18--1讲--算术平方根
初中常用平方根口诀表

初中常用平方根口诀表
2019-09-13 09:56:42 文/颜雨 平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实 平方根,它们互为相反数,负数没有平方根。接下来给大家分享初中常用=144 √12 = 3.464
13²=169 √13 = 3.605
14²=196 √14 = 3.741
15²=225 √15 = 3.872
16²=256 √16 = 4
17²=289 √17 = 4.123
18²=324 √18 = 4.242
19²=361 √19 = 4.358
初中常用平方根表
平方表 平方根
1²=1
√1 = 1
2²=4
√2 = 1.414
3²=9
√3 = 1.732
4²=16 √4 = 2
5²=25 √5 = 2.236
6²=36 √6 = 2.449
7²=49 √7 = 2.645
8²=64 √8 = 2.828
9²=81 √9 = 3
10²=100 √10 = 3.162
20²=400 √20 = 4.472
平方根口诀
(1)11-19的平方:原数加尾数,尾平方;逢10进位 例如:132=? 13+3=16 32=9 132=169 (2)41-49的平方:尾加15,10减尾再平方,占2位 例如:432=? 3+15=18 10-3=7 72=49 432=1849 (3)51-59的平方:尾加二十五,尾平方占2位 例如:542=? 4+25=29 42=16 542=2916 (4)91-99的平方:尾数乘2加80;10减尾数再平方,占2位 例如:952=? 5×2+80=90 10-5=5 52=25 952=9025
平方根 讲义

第二节 平方根 讲义 一、対算术平方根的理解一般地,如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式2x =a (x ≥0)中,规定x =a .例如:422=,2就叫做4的算术平方根,根据定义,4的算术平方根也可表示为4,读作根号4,所以2=4。
再例如:23=9,3就叫做9的算术平方根,根据定义,9的算术平方根也可表示为9,读作根号,9,所以3=9。
再例如:如果 52=x ,x 就叫做5的算术平方根,根据定义, 5的算术平方根就可以表示为5,所以x=5.2、 试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.例1 求下列各数的算术平方根: (1)100;(2)1;(3)6449;(4)0.0001 解:(1)因为302=900,所以900的算术平方根是30,因为900的算术平方根也可表示为900,所以900=30;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为,6449)87(2=所以6449的算术平方根是87,即876449=; (4)14的算术平方根是14.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的? [生] 是通过平方来求的.[师]对.由此我们可以看出一个正数的平方和求算术平方根是互为逆运算.而且我们在例题中的步骤采取语言叙述和符号表示互相补充的做法,目的是让大家明白算术平方根的概念,以及从计算中进一步体会一个正数的平方和求算术平方根是互为逆运算.在以后的步骤中可以简化.[师]下面大家再观察一下刚才咱们求出的算术平方根有什么特点. [生甲]算术平方根是整数或分数,即为有理数.[生乙]不对,那14是不是有理数?若是则是,分数还是整数?[生丙]因为没有任何一个整数或分数的平方等于14,所以14不是有理数,而是无理数.结论:非平方数的算术平方根只能用根号表示.[师]大家的分析都有道理,我提示一下从符号方面考虑. [生甲]噢,算术平方根是正数,如14,5,3,2,2.[生乙]不对,还有零呢.正数的算术平方根是正数,零的算术平方根为零.[师]非常正确,那负数的算术平方根是否为负数呢?若(-2)2=4.则4=-2对吗?或者4-=-2对吗?[生甲]不对.因为算术平方根的定义是一个正数的x 的平方等于a ,这个正数x 就叫做a 的算术平方根,所以算术平方根不可能是负数.[师]由此看来,定义中的a 和x 都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为a (a ≥0)为非负数,这是算术平方根的性质. (二)补充练习. 一、填空题1.若一个数的算术平方根是5,则这个数是_________.2.94的算术平方根是_________. 3.正数_________的平方为971,25144的算术平方根为_________. 4.(-1.44)2的算术平方根为_________.5.81的算术平方根为_________,04.0=_________ 二、求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)241. 思考题:因为2是4的算术平方根,所以422=。
什么是一个数的算术平方根

1 a 1 3 a 32
2 1
1 2a
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零; ②分母中有字母时,要保证分母不为零。
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
(3) 4x2x为全体实数(4) 1 x
(5) x3
1、16的平方根是什么? 算术平方根是什么? 2、0的平方根是什么?算术平方根是什么? 3、-7有没有平方根?有没有算术平方根?
正数和0都有算术平方根; 负数没有算术平方根。
50米 ?米
a米
塔座所形成的这个直角三角形的
斜边长为____a_2___2_5__0_0__米。
S
圆形的下球体在平面图上的面积为S,
S
则半径为____________.
如图所示的值表示正方形的面
积,则正方形的边长是 b 3
b-3
你认为所得的各代数式有哪些共同特点?
a2 2500
s
b3
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
a叫被开方数
请你凭着自己已有的知识,说 说对二次根式 a 的认识!
x0
(6)
1 x2
x0
x0
1.若 (a 5)2 (2b 3)2 =0,则 ab2 =_____。
2.已知a.b为实数,且满足
a 2b 1 1 2b 1 ,你能求出a及 a+b 的值吗?
3、已知 1 有意义,那A(a, a )在 二 象限.
a
∵由题意知a<0 ∴点A(-,+)
?
形如 a (a 0)的式子叫做二次根式.
