质量控制专家介绍:王思恭北京市新兴轻体材料厂总工程师北京粉煤灰专业委员会主任全国粉煤灰信息交流网副网长我国粉煤灰综合利用现状及粉煤灰在砂浆、混凝土中应用的质量控制(本文系山西低碳网首发)随着我国经济建设和电力事业的发展,全国发电总装机容量近7亿kw,其中,燃煤发电约占80%,粉煤灰的年排量近3亿吨,粉煤灰利用量和技术途径均有了新的发展,技术水平不断提高,但是,利用工作开展也不平衡,边远地区,堆存量占用了大量农田,对环境造成很大威胁,因此,开展粉煤灰综合利用,保护环境,是我国一项长期的技术经济政策。

几十年来,国家为鼓励工业废渣综合利用,制定了一系列技术、经济和管理方面的政策,原国家计委对粉煤灰综合利用技术政策总的原则是:“突出重点,因地制宜”和“巩固、完善、推广、提高的方针,把大批量用灰技术作为重点,注重提高粉煤灰综合利用的经济效益、社会效益,推广成熟的粉煤灰综合利用技术。

几十年来,普通低钙粉煤灰的研究工作始终未停止,上世纪50年代,首先从水泥、砂浆、混凝土中做混合材和掺合料开始研发,以后又发展到建材制品、筑路等领域,随着生产的发展,利用率在不断提高。

在一些大中城市,粉煤灰在混凝土中已成为不可缺少的一种材料。

在应用过程中,对粉煤灰提出了品质要求,自1979年[GB/1596-1979]出台后,到2005年为止,又陆续出台了[GB/T15321-94]、[GBJ146-90]、[GB/T1596-1991]、[GB/T1596-2005]等国标和行标,有的省市还制订了地方标准,完善了对质量的要求,为生产应用创造了条件。

国家为鼓励粉煤灰利用,为粉煤灰的利用铺平道路;80年代联合国出资援助中国,派国内技术人员赴国外学习考察,请国外专家来华技术座谈、交流;国内各地逐步建立学会、协会,不定期进行生产、学术交流,为粉煤灰的利用工作形成了一条龙配套服务。

进入21世纪后,由于发电量猛增,燃煤电厂SO2排放巨增,2005年排放达2000万吨以上。

导至SO2污染严重的原因:一是发电用煤量幅度增加,煤质下降。

二是电力行业的脱硫能力严重滞后,仅占装机容量的10%.三是火电机组超标排放普遍存在。

四是由于给电力企业增加了成本,延缓污染治理。

最新研究表明,每排放一吨SO2可造成近2万元的经济损失,因此,SO2污染控制工作已成为我国电力行业当前的首要任务。

为了有效控制SO2的排放,最经济最有效的措施是:通过向烟气中喷入石灰石(脱硫剂)用来吸收烟气中的SO2,控制其排放量。

当脱硫剂喷入后在烟气中反应生成Caso3、Caso4,由于脱硫剂的加入,所排灰渣,其物理、化学性能与未脱硫灰渣发生了很大变化。

根据国家能源政策的改变,今后火力发电的重点是在煤矿区建立坑口电站,鼓励用低热值燃料发电。

发电厂(站)炉型将过去以煤粉炉为主转化为以循环流化床锅炉为主,炉型的改变、燃料品种的改变,所排放的灰渣品质也随之发生变化,在使用时一定要分清粉煤灰的品质、性能,切忌套用。

我国粉煤灰主要利用途径及利用量分别是:1.1建材制品:占用灰总量35%,主要技术有:做水泥的原料和混合材、加气混凝土、烧结陶粒、烧结砖、蒸压砖等。

1.2建筑工程:占用灰总量10%,主要用于砂浆或混凝土的掺合料等。

1.3道路工程:占用灰总量20%,主要用于路基基层,沥青混凝土掺料,护坡等。

1.4农业:占用灰总量15%,主要用于改良土壤,制作肥料。

1.5回填:占用灰总量15%,主要有工程回填,矿井回填等。

1.6提取矿物:占用灰总量5%,主要有提取漂珠、微珠、铝等;作为塑料、橡胶的填充料。

本文重点介绍砂浆和混凝土中掺用粉煤灰的质量控制问题。

2、不同粉煤灰的几个主要差异2.1不同灰的形成差异火电厂使用的燃料不同、锅炉炉型、容量大小、炉膛的高度、炉温及燃料颗粒在炉内运转过程不同,则产出粉煤灰的理化性质就不同。

