平面连杆机构的动力分析与平衡资料

合集下载

平面连杆机构

平面连杆机构
平面四杆机构具有整转副 则可能存在曲柄。
设l1 < l4,连架杆若能整周回 转,必有两次与机架共线。
由△B2C2D可得:
由△B1C1D可得:
l3≤(l4 –l1) + l2 l2≤(l4– l1) + l3
l1+l4≤ l2 + l3
l1+ l3 ≤ l2 + l4 l1+l2 ≤ l3 + l4
当满足杆长条件时,其 最短杆上的转动副都是 整转副。
此时,铰链A、B均为 整转副。
同理,若 l1 > l4,可得:
l4≤ l1 , l4≤ l2 , l4≤ l3
即: AD为最短杆
▲最长杆与最短杆的长度之和 > 其他两杆长度之和, 双摇杆机构。
曲柄存在的条件:(Grashof 定理) ▲最长杆与最短杆的长度之和 ≤ 其他两杆长度之和
曲柄滑块机构的急回特性分析
应用:节省回程时间,提高生产率。
导杆机构的急回特性
称为杆长条件。
▲连架杆之一为最短杆,曲柄摇杆机构。 ▲机架为最短杆,双曲柄机构。 ▲最短杆对边为机架,双摇杆机构。
2.压力角和传动角 压力角:作用在从动 件上的驱动力F与力 作用点绝对速度之间 所夹锐角α。
切向分力 Ft= Fcosα = Fsinγ
法向分力 Fn= Fcosγ γ↑ Ft↑ 对传动有利。 γ是α的余角。 常用γ的大小来表示机构传力性能的好坏, 称γ为传动角。
K = V2 = C1C2 V1 C1C2
t2 t1
= t1 t2
=180°+θ 180°- θ
只要极位夹角θ ≠ 0 , 就有 K>1。
而且θ越大,K值越大,机构的急回性质越明显。

《平面机构的平衡》课件

《平面机构的平衡》课件

在合适的位置加装平衡装置,实现平面连杆机构的平衡设计。
05 平面机构平衡的未来发展与挑战
新型材料的运用
总结词
新型材料为平面机构平衡提供了更多的可能性,有助于提高机构的性能和稳定 性。
详细描述
随着科技的发展,新型材料如碳纤维、钛合金等高强度、轻质材料逐渐应用于 平面机构的设计中。这些材料具有更高的刚度和耐久性,能够提高机构的平衡 性能,减少振动和变形,使机构更加稳定和可靠。
03
机构在静止状态下,同时满足力的平衡和力矩的平衡,才能确
保机构的稳定运转。
平面机构平衡的分类
静态平衡
机构在静止状态下达到 平衡状态,即静态平衡

动态平衡
机构在运动状态下达到 平衡状态,即动态平衡

完全平衡
机构在静止和运动状态 下均达到平衡状态,即
完全平衡。
不完全平衡
机构在静止或运动状态 下未达到平衡状态,即
动力平衡设计
动力平衡设计是指通过合理布置机构中的惯性力,使得机构在运动状态 下达到平衡状态的设计方法。
动力平衡设计主要考虑的是机构在运动状态下的惯性力平衡,通过调整 机构中各个转动惯量和质量的大小和分布,使得机构在运动状态下能够
稳定工作。
动力平衡设计对于高速、高精度的机构平衡问题尤为重要,能够显著提 高机构的动态性能和稳定性。
《平面机构的平衡》ppt课件
• 平面机构平衡的基本概念 • 平面机构平衡的原理 • 平面机构平衡的设计方法
• 平面机构平衡的实例分析 • 平面机构平衡的未来发展与挑战
01 平面机构平衡的基本概念
平衡的定义与重要性
平衡的定义
平衡是指机构在静止状态下,其 所有作用力与反作用力相互抵消 ,使机构保持稳定状态。

《平面连杆机构》课件

《平面连杆机构》课件
尺寸优化
减小机构的整体尺寸,使其更 加紧凑。
重量优化
降低机构的重量,以实现轻量 化设计。
成本优化
通过优化设计降低制造成本。
优化方法
数学建模
建立平面连杆机构的数学模型,以便进行数 值分析。
优化算法
采用遗传算法、粒子群算法等智能优化算法 对机构进行优化。
有限元分析
利用有限元方法对机构进行应力、应变和振 动分析。
实例二:搅拌机
总结词
搅拌机利用平面连杆机构实现搅拌叶片的周期性摆动,促进物料在容器内均匀混 合。
详细描述
搅拌机中的四连杆机构将原动件的运动传递到搅拌叶片,使叶片在容器内做周期 性的摆动,通过调整连杆的长度和角度,可以改变搅拌叶片的摆动幅度和频率, 以满足不同的搅拌需求。
实例三:飞机起落架
总结词
飞机起落架中的收放机构采用了平面连杆机构,通过连杆的 传动实现起落架的收放功能。