(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
2022年初中数学同步 7年级下册 第07课 算数平方根与平方根(学生版)-

第07课 算数平方根与平方根课程标准1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.知识点01 平方根和算术平方根的概念1.算术平方根的定义如果一个 的平方等于,即,那么这个正数x 叫做的 (规定0的算术平方根还是 );的算术平方根记作 ,读作“ ”,叫做 . 注意:(1)当式子有意义时,一定表示一个 ,即 , . (2) 没有算数平方根;(3)算数平方根等于本身的数有: ; (4)算数平方根 等于原来的数; (5)注意a 运算结果的非负性; 2.平方根的定义如果,那么 叫做 的平方根.求一个数的平方根的运算,叫做 .平方与开平方互为 . (≥0)的平方根的符号表达为 ,其中是的 . 注意:(1) 才有平方根; (2) 没有平方根;(3)平方根等于本身的数是: ;(4)一个正数有 个平方根,他们 ; (5)平方根 等于原来的数;知识点02 平方根和算术平方根的区别与联系x a 2x a =a a a a a a a 2x a =a a a a a 目标导航知识精讲1.区别:(1)定义不同;(2)结果不同:和 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0. 注意:算术平方根平方根定义若正数x ,2x a =, x 叫做a 的算术平方根,若数x ,2x a =, x 叫做a 的平方根,a 的范围 表示正数有一个算术平方根,是正数正数有 个平方根,它们互为相反数0的算术平方根是 0的平方根是 没有算术平方根没有平方根知识点03 平方根的性质(1)2a = (2)2()a =知识点04 平方根小数点位数移动规律被开方数的小数点向右(左)每移动两位,算术平方根的小数点向右(左)移动 位。
例如:,,,.考法01 算数平方根与平方根的计算【典例1】16的算术平方根是___________. 【典例2】9的平方根是_________. 【典例3】81的平方根是____.a ±a 62500250=62525= 6.25 2.5=0.06250.25=能力拓展的平方根是.考法02 利用平方根解方程【典例4】求下列各式中的x值:(1)169x2=144;(2)(x-2)2-36=0.【即学即练】利用平方根求下列x的值:(1)(x+1)2=16.(2)3(x+2)2=27(3)64(x+1)2﹣25=0.考法03 平方根和算数平方根的逆运算【典例5】已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.【即学即练】已知2a+1的平方根是±3,5a+2b-2的算术平方根是4,求:3a-4b的平方根.【即学即练】如果一个正数m的两个平方根分别是2a-3和a-9,求2m-2的值.【即学即练】已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.考法04 算数平方根结果的非负性+【典例6】已知2a b(1)求2a-3b的平方根;(2)解关于x的方程2420+-=.ax b【即学即练】-17|=0,求x+y的算术平方根.考法05 算数平方根小数点移动规律【典例7】观察下表,按你发现的规律填空=的值为_______.3.873【即学即练】.【即学即练】 1.414 4.472≈,≈_______.【即学即练】10.02=考法06 平方根的性质应用【典例8】实数a ,b 在数轴上对应点的位置如图所示,化简a _________________【即学即练】实数a 、b =______.【即学即练】已知实数a 在数轴上的位置如图,则化简|1﹣_____.考法07 算数平方根的估算【典例9__________.【即学即练】a ,小数部分为b ,则________,_________a b ==.【即学即练】已知a ,b 为两个连续的整数,且,则a +b =____.【即学即练】已知a ,b 为两个连续的整数,且a <b ,则a +b =___________.考法08 找规律【典例10】请先在草稿纸上计算下列四个式子的值:④326++=__________.【即学即练】===……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________. 【即学即练】归纳并猜想:(1)211+的整数部分为____;(2)222+的整数部分为____;(3)233+的整数部分为____;(4)猜想:当n为正整数时,2n n+的整数部分为____,并把小数部分表示出来为____.【即学即练】观察分析下列数据,并寻找规律:2,5,8,11,14,17,…,根据规律可知第n个数据应是__________.题组A 基础过关练1.4的算术平方根为()A.2±B.2C.2±D.22.下列说法中错误的是()A.12是0.25的一个平方根B.正数a的两个平方根的和为0C.916的平方根是34D.当0x≠时,2x-没有平方根3.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b4.已知2|1|0++-=a b,那么()2017a b+的值为( )A.-1B.1C.20173D.20173-5.若320,a b-++=则a b+的值是()A.2B.1C.0D.1-6.下列计算正确的是()A.9=±3B.38-=﹣2C.2(3)-=﹣3D.235+=分层提分7.916的平方根是34±,用式子表示正确的是( )A .34B .34=± C 34= D 34± 8.一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间B .3与4之间C .4与5之间D .5与6之间9.一个正数a 的平方根是2x ﹣3与5﹣x ,则这个正数a 的值是( ) A .25B .49C .64D .8110.若2m -4与3m -1是同一个数的平方根,则m 的值是( ) A .-3B .-1C .1D .-3或1题组B 能力提升练11.16的平方根是 .12.已知a 、b 满足(a ﹣1)2,则a+b=_____. 13.一个正数的平方根分别是1x +和5x -,则x =__.14a b ,则a b + 15.若(x ﹣1)2=4,则x=_____.1610.1= 3.41==__________________.17.代数式-3_______,这时a 与b 的关系是_______.18;……,则第n (n 为正整数)个等式是__. 题组C 培优拔尖练19.