电厂锅炉内是否添加了脱硫剂与燃料同烧,则产出的粉煤灰更是不同。

因此,火电厂产出的粉煤灰从理化性质及利用上可划分为以下三种灰:2.1.1煤粉炉粉煤灰(PC灰,又叫普通低钙灰)煤粉炉燃用细度低于100μm的高热值煤(Qannet大于20000kj/kg),炉温高(在14000C 以上)、燃料颗粒在炉内停留时间短(仅1~2S),产出的飞灰是经高温熔融化合后淬冷的产物,粉煤灰以球形颗粒、玻璃体为主,灰分少。

2.1.2流化床粉煤灰(简称CFB灰)是燃用低热值燃料由CFB锅炉低温(850~9500C)烧出的粉煤灰。

每燃1吨低热值燃料,产灰量为400~600kg以上。

由于炉温低,杂质只能软化,不能熔融,灰的颗粒粗糙、球形颗粒少,且含炭量高,最高可达20%。

2.1.3流化床干式脱硫灰(CFB脱硫灰)是在CFB炉内加脱硫剂与燃料共烧产出,由原本的粉煤灰相及新增的脱硫相共同混合而成。

由于添加了脱硫剂,因此产灰量比不脱硫的流化床大5~10%以上。

2.2在化学成分上的差异我们统计了68个煤粉炉灰的化学成分(平均值),对比山东7个低热值燃料CFB粉煤灰化学成分(平均值)及包括美国、石家庄热电厂、白马热电厂燃煤CFB脱硫灰渣的化学成分和对比4个低热值燃料CFB脱硫灰渣的化学成分(平均值),认为它们在化学组成上是有差别的,其大致的变化趋势是:PC灰中SiO2+ Al2O3及SiO2+ Al2O3+Fe2O3所占的比例最高且比较稳定,而CaO及SO3等成分较少,因此其火山灰活性最高,性能最稳定,适合建材行业及水泥砼中使用。

另外,由于灰中碱性成分如CaO、MgO+ K2O+Na2O等较低,而SiO2+ Al2O3含量高,所以PC灰呈酸性较多;山东7个低热值燃料CFB灰的相应成分及性能次之。

而两种脱硫灰渣中的CaO(含f-CaO)含量高,但是SiO2+ Al2O3及SiO2+ Al2O3+Fe2O3量低。

因此,CFB脱硫灰渣的火山灰活性是低于PC灰和CFB灰渣的。

当CFB脱硫灰中f-CaO含量高遇水后的自硬性十分明显,给工程带来影响;当灰中f-CaO与SO3过高,在掺到水泥及混凝土制品中后会引起滞后的体积膨胀,破坏了水泥及混凝土的安定性;当灰中硫化物含量高的用于烧结砖时,则因SO3在大于6000C时就开始以SO2形式逸出,造成新的大气污染而大大限制了脱硫灰渣的使用范围。

2.3在矿物组成上的差别粉煤灰的矿物组成是粉煤灰品质的重要指标,了解灰的矿物相特点、形成机理等,有利于提高我们科学利用粉煤灰的水平及效果。

2.3.1 PC灰的矿物质基本由玻璃体、结晶体及少量未燃尽炭粒组成。

PC灰中玻璃体占主要份量,结晶体主要由石英、莫来石、磁铁矿和赤铁矿组成。

结晶体中莫来石是由煤炭中粘土类(以高岑土为主)矿物在11500C以上的高温下熔融化合后形成的,其含量与煤种有关。

(而PC灰中未燃尽的碳,以烧失量来表示,其含量较大时,将影响在工程上的使用。

)2.3.2 CFB灰相对PC灰的主要差别是,结晶体中几乎没有莫来石矿物。

相关文档
最新文档