设计步骤
概念设计
根据需求,构思连杆机构的大 致结构。
仿真与优化
利用计算机仿真技术对设计进 行验证和优化。
需求分析
明确机构需要实现的功能,分 析输入和输出参数。
详细设计
对连杆机构进行详细的尺寸和 运动学分析,确定各部件的精 确尺寸。
制造与测试
制造出样机,进行实际测试, 根据测试结果进行必要的修改 。
实验验证
通过实验验证优化结果的可行性和有效性。
优化实例
曲柄摇杆机构优化
通过调整曲柄长度和摇杆摆角,实现 机构的优化设计。
双曲柄机构优化
通过改变双曲柄的相对长度和转动顺 序,提高机构的运动性能。
平面四杆机构优化
通过调整四根杆的长度和连接方式, 实现机构的轻量化和高性能。

平面连杆机构及其分析与设计

平面连杆机构及其分析与设计

平面连杆机构及其分析与设计平面连杆机构是由连杆和连接点组成的机械结构,广泛应用于各种机械设备中。

它的功能是将输入的旋转运动转化为输出的直线运动或者将输入的直线运动转化为输出的旋转运动。

本文将对平面连杆机构的分析与设计进行介绍。

首先,对平面连杆机构进行分析。

平面连杆机构的主要组成部分是连杆和连接点。

连杆是连接点之间的刚性杆件,可以是直杆、曲杆或者具有其他特殊形状的杆件。

连接点是连杆的两个端点或者连杆与其他机构的连接点,可以是支点、铰链等。

平面连杆机构的运动可以分为三种基本类型:平动、转动和复动。

平动是指连杆的一端保持固定,另一端进行直线运动;转动是指连杆的一端保持固定,另一端进行旋转运动;复动是指连杆的一端进行直线运动,另一端同时进行旋转运动。

进行平面连杆机构的设计时,需要考虑以下几个要点。

首先,确定机构的类型和功能。

根据机构的动作要求和功能要求,选择适合的连杆类型和连接点类型。

其次,进行机构的运动分析。

根据机构的运动要求,确定连杆的长度和连接点的位置,使连杆能够实现所需的运动。

然后,进行机构的力学分析。

根据机构的受力情况,确定连杆的截面尺寸和材料,保证机构的刚度和强度。

最后,进行机构的优化设计。

考虑机构的性能要求和制造要求,对机构进行优化设计,提高机构的工作效率和使用寿命。

在平面连杆机构的设计中,还需要考虑机构的动力学问题。

机构的动力学分析包括静力学分析和动力学分析两个方面。

静力学分析是指在机构静止或静力平衡状态下,对机构受力和力矩进行分析。

动力学分析是指在机构进行运动时,对机构的加速度、速度和位移进行分析。

通过对机构的动力学分析,可以确定机构的惯性力和惯性矩,从而确定机构的动态特性和振动特性。

总之,平面连杆机构的分析与设计是一项复杂而重要的工作。

在进行分析与设计时,需要考虑机构的类型和功能,进行运动分析和力学分析,优化设计和动力学分析。

通过合理的分析与设计,可以使机构具有较好的工作性能和使用寿命,满足各种工程应用的要求。

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。

本文将对平面连杆机构进行介绍,并探讨其设计原理。

平面连杆机构是由至少一个定点和至少三个连杆组成的机构。

定点为固定参考点,连杆是由铰链连接的刚性杆件。

连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。

平面连杆机构的运动由这些连杆的位置和相互连接方式决定。

平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。

运动类型可以是旋转、平移、摆动、滑动等。

通过运动分析,可以确定连杆的长度和相互连接的方式。

2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。

例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。

3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。

静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。

4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。

运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。

5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。

通过运动分解,可以确定每个连杆的运动规律,从而进行设计。

当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。

具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。

2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。

根据机构的运动要求和外力作用,确定连杆的长度。

3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。

4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。

5.结构设计:根据上述分析和计算结果,进行结构设计。

第9章平面连杆机构的动力分析与平衡

第9章平面连杆机构的动力分析与平衡

第9章平面连杆机构的动力分析与平衡平面连杆机构是由若干个连杆组成的机械系统,常用于研究机械系统的动力学性质。

对于平面连杆机构的动力分析与平衡,主要是研究其运动学和动力学方程,并进行相应的力和动量平衡计算。

以下将从运动学和动力学两个方面进行详细介绍。