解方程. (1)24289x = (2)()29316x += (3)()22640x --=20.已知2a -1的算术平方根是3,3a+b -1的平方根是±4,c a+2b -c 的平方根.21.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.22.实数a b 、.在数轴上的位置如图所示,请化简:a b -.23.有两个十分喜欢探究的同学小明和小芳,他们善于将所做的题目进行归类,下面是他们的探究过程. (1)解题与归纳①小明摘选了以下各题,请你帮他完成填空.= ;= ;= ;= ;= ;= ;②归纳:对于任意数a,= ③小芳摘选了以下各题,请你帮她完成填空.2= ;2= ;2= ;2= ;2= ; 2= ;④归纳:对于任意非负数a,有2= (2)应用根据他们归纳得出的结论,解答问题.数a ,b -224.观察下列式子变形过程,完成下列任务:111n n n +=-+ 1111n n =+-+(1)(2)1199++。
2018年人教版初一数学下册第二课时(算数平方根、平方根、立方根、实数提高部分)教案

算术平方根、平方根、立方根提高部分教学内容一、同步知识梳理知识点1:算术平方根的概念如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作a ,读作“根号a ”。
规定0的算术平方根是0。
知识点2:算术平方根的双重非负性负数没有平方根,即被开方数一定是正数或0, 0a ≥;算术平方根是非负数,即0a ≥。
二、同步题型分析【例1】 下列说法正确的是( )A .-5是-25的平方根B .3是(-3)2的算术平方根C .(-2)2的平方根是2D .8的平方根是±4【例2】 (2019•毕节地区)16的算术平方根是( )A .4B .±4C .2D .±2【例3】 若21(2)m n -+-=0,则m =________,n =_________。
三、课堂达标检测题型一:算术平方根【检测题26】化简:=-2)3(π 。
【检测题27】 如果a a 21)12(2-=-,则( )A .a <12 B. a ≤12 C. a >12 D. a ≥12【检测题28】已知()01522=++++-c b a 那么a+b-c 的值为___________.一、同步知识梳理知识点3:平方根的概念如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。
即:如果2x a =,那么x 叫做a 的平方根,记作a ±,读作“正、负根号a ”。
知识点4:平方根的性质正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
知识点5:两个重要的公式 ①()0≥a a a =2)(; ②a a =2 二、同步题型分析【例1】 判断下列说法的是否正确(1)a 的平方根可以写成±a .( )(2)只有正数才有平方根.( )(3)(-a )2的平方根是±a .( )(4)正数a 的平方根一定比a 小.( )(5)一个正数的平方根的平方就是这个数.( )(6)一个正数的平方的平方根就是这个数.( )【例2】已知实数a b c、、在数轴上的位置如下,化简()222a b a b c a c+++---三、课堂达标检测题型一:平方根概念【检测题1】下列各数:-2,(-3)2,|-0.5|,0,-(-1),其中有平方根的数有____个.【检测题2】下列说法中正确的是( )A.-1的平方根是-1B.如果一个数有平方根,那么这个数的平方根一定有两个C.任何一个非负数的平方根都是非负数D.2是4的平方根【检测题3】 9的平方根是________.【检测题4】 0.16的平方是________,0.16的平方根是________.【检测题5】 (-4)3的相反数的倒数的平方根是________.【检测题6】若13是m的一个平方根,则m的另一个平方根是________.【检测题7】若5x+4的平方根是±1,则x=________.【检测题8】求下列数的平方根⑴100 ⑵916⑶0.25 ⑷16-⑸ 0 (6)256【检测题9】 ()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.49【检测题10】 16的平方根是( )A .4 B.C. 2D. 【检测题11】若7x =,则_____x =,x 的平方根是_____ 【检测题12】 求下列各数中的x 值⑴225x = ⑵2810x -= ⑶2449x =⑷225360x -= (5)().063-23252=+x【检测题13】已知a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++的值。
人教版七年级下册第六章实数第一讲平方根讲义(解析版)

实数第一讲平方根【学习目标】1. 了解平方根、算术平方根的概念,会用根号表示数的平方根.2. 了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 考点一、算术根知识讲解定义:如果一个正数x的平方等于a ,即x2 a ,那么这个正数x叫做a的算术平方根;a的算术平方根记作几,读作“ a的算术平方根〞,a 补充:1 .当式子V a有意义时,a 一定表示一个非负数,即2 .规定0的算术平方根还是0.3 .算术平方根等于他自己本身的有0和1.课堂稳固1 .以下说法正确的选项是〔〕C.由于〔±5〕2=25所以5和-5者B是25的算术平方根.D.以上说法都不对.【答案】A2 .以下各式正确的选项是3 .算术平方根等于它本身的数是【答案】0和1例2.求以下各数的算术平方根叫做被开方数. n >0, a >0.典型例题例1.以下说法正确的选项是〔A.0的算术平方根是0C. 士是9的算术平方根【答案】A 〕B.9是3的算术平方根D.-3是9的算术平方根A.由于52 =25,所以B.由于〔-5〕2=25,所以5是-5是2525的算术平方根.的算术平方根.A 3= 3B. 32= 3 C.、32= 3(1) 100 (2) 0.04 (3)1681(4) (5) 0 (6 ) 10【答案】2,-3 例3.估计与 底 最接近的整数 【答案】6【解析】解:: 25V35V36,25 35 36即5V 扁<6 .「35比拟接近36,・•. J 35最接近的整数是6.课堂同步1 .估计商的值在〔〕A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间 【答案】C2..估计与1 芯 最接近的整数【答案】〔1〕 10 〔2〕 0.2 (3)(4) 2 (5) 0(6) 1W课堂稳固1.求以下各数的算术平方根 (1) 121(2) 169(3)9 64(4 )1 121(5) 0.01 (6)【答案】〔1〕 11 (2) 13 (3)(4) 111⑸0.1(6) (7 )2.求以下各式的值(1) J000000(3) ,0.81 .. 0.04(4) ,412 402【答案】1000 (2)(3) 0.7 (4) 9【点睛】算术平方根为正数3. , 〔 4〕2的算术平方根是;病的算术平方根的相反数是(2 )5163.比拟以下各数的大小综上,a +b=12 ,7课堂稳固1 .出5的整数局部是a ,小数局部是 b,求a2 b 的值.【答案】20 .. 35解析:国为5<序<6.所以后的第数局部是5,即所以后的小数局部是库-5. 即b 二—5,所以/+小=5± +J^-5 = 20+2 .设4 限4 76的小数局部分别为a, b,求a +b 的值.【答案】1解析:由于2V R<3,所以4十几的整数局部是6,小数局部是4 + J5—6 =&—2. 即n =几一2,由于1<4 —疾]2 ,所以4一次的整数局部是1,小数局部是4 — — 1 — 3 — -^6 , b — 3 - b 所以 A + /> — ,%/6 —2 + 3 — — 1(1)炉与 g(2)衽与" (3) 5 与 J 24(4)金与02 2【答案】〔1〕而<幅〔2〕非> 币 〔3〕 5>V 24【解析】〔4〕 Q 庖4;724 1 3;那么疝1>322(4)'.五 1 322例4."7的a , 7 币的小数局部是b,求a +b 的值【答案】a +b=12 ,7 【解析】Q2 " 3,用的整数局部是2 ;"7的整数局部是9 ;即a =9Q4 7.7 5, 7 ,.7的小数局部是7 77 4=3 V 7 ;即 b=3 日.3 .:m 与n 互为相反数,c 与d 互为倒数,a 是 强 的整数局部,那么 \ cd 2 m n a 的值是【答案】-1解H 心由于m 与n 互为相反数.所以加斗注二°:出为.与d 互为例数,所以〃二1;因 为2V 旧<3,所以行的整数局部是 2 ,即白:2 , 所以 Ted + 2(m + ?r) - A - 1 + 2 x 0 - 2 - -1例5 (1)使代数式 必F 有意义的x 的取值范围是 【答案】x > 1;【解析】X + 1 >0,解得x > 1 .【点睛】当式子 指有意义时,a 一定表示一个非负数,即 ja >0, a >0.2021,一 .......... 一 一 - X ⑵假设x, y 为实数,且| x +1| + Jy 1 =0,那么一 的值是()yA.0B.1C. -1D. —2021【答案】C;2021x【解析】x + 1 = 0, y — 1 = 0,解得 x = — 1 ; y=1.—=- 1.y2(3)y J x 7V 7 x 9,求xy 64 的算术平方根.【答案】1旧—64/=(7乂9 —64『=1 ,其R 术平方根为1,故(◎ —64)」的算术平方根为1课堂稳固 2----------1 . x 8 J y 4 0,那么 xy【答案】-322 . y V x _2 J 2 x 2x ,贝U x y =v-2^0答案哪:根据被开方数为非负数.得A -7>0〞心..踊凯=7解析:根据被开方数为非负数,W l2-.T>O1解狎?=2.故1 = 4,所以工二2」=163 .Ji 3a和8b 3互为相反数,求ab 2的值.64解析:由于与।8卜一3」互为相反数,所以,田+|86-"二0,被开方数和绝对值都工--. ( v_ J 力_ 1是非负数.得Mb-3」.,斛得1b・最所以便'3X8)<54例6按要求填空填表(2)根据你发现的规律填空:J72=2.638 ,那么720==; 00.00072=70.0038=0.06164 ,361.64,那么x=【答案】【总结】被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位课堂同步1 /3.456=L 859 ,由4.56二5, 739 ,那么0345600=.【答案】578.9 ;【解析】解:: 丁34.56=5. 789,,而嬴而=578.9 .故答案为:578.9 .2 .J5.217 2.284,7521.7 22.84.填空:1 ,0.05217 1 52170(2)假设而 0.02284,那么 x【答案】(1 ) 0.2284,228.4(2) 0.0005217【点睛】被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动 1 位.例如:J62500 250 , 底5 25,褥25 2.5 , J0.0625 0.25.考点二、平方根 知识点讲解定义:如果x 2 a ,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方 与开平方互为逆运算.a ( a >0)的平方根的符号表达为 Va(a 0),其中 Q 是a 的算术平方根.平方根和算术平方根的区别与联系1 .区别:(1)定义不同;(2)结果不同:ja 和j a2 .联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;3 3) 0的平方根和算术平方根均为 0.补充:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负 数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方 根.因此,我们可以利用算术平方根来研究平方根 a a 0 0 a 0 aa 0a 0典型例题例1、以下说法错误的选项是()A.5是25的算术平方根B.l 2 __ _ _______C. 4 的平万根是一4D.0【答案】C;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.由于,25 =5,所以本说法正确;B.由于土 J i =± 1,所以l 是l 的一个平方根说法正确;C.由于土 4 42=±方6 = ±4,所以本说法错误;平方根的性质是l 的一个平方根的平方根与算术平方根都是 0D.由于J0=0, J0=0,所以本说法正确;课堂稳固1 .判断以下各题正误,并将错误改正:(1) 9没有平方根.( )⑵田6 4.( ),、,1、2 ,一、… 1 ' 、(3)( --------- )的平方根—.( )10 102 1 4 ,一, 一、,(4) 一是—的算术平方根.( )5 25【答案】,;x; V;乂,【点睛】被开方数都是非负数2、填空:(1) 4是的负平方根.