1、运动学分析平面连杆机构的运动学分析是研究机构的位置、速度和加速度的关系。

其中,位置分析主要是根据连杆的几何性质,通过连杆的长度、夹角和初始位置等参数,确定连杆机构的位置关系。

速度分析主要是研究各连杆的线速度和角速度之间的关系,通过运用位移法和速度图解法,可以求解各连杆关节处的速度。

加速度分析主要是研究各连杆的线加速度和角加速度之间的关系,可以通过速度分析的基础上运用动图解法求解。

2、动力学分析平面连杆机构的动力学分析是研究机构中各连杆所受力和动量的关系,进而分析机构的运动特性。

动力学分析主要包括力分析和动量平衡两个方面。

力分析主要是研究在给定外部载荷下,各连杆之间的约束力和连接力,分析力的大小、方向和位置。

动量平衡主要是研究机构质点的动量矩等于零,根据牛顿第二定律和冲量动量定理,可以建立平面连杆机构的运动方程,进而求解各连杆的加速度和力。

平面连杆机构的平衡主要涉及到静平衡和动平衡两个方面。

静平衡要求在机构基准位置时,机构中各连杆和连接处的力矩之和等于零,可以通过力分析和力矩平衡方程求解。

动平衡要求机构中各连杆的质心加速度等于零,在给定外部载荷和给定输入力矩的情况下,可以通过动量平衡方程求解。

总结来说,平面连杆机构的动力分析与平衡需要进行运动学和动力学的分析,通过建立力分析和动量平衡方程,求解各连杆的加速度和力,进而研究机构的运动特性和平衡性。

对于平面连杆机构的动力分析与平衡研究,可以为机械设计和动力学性能优化提供理论依据。

平面多连杆机构动力学建模与分析研究

平面多连杆机构动力学建模与分析研究

平面多连杆机构动力学建模与分析研究Chapter 1 引言在机械传动领域,平面多连杆机构是一种很常见的机械结构。

由于其设计简单、性能可靠等特点,在机械制造、航空、汽车、电子等领域有着广泛的应用。

平面多连杆机构的运动学和动力学分析一直是机械设计和计算机辅助设计领域需要解决的难题之一,因此对平面多连杆机构的动力学建模与分析的研究有着重要的意义。

本文主要介绍平面多连杆机构的动力学建模与分析的研究,包括平面多连杆机构的运动学方程、动力学方程等内容。

Chapter 2 平面多连杆机构的运动学方程平面多连杆机构是由多个连接杆件连成一个复杂的梯形链条结构,运动学方程是了解机构运动状态的基础,是机构动力学建模的前提。

平面多连杆机构的运动学方程通过从机构的杆件运动状态、几何条件及运动约束方程中推导而来。

运动状态是指多连杆机构在其由静止到运动的状态,即是以不同杆件为坐标系所定义的各运动参数与系统间所建立的模型。

悬链线方程是运动学中一个重要的公式,在平面多连杆机构的运动学方程中,用来关联各个连接杆件的运动和几何参数,因此其正确性对运动学方程的推导至关重要。

运动学方程包含了平面多连杆机构四驱动链和五驱动链,它们分别包括四个和五个独立的驱动旋转关节,计算公式如下:四驱动链:$$\begin{cases}x_3=x_0+l_1cos\alpha_1+l_2cos\alpha_2+l_3cos\alpha_3\\y_3=y_0+l_1sin\alpha_1+l_2sin\alpha_2+l_3sin\alpha_3\end{cases}$$五驱动链:$$\begin{cases}x_4=x_0+l_1cos\alpha_1+l_2cos\alpha_2+l_3cos\alpha_3\\y_4=y_0+l_1sin\alpha_1+l_2sin\alpha_2+l_3sin\alpha_3\\x_5=x_2-l_4cos\alpha_4-l_5cos\alpha_5-l_6cos\alpha_6\\y_5=y_2-l_4sin\alpha_4-l_5sin\alpha_5-l_6sin\alpha_6\end{cases}$$其中,$x_i$和$y_i$表示杆件i的末端的坐标,$l_i$是杆件i的长度,$\alpha_i$表示杆件的转角。

平面连杆机构设计分析及运动分析综合实验

平面连杆机构设计分析及运动分析综合实验

实验二平面连杆机构设计分析及运动分析综合实验一、实验目的:1、掌握机构运动参数测试的原理和方法。

了解利用测试结果,重新调整、设计机构的原理。

2、体验机构的结构参数及几何参数对机构运动性能的影响,进一步了解机构运动学和机构的真实运动规律。

3、熟悉计算机多媒体的交互式设计方法,实验台操作及虚拟仿真。

独立自主地进行实验内容的选择,学会综合分析能力及独立解决工程实际问题的能力,了解现代实验设备和现代测试手段。

二、实验内容1、曲柄滑块机构及曲柄摇杆机构类型的选取。

2、机构设计,既各杆长度的选取。

(包括数据的填写和调整好与“填写的数据”相对应的试验台上的杆机构的各杆长度。

)3、动分析(包括动态仿真和实际测试)。

4、分析动态仿真和实测的结果,重新调整数据最后完成设计。

三、实验设备:平面机构动态分析和设计分析综合实验台,包括:曲柄滑块机构实验台、曲柄摇杆机构实验台,测试控制箱,配套的测试分析及运动仿真软件,计算机。

四、实验原理和内容:1、曲柄摇杆机构综合试验台①曲柄摇杆机构动态参数测试分析:该机构活动构件杆长可调、平衡质量及位置可调。

该机构的动态参数测试包括:用角速度传感器采集曲柄及摇杆的运动参数,用加速度传感器采集整机振动参数,并通过A/D板进行数据处理和传输,最后输入计算机绘制各实测动态参数曲线。

可清楚地了解该机构的结构参数及几何参数对机构运动及动力性能的影响。

②曲柄摇杆机构真实运动仿真分析:本试验台配置的计算机软件,通过建模可对该机构进行运动模拟,对曲柄摇杆及整机进行运动仿真,并做出相应的动态参数曲线,可与实测曲线进行比较分析,同时得出速度波动调节的飞轮转动惯量及平衡质量,从而使学生对机械运动学和动力学,机构真实运动规律,速度波动调节有一个完整的认识。