(2) J工表示的算术平方根,..16 ------ - 16 ------(3) J—的算术平方根为.81 ------(4)假设豉3,那么X ,假设& 3,那么X .111【答案】(1)16 ; (2) —; - (3) - (4) 9 ; ±316 4 3例2以下各数有平方根的是()A 1 3B. .4 C.m2 1 D.a2【答案】D课堂稳固判断以下各数是否有平方根,假设有,求其平方根,假设没有,请说明理由2 2 2 (1) 3 (2) 4 (3) 625 (4) a 1【答案】(1) Y (-3> =9>.,,(凸))『平方根,即* J ⑶二⑵・・・f =-16<0,负数没宥平方根,二没有平方根(3) T625>0.,625行平方根.即:屈?=±25⑷,.・<二+1)<0负数没有平方根 :4/+1)没仃平方根(5)Ym 不确定是负数还是正数,二当m>0时।有平方根.即;土而;当m3时, 役有平方根例3求以下各数的平方根 _____ 八9 1(1) 0.81 (2) -96⑶ 121 (4)—3【答案】(1) 0.9; (2) - ;(3) 11 ; (4)4【点睛】一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有 平方根.课堂稳固1求以下各数的平方根(1) 81; (2) 0.0009; (3) 空;(4) 7; (5)100;(6)0;(7)包; (8)169.9255— 3【答案】(1)9; (2) 0.03; (3)—; (4)77; (5) 10; (6) 0; (7)—;35(8)13.2.求以下各数的平方根、算术平方根,并用式子表示出来 ^(1) I 225|; ⑵ |T |1;⑶ J0.0016 ; (4)J ( 0.2)2 .咯案】⑴N 15,癖5 15;⑵屑土用子⑶ 山0.0016 0.2,770,0016 0.2; (4) Jj ( 0.2)2 而2,\ \( 0.2)2 .0,2 .(5) 49 (6) 0.251 ,、,“、一—;(5) ± 7; (6) 土 0.5.83.求以下各式的值:(1) 土49166T ;(3) V0.125;(4) 3 41727【答案】〔1〕4'(2) 6; (3) -0. 5; (4)例4求以下各式中的(1) (x-1)2 16;x-3(4) 289(1) X1,X2 3; (2) X -2 (3) 3; (4) x1 6.5 ,x2 10.5解: (1) (x-1)216 x-1 5, 又23;(2) 3x-3 x-3 -125 x-3 -5 (3)x 124x26.5 , x228910.5 .72.25 8.5课堂稳固求以下各式中x的值:(1) 25(x—1)2=49 (2) (x +2)2-36=0;(3) 2 __(x 1) 729 0 (4) 16x2 = 25 (5) (x-3) 2=4(6) 3x⑺(9)2x2 72;4(x 2)2162(8) 4x2 !(10) 25x2【答案】〔1〕x 12一或x2[;(2) X '550.36=0.22 =16.,x2 8;(3) x1=28, x2=-26. (4)【详解】解:: 2a —1的平方根是22a 13 9.2解得:3a b 1416±弓3a+ b —1的平方根是±4a 5b 2Ja 2b <5 2 23即a+ 2b 的平方根为:3 .5 2-—;(5) x= 5或 1. (6) x=—或 x=-2. (7) x 6; (8) x 4 3 —.(9) x=0 或 x=-24 (10) x= ±—.5 【详解】 一 c 一 249 (1)解:25(x — 1)2=49 即:(x 1)2 -25••(x 1)2 - 12 2 斛得:x 一或x 一. 5 5 2(2)解:.. (x 2) 36 0 , • . x 2 6, ,X 4 , x 2 8 ; (3)由题意可知:x-1=±27,,x 1=28 或 x 2=-26 , 一 c 一 2 25 5 (4)解:由于:16x 2=25,所以:x ——,所以:x —; 16 4 (5)由于:(x 3)24,那么 x 3 2或 x 3 2,故乂= 5 或 1. 2 — . 一2八 八(6)斛:由于 3x 2 =16,开方得 3x+2=4 或 3x+2= - 4,解得:x=5或x =-2. ⑺解:2x 2 72,系数化为1,得x 236 .开平方得x 6 . ⑻4x 2 9 0 ,移项,得4x 2 9 .系数化为1,得x 2 9.开平方,得x -. 4 22 (9) 4 x 2 16 (x+2)2=4 x+2=±2 解得 x=0 或 x=-4. (10)整理得,x 2= — , x= ±6 .故答案为 x= ±6 例52a — 1的平方根是±3, 3a+ b-1的平方根是±4求a+ 2b 的平方根. 【答案】 31 .假设5a+1和a- 19是数m 的平方根.求a 和m 的值. 【答案】a=3, m=256 .【详解】解:根据题意得: (5a+1) + (a-19) =0,解得:a=3,那么m= (5a+1)2=162=256.2 .如果一个正数 x 的平方根是a+6和2a - 15, (1)求a 的值? ( 2)求正数x ? 【答案】(1) 3; (2) 81【详解】(1)二•一个正数的平方根有两个,且互为相反数,a 6 (2a 15) 0,解得 a 3 ; (2)当 a 3时,a 6 9, .. x 92 81 .3 .正实数x 的平方根是a 和a+b.(1)当 b= 6 时,求 a; (2)假设 a 2x + (a + b)2x = 6,求 【答案】(1) a=-3; (2) x 志Qb 6, 2a 60, a 3;(2) .•.正实数x 的平方根是a 和a+b,(a b)2Q a 2x (a b)2x 6, x 2 x 2 6,3,0, x .34. 一个正数x 的两个不同的平方根分别是2aa 2.(1)求a 和x 的值;(2)化简2 a J2]3a【答案】(1) -1 ; 9(2)2.2【详解】(1)根据题意知,2a .解得a1 ,所以-a+2=3 ,可得x 9,故答案为:-1; 9;x 9代入-2| 3a2 2.28 2衣,故答案为: 8 2五x 的值.【详解】解:(1)二.正实数x 的平方根是a 和 a+b,、单项选择题 1 . 9的算术平方根是〔 〕 A. 3 B. 3C. 3【答案】A2 .以下计算正确的选项是〔 〕A.而 3B. 32 9C. | 5| 5 【答案】C 【详解】3 .假设 J10404 =102,.衣=10.2,贝U x 等于〔 A. 1040.4 C. 104.04 【答案】C4.以下说法不正确的选项是〔 〕A. —2是4的一个平方根C.平方根等于它本身的数只有B. 10.404 D. 1.0404B.立方根等于它本身的数只有 1和0 D.平方等于它本身的数只有0和1解:A 、4的一个平方根有 ±Z 故一2是4的一个平方根,故 A 正确; B 、立方根等于它本身的数有 ±1和0,故B 选项的说法不正确; C 、平方根等于本身的数只有 0,故C 正确; D 、平方等于它本身的数只有 0和1,故D 正确;5 .如果一个实数的算术平方根与它的立方根相等,那么这个数是〔 〕 A. 0B,正整数C. 0和1D. 16 .以下五个命题:①只有正数才有平方根;② -2是4的平方根;③5的平方根是 Jg ;解:A 、J9 3,故本项错误;B 、 32 9,故本项错误;C 、| 5| 5,故本项正确;D 、32 8 ,故本项错误;D. 813D. 28④土邪都是3的平方根;⑤〔-2〕2的平方根是-2 ;其中正确的命题是〔〕A.①②③B.③④⑤C.③④D.②④【答案】D【详解】解:① 由于0有平方根,故此选项错误;0-2是4的一个平方根,此选项正确;①、5的平方根式土石,此选项错误;①土J3都是3的平方根,此选项正确;①〔—2〕2的平方根是土2,此选项错误.故正确的命题是①①7 .以下说法正确的选项是〔〕A. 一个数的算术平方根-一定是正数C. .. 25 5【答案】D【详解】A、一个数的算术平方根一定是正数,错误,B、1的立方根是1,错误;C、病58 .以下各式中,正确的选项是〔〕A. '〔 2〕2 = - 2B. ^"9 = -3【答案】D9 . 的平方根是〔〕.16A. ±1B. ±12 4【答案】A10 .假设x使〔x-1〕2=4成立,那么x的值是〔A. 3B. - 1【答案】C【解析】:①x-1 0=4成立,x-1= ±2夕二、填空题11 .假设J x 2 y 3 2 0,贝ux y=1的立方根是B.2是4的平方根D.0的算术平方根是0;例如D、2是4的平方根,正确;D.32 =3C.C. D.C. D. ±2:x[=3 ① x2=-1 ①【答案】12 2【详解】J x 2 y 3 0 J x 2 0, y 3 0・•. x 2, y 3 x y 2 3 1 故答案为1.12 .81.732, 廊5.477,贝U V0?3 .【答案】0.5477【详解】解:Q J30 5.477, J03 J30 0.01 0.5477 故答案为:0.5477.13 .假设J25.36 ①5.036 5/253.6 ①15.906,那么J253600 ① _____ .【答案】503.6【详解】解①J253600 = 425.36 10000 =5.036 X 100=503.6故将案为503.6 ①14 .如果a+3和2a -6是一个数的平方根,这个数为 .【答案】16或144【详解】解:根据题意得:a+3+2a-6=0,或a+3=2a-6,移项、合并同类项得:或-a=- 9,解得:a=1 或a=9,那么这个数为〔1+3〕2= 16 或〔9+3〕2= 144, 故答案为:16或144.15 .假设1 2a与3a 4是同一个数的平方根,那么a的值为.【答案】3或1 .【详解】解:依题意可知:1- 2a+ 〔3a- 4〕 = 0或1- 2a = 3a- 4 ,解得:a 3或a 1.故答案为:3或1 .16 .2x2+3 = 35,那么x=.【答案】土 4.【详解】2x2 3 35, ••• 2x2 32,贝U x2 16,解得:x=±4.故答案为:士三、解做题17,&~1与,2 y互为相反教,Z是64的方根,求x y z的平方根【答案】土石【详解】解:; &一彳与J2 y互为相反数,••• j x―1 + J2 y =0,• -x+1=0,2-y=0 ,解得x=-1 , y=2 , 丁z 是64 的方根,,z=8所以,x y Z=-1-2+8=5 ,所以,x y z的平方根是土卮18.探索与应用.先填写下表,通过观察后再答复以下问题:3a=3 4.(1)表格中x=; y=;(2)从表格中探究a与后数位的规律,并利用这个规律解决下面两个问题:① J10~3.16那么#000';② J3五=1.8,假设石=180,贝U a=(3)拓展:筑2 2.289,假设正 0.2289 ,贝U b=.【答案】(1) 0.1 , 10; (2) 31.6 , 32400; (3) 0.012.【详解】(1) x=0.1 , y=10,故答案为:0.1 , 10;(2)①.一加~ 3.16 ••• J1000 =31.6,②Q J3.24=1.8, . . a=32400,故答案为:31.6, 32400;(4) •••痈2.289,b=0.012,故答案为:0.012.19.2a—1的平方根是±3, 3a+ b- 1的平方根是±4求a+ 2b的平方根.【答案】3【详解】22a 1 3 9解:2a—1的平万根是±3, 3a+ b—1的平万根是±4 --- 23a b 1 4 16a 5 ____ __________解得:J a 2b 75 2 2 3即a +2b的平方根为:3.b 2 120.x-2和y - 2互为相反数,求x+y的平方根.【答案】±2【详解】解:x — 2和y ― 2互为相反数,,x— 2+y—2 = 0,• -x+y=4, 4的平方根是±2故x+y的平方根是±2.21.计算:(1) | 2| ( 3)2(2) 2x 1 2 25【答案】(1) 9; (2) x 3或x 2【详解】(1)| 2| ( 3)2# 2 9 2 9 ;2(2) 2x 1 25, 2x 1 5, 2x 1 5或2x 1 5,x 3或x 2.22.阅读以下解答过程,在横线上填入恰当内容.(x 1)2 42(x 1)2 4 (1)x 1 2 (2)x 3 (3)上述过程中有没有错误?假设有,错在步骤 (填序号)原因是________________________________________请写出正确的解答过程.【答案】(2),正数的平方根有两个,它们互为相反数,解答过程见解析【详解】•••一个正数有两个平方根,它们互为相反数,・♦・上述解答过程有错误,步骤(2)出现了错误;故答案为:(2),正数的平方根有两个,它们互为相反数 ,正确的解答过程如下:(x 1)2 4,x 1 2 ,. .x=3 或x=-1.。
人教版七年级数学课件《平方根》

联系
2.只有非负数才有平方根和算术平方根.
3.0的平方根是0,算术平方根也是0.
区别
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为± ,而算术平方根表示为 .
达标检测
人教版数学七年级下册
1.下列各数中没有平方根的数是( D)
∴2 − 1 = 9, − 1 = 16,
∴ = 5, = 17.
∵是 13的整数部分,3 < 13 < 4,
∴ = 3.
∴ + 2 − = 5 + 17 × 2 − 3 = 36.