③曲柄摇杆机构的设计分析:本试验台配置的计算机软件,还可用三种不同的设计方法,根据基本要求,设计符合预定运动性能和动力性能要求的曲柄摇杆机构。

另外还提供了连杆运动轨迹仿真,可做出不同杆长,连杆上不同点的运动轨迹,为平面连杆机构按运动轨迹设计提供了方便快捷的虚拟实验方法。

连杆机构的动力学分析与优化设计

连杆机构的动力学分析与优化设计

连杆机构的动力学分析与优化设计连杆机构是一种常见的机械传动装置,它由若干个连杆组成,通过铰链连接在一起。

连杆机构广泛应用于各个领域,如发动机、泵浦、机床等,对于实现复杂运动和力学传递起到重要的作用。

本文将对连杆机构的动力学分析与优化设计进行探讨。

一、连杆机构的动力学分析连杆机构的动力学分析是研究其运动规律和受力分布的过程。

在动力学分析中,我们可以通过构建连杆机构的运动学方程和受力方程来描述其运动和受力情况。

1. 运动学方程运动学方程描述了连杆机构中各个连杆的位置和速度之间的关系。

通过连杆机构的几何形状和运动特点,我们可以推导出各个连杆的位置和速度方程。

运动学方程的求解可以帮助我们了解连杆机构的运动规律和运动参数。

2. 受力方程受力方程描述了连杆机构中各个连杆受力的情况。

通过对各个铰链点的受力平衡条件的分析,我们可以得到连杆机构中各个连杆的受力方程。

受力方程的求解可以帮助我们了解连杆机构中各个连杆的力学特性,为优化设计提供基础。

二、连杆机构的优化设计连杆机构的优化设计旨在提高其性能和效率。

在连杆机构的优化设计中,我们可以从以下几个方面进行改进。

1. 结构优化连杆机构的结构优化包括选取合适的连杆尺寸和形状,以及确定连杆的连接方式。

通过对连杆机构结构的优化设计,可以减小其重量和体积,提高其刚度和强度,从而提高整个机构的性能。

2. 运动特性优化连杆机构的运动特性优化包括提高其运动平稳性和运动精度。

在优化设计过程中,可以通过调整连杆的长度比例和位置布局,以及选用合适的铰链点来改善连杆机构的运动特性。

运动特性优化可以使连杆机构实现更加精确和稳定的运动。

3. 动力优化连杆机构的动力优化包括提高其传动效率和降低能耗。

在优化设计过程中,可以选用合适的传动形式和传动参数,以及减小传动过程中的能量损失来改善连杆机构的动力性能。

动力优化可以提高连杆机构的整体效率,并减少对能源的消耗。

三、连杆机构的应用领域连杆机构广泛应用于各个领域,如发动机、泵浦、机床等。

机械原理4-23MATLAB平面连杆机构动力学分析

机械原理4-23MATLAB平面连杆机构动力学分析

基于MATLAB/Solidworks COSMOSMotion的平面连杆机构动力学分析07208517王锡霖4-23在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。

试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于。

构件1上的平衡力偶Mb分别对三个构件进行受力分析如图:构件3受力图构件2受力图构件1受力图(1)滑块2:V S2 =L AB W1 ①a s2 = L AB W12②构件3:S=L AB sinΦ1 ③V3=L AB W1 COSΦ1 ④a3=-L AB W12 sinΦ1 ⑤(2)确定惯性力:F12=m2as2=(G2/g)LABW12 ⑥F13=m3a3=(G3/g)LABW12sinΦ1 ⑦(3)各构件的平衡方程:构件3:∑Fy=0,FR23 =Fr-F13∑Fx=0,FR4’=FR4∑MS3 =0,FR4=FR23LAcosΦ1/h2构件2:∑Fx=0,FR12x=F12cosΦ1∑Fy=0,FR12y=FR32-F12sinΦ1构件1:∑Fx=0,FR41x=FR12x∑Fy=0,FR41y=FR12y∑MA =0,Mb=FR32LABcosΦ1总共有八个方程,八个未知数。

归纳出一元八次方程矩阵:1 0 0 0 0 0 0 0 FR23 Fr-F130 1 -1 0 0 0 0 0 FR4’ 0-LAB COSΦ1/h20 1 0 0 0 0 0 FR40 0 0 1 0 0 0 0 FR12x = F12cosΦ1-1 0 0 0 1 0 0 0 FR12y -F12sinΦ10 0 0 -1 0 1 0 0 FR41x 00 0 0 0 -1 0 1 0 FR41y 0-LABCOSΦ1 0 0 0 0 0 0 1 Mb 0 AX=B进而可得:X=A\B。