∵36的平方根是±6.
∴ + 2 − 的平方根为±6.
总结提升
人教版数学七年级下册
平方根与算术平方根的联系与区别:
∴原来正方形的边长为16.
小结梳理
人教版数学七年级下册
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或
二次方根. 这就是说,如果x2=a,那么x叫做a的平方根.
求一个数a的平方根的运算,叫做开平方.
1.正数有两个平方根,它们互为相反数;
2.0的平方根是0;
3.负数没有平方根.
正数a的算术平方根可以表示为 ,正数a的负的平方根,可以表
则有2a+1+a-4=0,即3a-3=0,
解得a=1.
所以这个数为(2a+1)2=(2+1)2=9.
典例解析
人教版数学七年级下册
例4.已知2 − 1的算术平方根是3, − 1的平方根是±4,
是 13的整数部分,求 + 2 − 的平方根.
解:∵2 − 1的算术平方根是3; − 1的平方根是±4,
【数学知识点】数学平方根口诀表

【数学知识点】数学平方根口诀表1.平方根口诀表负数方根不能行,零取方根仍为零。
正数方根有两个,符号相反值相同。
2作根指可省略,其它务必要写明。
负数只有奇次根,算术方根零或正。
2.1到20的平方数口诀表1²=1、2²=4、3²=9、4²=16、5²=25、6²=36、7²=49、8²=64、9²=81、10²=100、11²=121、12²=144、13²=169、14²=196、15²=225、16²=256、17²=289、18²=324、19²=361、20²=400。
①一个正数如果有平方根,那么必定有两个,它们互为相反数。
显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。
a的算术平方根记为,读作“根号a”,a叫做被开方数。
③规定:0的平方根是0。
④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。
例如:-1的平方根为±1,-9的平方根为±3。
⑤平方根包含了算术平方根,算术平方根是平方根中的一种。
平方根和算术平方根都只有非负数才有。
被开方数是乘方运算里的幂。
求平方根可通过逆运算平方来求。
开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x。
感谢您的阅读,祝您生活愉快。
平方根知识点总结讲义

平方根知识点总结【学习目标】1•了解平方根、算术平方根的概念,会用根号表示数的平方根.2•了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1•算术平方根的定义如果一个正数x的平方等于a,即x2= a,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);a的算术平方根记作■. a,读作“ a的算术平方根”,a叫做被开方数.要点诠释:当式子.a有意义时,a一定表示一个非负数,即>0,a >0.2•平方根的定义如果x2=a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a(a > 0)的平方根的符号表达为_-、a(a_O),其中,a是a的算术平方根.要点二、平方根和算术平方根的区别与联系1•区别:(i)定义不同;(2)结果不同:和a2•联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写岀它的另一个平方根.因此,我们可以利用算术平方根来研究平方根要点三、平方根的性质要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,62500 =250,、、宓=25,,625 =2.5,0.062^0.25 .【典型例题】类型一、平方根和算术平方根的概念1、若2m —4与3m —1是同一个正数的两个平方根,求m的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m —4=—(3m —1),解方程即可求解.【答案与解析】解:依题意得2 m —4 = —(3m —1 ),解得m = 1;••• m的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数.举一反三:【变式】已知2a —1与一a + 2是m的平方根,求m的值.【答案】2a —1与—a + 2是m的平方根,所以2 a —1与—a + 2相等或互为相反数.2 2解:①当2a —1 = —a + 2时,a = 1,所以m =(2a —1) =(2x 1 —1)=1②当2 a —1+(—a + 2)= 0时,a =—1,2 2 2所以m =(2a—1 ) =[2x(—1)—1]2=(七)=92、X为何值时,下列各式有意义?(1)X2; (2)、X 一4 ; (3)、、X • 1 • ■ 1 一X ; (4) ― 1 -x —3【答案与解析】解:(1)因为X2_0,所以当X取任何值时,X2都有意义.(2)由题意可知:x-4亠0,所以x亠4时,x-4有意义.「x+1^0 >(3)由题意可知:解得:一1乞X岂1 •所以「1冬X岂1时•• X • 1 • 1 - X有意义.J -x X0「x—1 兰0(4)由题意可知:,解得X _ 1且X = 3 .x -3 式0:(X -1所以当X _1且x=3时,有意义.x —3【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知b =4. 3a -2 2 . 2 -3a 2,a b【答案】^3a—2 二0 2113 1解:根据题意,得'则a ,所以b = 2,二2,2-3^0.3 a b 2 21 1二的算术平方根为a b类型二、平方根的运算3、求下列各式的值.1 ___________ 1 ____ -、.话 - .900.3 5【思路点拨】 (1)首先要弄清楚每个符号表示的意义 •( 2)注意运算顺序.【答案与解析】解:⑴、.252 -242 LI 「32 42 二「49 L 一无=7 5 = 35 ; ⑵,201 一1预一 1「81 一〕0.6 一〕30 =9—0.2 一6 —1.7 . ^43 5 V 4 3 5 2【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行. (2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据Ja 2=a(a .0)来解.