平面四杆机构动力学分析

平面四杆机构动力学分析

平面四杆机构动力学分析平面四杆机构是一种常用的机构形式,它由四个连杆构成,每个连杆的两个端点分别与两个固定点和两个动点连接。

平面四杆机构广泛应用于工程和机械领域,如发动机连杆机构、机床传动机构等。

在对平面四杆机构进行动力学分析时,需要考虑连杆的运动学特性以及受力情况,以求得机构的运动学和动力学性能参数。

本文将介绍平面四杆机构动力学分析的基本方法和步骤。

首先,对平面四杆机构进行运动学分析,即确定连杆的几何参数和运动特性。

通过连杆的长度、角度和位置关系,可以建立连杆运动学方程。

平面四杆机构一般有两个输入连杆和两个输出连杆,输入连杆一般由驱动源(如电机)控制,输出连杆用于传递或产生所需的运动。

其次,根据连杆的几何关系和运动学方程,可以推导得到平面四杆机构的速度和加速度方程。

速度方程描述了各连杆的速度与输入连杆的关系,加速度方程描述了各连杆的加速度与输入连杆的关系。

通过求解速度和加速度方程,可以得到每个连杆的线速度和角速度,以及各连杆的线加速度和角加速度。

接下来,进行平面四杆机构的力学分析。

根据连杆的几何关系和受力分析,可以推导得到每个连杆的力学方程。

力学方程描述了各连杆受到的力和力矩与其他连杆的关系。

通过求解力学方程,可以得到每个连杆的受力和力矩大小以及方向,以及各连杆之间的力传递关系。

最后,根据连杆的运动学和力学特性,可以得到平面四杆机构的动力学性能参数,如位置、速度和加速度的关系、力和力矩的大小和方向等。

这些参数可以用于分析机构的运动和受力情况,并进一步优化设计。

需要注意的是,平面四杆机构的动力学分析是一个复杂的过程,需要考虑各连杆之间的相互作用和约束条件。

同时,还需要考虑连杆的质量和惯量等因素,以求得更精确的分析结果。

因此,在实际应用中,常采用计算机辅助分析方法,如数值模拟和仿真技术,以提高分析的准确性和效率。

综上所述,平面四杆机构的动力学分析是一项重要的工作,对于优化设计和性能评估具有重要意义。

平面连杆机构动态静力分析

平面连杆机构动态静力分析
平面连杆机构是由若干刚性构件通过低副(转动副或移动副)连接,且各构件 的运动平面均相互平行的机构。
分类
根据构件之间的相对运动关系,平面连杆机构可分为闭式连杆机构和开式连杆 机构两大类。闭式连杆机构的构件数目较多,形成一个或多个封闭环;开式连 杆机构的构件数目较少,没有封闭环。
工作原理及特点
工作原理
03
多体动力学仿真技 术不足
发展多体动力学仿真技术,实现 机构运动学和动力学的精确模拟。
未来发展趋势预测
智能化设计
利用人工智能、机器学习等技术,实现平面连杆机构 的自动化设计和优化。
高性能计算应用
借助高性能计算技术,提高分析速度和精度,实现复 杂机构的实时仿真。
多学科交叉融合
结合机械工程、计算机科学、数学等多学科知识,推 动平面连杆机构动态静力分析技术的发展。
案例二:复杂平面连杆机构
机构描述
复杂平面连杆机构通常由较多的构件组成,且构件之间的连接和运动关系更为复杂,如多 杆机构为复杂的分析方法和计算工具,如有限元分析、多体 动力学仿真等,以准确地求解机构的动态静力参数。
案例分析
例如,对于多杆机构,可以通过建立机构的刚体动力学模型,分析其运动过程中的动态静 力特性,如构件的应力、变形以及整体机构的稳定性等。
例如,对于一种高速平面连杆机构, 可以通过优化设计方法提高其动态平 衡性能,减少振动和噪音;同时,通 过精确的加工和装配工艺保证其运动 精度和稳定性。
实验验证与结果讨论
05
实验设计思路及步骤
设计思路
通过搭建平面连杆机构实验平台, 模拟机构的实际运动情况,采集相
关数据进行动态静力分析。
搭建实验平台
平面连杆机构的工作原理是通过各构件之间的相对运动来传 递运动和动力。在机构运行过程中,主动件作等速转动或往 复移动,从动件则根据机构类型和参数的不同,实现预期的 复杂运动规律。

机构的动态静力分析

机构的动态静力分析

1
6
(三)平面连杆机构的动态静力分析方法 机构力分析的任务是确定运动副中的反力和需加于
机构上的平衡力。
在机械原理中规定:
将各运动副中的反力统一表示为 FRij 的形式.
即构件i作用于构件j上的反力,且规定 i j
构件j作用于构件i上的反力 FRji 则用 FRij 表示。
1
7
例:机构动态分析的解析法 1、构件的惯性力和惯性力矩 两种特殊情况:
一。
1
2
1.1 平面连杆机构的动态静力分析
(一)几个基本定义 1、机构 机构是机器实现其运动学功能的基本组成。
机构是由两个以上的构件,彼此间形成一定型式 的“可动联接”,实现运动和力的传递与变换,且 各构件间具有确定的相对运动。
机构的结构设计是 机构的“运动学机构设计”。
着重是从运动、自由度与约束的基本特征来研究机构
勃朗宁重机枪就用到了
反凸轮机构,它在节套
后坐时,使枪机加速后
坐,以利弹壳及时退出。 1
17
2、凸轮机构的分类 这种凸轮是一个具有变化的向径
盘形凸轮:的盘形构件绕固定轴线回转。
按凸轮的 形状分:
这种凸轮是一个在圆柱面上开 圆柱凸轮: 有曲线凹槽,或是在圆柱端面
上作出曲线轮廓的构件。
1
18
2、凸轮机构的分类 尖端推杆:这不种大推和杆速易度磨较损低的,只场适合用,于如作仪用表力等。
从动件在凸轮廓线驱动下作上升 -停歇-下降-停歇的周期性运动, 其位移为s,即
(从最低位置——基园半径 r0
处算起)为凸轮转角 的函数,
是一个已知量。
1
20
凸轮和从动件的受力图 从动件所受的工作载荷为G,是 随凸轮转角而变化的一个已知量

机械基础-平面连杆机构

机械基础-平面连杆机构

化工机械
如搅拌机、反应器等, 利用平面连杆机构实现
物料的混合和反应。
02
平面连杆机构的基本类型
曲柄摇杆机构
总结词
曲柄摇杆机构是平面连杆机构中最基本的一种形式,它由一个曲柄和一个摇杆 组成,曲柄通过转动将动力传递给摇杆,使摇杆进行摆动或转动。
详细描述
曲柄摇杆机构广泛应用于各种机械装置中,如缝纫机、搅拌机、车窗升降器等。 曲柄通常作为主动件,通过转动将动力传递给摇杆,使摇杆进行摆动或转动, 从而实现特定的运动形式。
机械基础-平面连杆机构
• 引言 • 平面连杆机构的基本类型 • 平面连杆机构的运动特性 • 平面连杆机构的传力特性 • 平面连杆机构的设计 • 平面连杆机构的实例分析
01
引言
平面连杆机构简介
01
平面连杆机构是由若干个刚性构 件通过低副(铰链或滑块)连接 而成的机构,构件在互相平行的 平面内运动。
机构的承载能力分析
总结词
机构的承载能力分析是评估 平面连杆机构在承受载荷时
的承载能力和稳定性。
详细描述
通过承载能力分析,可以确 定机构在各种工况下的最大 承载能力,为机构的安全使
用和优化设计提供保障。
总结词
在进行承载能力分析时,需要综合考虑机 构中各个构件的强度、刚度和稳定性等因 素。
详细描述
通过对这些因素的评估和分析,可以确定 机构在各种工况下的承载能力和稳定性, 为机构的安全使用和优化设计提供依据。
压力角和传动角
总结词
压力角是指在平面连杆机构中,主动件与从动件之间所形成的夹角。传动角是指连杆与曲柄之间所形成的夹角。
详细描述
压力角的大小直接影响到机构的传动能力和效率。较小的压力角可以减小作用在从动件上的力,提高传动效率。 而传动角的大小则与机构的传动性能和曲柄的形状有关。在设计平面连杆机构时,需要综合考虑压力角和传动角 的影响,以获得最佳的传动效果。

机械设计基础项目一 任务3 平面连杆机构分析与设计

机械设计基础项目一 任务3 平面连杆机构分析与设计

为0 °(转向点),从动曲柄可能向正反两个方向
转动,机构运动不确定,平行四边形机构可能变成 反平行四边形机构。
B 2 C 1 A 4 3 D
双摇杆机构,也有死 点位置,在实际设计中常 采用限制摆杆的角度来避 免死点位置。
克服的方法: 安装飞轮,利用惯性克服死点(例如:内燃机、
缝纫机)
例:缝纫机借助于带轮
△ B′C′D和△ B〞C〞D成立
由△B〞C〞D得 a+d≤b+c (1) 由△B′C′D得 或 b≤(d-a)+c c≤(d-a)+b a+b≤d+c a+c≤b+d (2) (3)
由式(1)、(2)、(3)得
a≤c a≤b a≤d a为最短杆
整转副存在条件
四杆长度满足杆长条件:最短杆与最长杆长度之和
知极为夹角θ为:
k 1 180 k 1
四杆机构有无急回运动,取决于曲柄与连杆共
线位置的夹角,即有无极位夹角,不论是何种机构,
只要机构在运行过程中具有极位夹角,则该机构就
具有急回作用。
角越大,则K 值越大,说明急回运动的性质也 越显著。
曲柄滑块机构
B
l1
A
l2
B2
e
C
工作行程 aθ b B1 l 1 l C C1 2 A A e e
缺点: 连杆机构一殷具有较长的运动链,各构件的尺寸误 差和运动副中的间隙将使连杆机构产生较大的积累
误差,也使机械效率降低。
连杆及滑块作变速运动,其惯性力难于平衡,会增
加机构的动载荷,一般不宜用于高速传动。
设计过程却十分繁难,在多数情况下一般只能近似 地得以满足。
四杆机构:由四个构件组成的平面连杆机构

《平面连杆机构 》课件

《平面连杆机构 》课件
工程应用前景
分析优化后机构在工程应用中的前景,为实 际应用提供指导。
05
平面连杆机构的未来发展
新材料的应用
轻质材料
01
采用轻质材料如碳纤维、玻璃纤维等,降低机构重量,提高运
动性能。
高强度材料
02
选用高强度材料如钛合金、超高强度钢等,提高机构承载能力

复合材料
03
利用复合材料的各向异性特点,优化机构性能,实现多功能化
遗传算法
利用遗传算法对平面连杆机构进行优化,通 过不断迭代和选择,寻找最优解。
约束处理
在优化过程中,需要特别注意处理各种约束 条件,如几何约束、运动约束等。
优化实例
曲柄摇杆机构优化
以曲柄摇杆机构为例,通过优化算法找到最优 的设计参数,使得机构的运动性能达到最佳。
双曲柄机构优化
对双曲柄机构进行优化,改善机构的运动平稳 性和精度。
平面连杆机构系列优化
对一系列平面连杆机构进行优化,比较不同机构的性能特点,为实际应用提供 参考。
优化效果评估
性能指标
通过性能指标来评估优化效果,如运动精度 、运动范围、刚度等。
经济性评估
评估优化后机构的经济效益,包括制造成本 、运行成本等。
实验验证
通过实验验证优化的有效性,对比优化前后 的性能差异。

新工艺的探索
精密铸造
通过精密铸造技术,提高 零件的精度和表面质量, 减少加工余量。
激光切割
利用激光切割技术,实现 零件的高精度、高效率加 工。
3D打印
利用3D打印技术,快速制 造复杂结构零件,缩短产 品研发周期。
新技术的应用
智能控制
有限元分析
引入智能控制技术,实现机构的高精 度、高效率运动控制。

机械原理之平面连杆机构

机械原理之平面连杆机构
机械原理之平面连杆机构
平面连杆机构是一种常见的机械原理,应用广泛。本 presentation 将介绍平面 连杆机构的构成、运动规律、设计方法、应用案例等内容,帮助您深入了解 这一重要机构。
什么是平面连杆机构
平面连杆机构是由杆件和连接点组成的机械系统,可以实现直线运动、旋转运动和复杂的机构运动。
平面连杆机构的应用范围
4 活动副
平面连杆机构中杆件间的连接关系,包括铰 接、滑动等。
平面连杆机构的种类
单曲柄平面四杆机构
使用一个曲柄连接四个连杆, 常用于某些简单的转换运动。
双曲柄平面四杆机构
使用两个曲柄连接四个连杆, 比单曲柄机构更复杂,能实现 更灵活的变换运动。
六杆机构
由六个连杆组成的机构,具有 更多自由度,可以实现复杂的 机械运动。
打印机
打印机中的平面连杆机构控制打印头的移动, 实现文字和图像的打印。
机器人
机器人的运动分部中使用平面连杆机构来实现 腿部或手臂的运动。
平面连杆机构的未来发展趋势
1
智能化
随着科技的进步,平面连杆机构将更加智能化,实现自动化无人操作。
2
材料创新
新型材料的应用将提升平面连杆机构的强度和耐用性,推动机械工程的发展。
代数法
使用代数方程描述平面连杆机 构的位置、速度和加速度,刻 画机构的运动规律。
图像法
通过绘制机构运动的示意图, 直观展示连杆机构的运动特性。
平面连杆机构的应用案例
发动机
汽车发动机中的连杆机构将活塞运动转化为曲 轴旋转,提供动力。
摇滚机
摇滚机利用平面连杆机构的运动来实现摇摆, 并供儿童嬉戏和休闲。
平面连杆机构广泛应用于机械工程、汽车工业、航空航天、机器人等领域, 用于传输功率、转换运动、控制位置等。

第13讲平面连杆机构动态静力分析

第13讲平面连杆机构动态静力分析

第13讲平面连杆机构动态静力分析平面连杆机构是由直线运动连杆组成的机械系统,被广泛应用于各种机械设备中。

平面连杆机构的动态静力分析是对连杆机构在运动过程中的受力和运动性能进行研究和分析的过程。

本文将从动力学和静力学两个方面来介绍平面连杆机构的动态静力分析。

一、动力学分析平面连杆机构的动力学分析主要研究机构在运动过程中的受力和运动性能。

动力学分析涉及到速度、加速度、力矩等物理量的计算和分析。

1.速度分析速度分析是指根据机构的几何形状和约束条件,计算机构各个连杆和构件的速度。

常用的方法有几何法、瞬心法和向量法等。

2.加速度分析加速度分析是指根据机构的几何形状、约束条件和速度,计算机构各个连杆和构件的加速度。

常用的方法有几何法、瞬心法和向量法等。

3.力矩分析力矩分析是指根据机构的几何形状、约束条件、速度和加速度,计算机构各个连杆和构件的力矩。

根据牛顿第二定律,力矩等于物体的质量乘以加速度,根据连杆机构的几何形状和运动状态,可以计算出各个连杆和构件的力矩。

二、静力学分析平面连杆机构的静力学分析主要研究机构在静态平衡条件下的受力和力矩分布。

静力学分析可以用于评估机构的工作性能和稳定性。

1.均衡方程静力学分析的基础是建立连杆机构的均衡方程,即根据物体的几何形状和约束条件,建立物体受力和力矩平衡的方程。

通过求解这些方程,可以得到机构的受力和力矩分布。

2.受力分析受力分析是指根据机构的几何形状、约束条件和力矩,计算机构各个连杆和构件的受力。

受力分析可以帮助我们了解机构在运动过程中的受力情况,从而确定机构的结构设计和增加机构的稳定性。

3.力矩分析力矩分析是指根据机构的几何形状、约束条件和受力分析,计算机构各个连杆和构件的力矩。

力矩分析可以帮助我们确定机构的受力情况,从而评估机构的工作性能和稳定性。

平面连杆机构的动态静力分析是机械工程中重要的研究内容之一、通过动态静力分析,可以了解机构运动过程中的受力和运动性能,并根据分析结果进行机构的设计和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图解法和解析法两种,这里以解析法为主,首先介绍平面连杆机构 动态静力分析的基本思路,然后介绍机构的惯性力和惯性力矩的平 衡原理及具体措施。
9-1 平面连杆机构的动态静力分析
机构的动态静力分析,主要是对机构中每个构件进行力分析, 列出力平衡方程式,通过各构件间联立的线性方程组进行求解。
以曲柄摇杆机构为例,介绍具体的分析过程。 图示曲柄摇杆机构,已知各构件的长
构件2:
F32 x F12 x Rs 2 x 0 F F R 0 s2 y 32 y 12 y F12 x r2 sin(2 2 ) F12 y r2 cos(2 2 ) F32 x [r2 sin(2 2 ) l2 sin 2 F [l cos r cos( )] M 0 2 2 2 2 s2 32 y 2
由此可见:机构作用于机架上的摆动力矩,不仅要考虑机构
的驱动力矩或生产阻力矩,同时它在机构的运动过程中随时间而
不断变化,因此想对其进行完全平衡非常困难。
9-2 平面连杆机构的平衡
平面连杆机构的平衡,主要是指机构总惯性力和总惯性力矩的
平衡。我们在《机械原理》课程中详细研究了转子的平衡问题,知
道转子的平衡可以通过调整转子本身的质量分布,使转子的中心主 惯性轴与转子的回转轴线重合,从而实现转子的惯性力和惯性力矩 为零的目的。但在平面连杆机构中,除了作定轴转动的构件外,还 有作平面复杂运动的连杆,以及作往复运动的滑块。这类构件的质
其中
n i 1
xi , yi 为构件i的质心坐标, mi 为构件i的质量,
m mi 为活动构件总质量。
② 机构总惯性力和惯性力矩 总惯性力: F ma
s
总惯性力矩: n n M z mi ( xi yi yi xi ) J ii i 1 i 1
第九章 平面连杆机构的 动力分析与平衡
机构的动力分析是在机构运动分析的基础上,研究机构运动与 作用力之间的关系。研究内容主要包括运动副约束反力确定,加在 输入或输出构件上的平衡力矩或平衡力计算,机构总惯性力和惯性
力矩的平衡。
机构动力分析的方法,一般是按达伦伯原理将惯性力作为虚拟外
力加在有加速度的构件上,进行所谓的动态静力分析,具体方法有
构件3:
F43 x F23 x Rs 3 x 0 F F R 0 43 y 23 y s 3 y F43 x r3 sin(3 3 ) F43 y r3 cos(3 3 ) F23 x [l3 sin 3 r3 sin(3 3 )] F [l cos r cos( )] M M 0 3 3 3 3 s3 r 23 y 3
机构的惯性力和惯性力矩的完全平衡,从理论上是可以做到的, 机构的平衡从实用角度上常进行惯性力和惯性力矩的部分平衡。
但往往会造成机构过于复杂或体积过于庞大而影响实际的工程应用,
一、平面机构的平衡原理
1、平面机构平衡的基本条件
以平面曲柄滑块机构为例:
n 1 ①机构总质心位置为: xs mi xi m i 1 n y 1 mi yi s m i 1
心位置及其质心加速度时刻在变化,因此,构件的惯性力和惯性力
可以通过构件的质量调节来调整机构中各构件的质心位置,使机构 的总质心位于机架上,从而实现把惯性力和惯性力矩调整到机
矩也是变化的,不能靠构件自身的平衡实现整个机构的平衡。但是,
架上的目的。所以,机构平衡的实质是:调整各构件的质心位置, 使机构总质心位于机架上。
度 li ,质量 mi ,转动惯量 Ji ,质心位置 加在输入构件上的驱动力矩 ,加在输出 Md Si 构件上的生产阻力矩 及 与 M 的关系。 Mr d 。求各运动副反力 Mr ,
分析过程:
(1)各构件质心处的惯性力 Rsi 表示为: Rsi mi asi
用沿x、y轴的分量表示为:
RSix mi asix RSiy mi asiy
该机构通过固定铰链A、D作用于机架上的力Fs 为:
Fsx F14 x F34 x Rs1x Rs 2 x Rs 3 x Fsy F14 y F34 y Rs1 y Rs 2 y Rs 3 y
由此可知:机构作用于机架上的力,仅与各构件产生的惯性
力有关,其大小为各活动构件的惯性力总和,平衡起来相对容易。
如果用于驱动机构的电机与机构装在同一机架上,则机构通 过固定铰链加于机架上的各力以及电机的反座力矩共同构成了整 个机构对参考点的摆动力矩(也称惯性力矩),若选上图中的o点 为参考点,则:
M s0 Md F14 x y0 F14 y x0 F34 x ( y0 l4 sin4 ) F34 y (x0 l4 cos4 )
各构件绕质心轴惯性力矩:M Six Jii (2)以各构件为对象,进行受力分析,画受力图
(3)列力平衡方程: 构件1:
F41x F21x Rs1x 0 F F R 0 21 y s1 y 41 y F41x r1 sin(1 1 ) F41 y r1 cos(1 1 ) F21x [l1 sin 1 r1 sin(1 1 )] F [l cos r cos( )] M M 0 1 1 1 1 s1 d 21 y 1

上述共9个方程,可解9个未知数F12 x , F12 y , F23x , F23 y , F34 x , F34 y , F41x , F41y , Md , Mr 上述9个方程都是线性的,所以可以求解。 先由(2)、(3)求得: F12 x , F12 y , F23x , F23 y , F43x , F43 y 再由式(1)求得:F41x , F41y 及M d (或Mr )
相关文档
最新文档