类型三、利用平方根解方程4、求下列各式中的 X .2 2(1) x -361 =0; (2) x 1 289 ;(3) 9(3x+2 f —64 =0 【答案与解析】 解:(1)丁 x 2 -361 =0••• x 2 =361••• x = 一 361 = 192(2)丁(x +1 ) =289 • x 1 二.289 • x + 1 = ± 17x = 16 或 x =- 18.K{ A 2(3)••• 9(3x+2 丫-64 = 064• 3x 2 2二98•- 3x 2 = 32十149 9【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2) ( 3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的X :(1 )若X2=1.21,则x = ________ ;(2) X2=169,则x = __________ ;2 2 2(3)若X ,则X = ___________ ;(4)若X 2 ,贝U X = ____________ .43【答案】(1 )± 1.1 ; ( 2)± 13;( 3) ; ( 4)± 2.2类型四、平方根的综合应用5、已知a、b 是实数,且..2a 6 |b _=0,解关于X的方程(a • 2)x • b2二a _ 1 .【答案与解析】解:••• a、b 是实数,.2a 6 |b —|=0,2a 6 _ 0, |b-辽|_0,••• 2a 6 = 0 , b「.2 二0 .a = — 3,b = •. 2 .把a =—3, b-2 代入(a+2)x+b2= a-1,得—X + 2 = —4,二X = 6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求岀a、b的值,再解方程•此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:【变式】若X2—1 •y 1 =0,求X2011- y2012的值.【答案】解:由x2「1y • 1 = 0,得x2「1 = 0 , y T = 0,即X= 1 , y = -1 .2011 2012 ,2011 / 八2012①当X = 1, y =—1 时,X y =1 (—1) =2 .②当X =—1, y =—1 时,X y =(一1) (一1) =0 .2 26、小丽想用一块面积为400 cm的正方形纸片,沿着边的方向裁出一块面积为300 cm 的长方形纸片,使它长宽之比为3:2,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片【答案与解析】解:设长方形纸片的长为3X ( X >0) cm,则宽为2 X cm,依题意得3X 2X =300.6X2-300 .x2=50.X >0,x 二空50.长方形纸片的长为3, 50 cm .•/ 50 > 49,/• .50 7.••• 3・.50 .21,即长方形纸片的长大于20cm .2由正方形纸片的面积为400 cm ,可知其边长为20 cm ,•长方形的纸片长大于正方形纸片的边长答:小丽不能用这块纸片裁岀符合要求的长方形纸片20 cm的正方形纸片裁【总结升华】本题需根据平方根的定义计算岀长方形的长和宽,再判断能否用边长为岀长方形纸片.。
初中数学知识点精讲精析 平方根知识讲解

13·1 平方根要点精讲1. 平方根的概念(1)如果一个数的平方等于a ,那么这个数就叫做a 的平方根.即:x 2=a ,x 叫a 的平方根.(2)数a (a ≥0)的平方根记作±a ,读作“正负根号下a ”,其中a 表示a 的正的平方根,-a 表示a 的负的平方根;“a ”实际上省略了2a 中的2,2叫做根指数,a 叫做被开方数.2. 平方根的性质(1)正数有两个平方根,它们互为相反数.(2)0的平方根只有一个,还是0.(3)负数没有平方根.3. 算术平方根一个正数a 的正的平方根叫做a 的算术平方根,0的算术平方根还是0.(1)算术平方根的定义表明,只要是非负数就一定有算术平方根.(2)算术平方根是平方根的一种.(3)非负数的算术平方根还是非负数.a (a ≥0), a ≥0常见的非负数的类型:︱a ︱,a 2,a (a ≥0)注:(1)要加强对平方根和算术平方根概念的理解,进一步明确非负数a 的算术平方根是a ,而平方根是±a .(2)计算化简时要谨慎细心,如求81的平方根,需先算出81=9,求81的平方根就是求9的平方根,而不是求81的平方根.(3)真正领会负数没有平方根.典型例题例1.求下列各数的平方根和算术平方根(1)12149(2)0.0081 (3)(-45)2 (4)14解析:(1)平方根是:±117,算术平方根是:117(2)平方根是:±0.09,算术平方根是:0.09(3)平方根是:±45,算术平方根是:45(4)平方根是:±14,算术平方根是:14例2.求下列各式中的x .(1)9x 2-256=0(2)4(2x -1)2=25解析:(1)x 2=2569,x =±163(2)把2x -1作为一个整体,则2x -1=±52.当2x -1=52时,x =74;当2x -1=-52时,x =-344. ∵(1-2a )2≥0,b -2≥0,又(1-2a )2+b -2=0,∴(1-2a )2=0,b -2=0,∴1-2a =0,b -2=0,∴a =12,b =2,∴ab =1.例3.如果一个正数的平方根是a +3和2a -15,求a 的值和这个正数.分析:由平方根的意义可知a +3和2a -15互为相反数,故有a +3+(2a -15)=0,从而可以解得a ,进而求出这个正数.解:因为一个正数的两个平方根互为相反数,所以(a +3)+(2a -15)=0,解得a =4.当a =4时,a +3=7,2a -15=-7.即这个正数的平方根分别是+7和-7,所以原数为49.评析:解决本题的关键是利用一个正数的平方根是互为相反数的关系得到a 的一元一次方程,解方程求出a 的值,从而求出这个正数.例4.在交通事故的处理中,警察往往用公式v =16df 来判断该车辆是否超速,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦系数.某日,在一段限速60千米/时的公路上,发生了一起两车追尾事故,警察赶到后经过测量,得出其中一辆车的d =18,f =2. 请问:该车超速了吗?分析:运用公式,求出该车的速度,再与60千米/时进行比较,看是否超速便可解决. 解:把d =18,f =2代入公式v =16df 得v =1618×2=16×6=96(千米/时).而96>60,所以该车超速了.评析:平方根和立方根的知识在实际生活中应用非常广泛,因此数的发展与现实需要密不可分.例5.求下列各式中的x 的值.(1)x 2-676=0;(2)9(3x +1)2=64.分析:这是一道求平方根的题目.(1)x 2-676=0可化为x 2=676,x 的值就是676的平方根.(2)可将3x +1看作一个整体来解,即(3x +1)2=649,所以3x +1是649的平方根,从而可求出x .解:(1)∵x 2-676=0,∴x 2=676.∴x =±676=±26.(2)∵9(3x +1)2=64,∴(3x +1)2=649,∴3x +1=±649=±83, 当3x +1=83时,x =59; 当3x +1=-83时,x =-119. 评析:解带有平方的方程时,首先应将方程化为一边是完全平方,另一边是一个非负数的形式,然后两边同时开平方,开方时一定要注意不要漏掉负的平方根,同时根据题目的特点,本题利用了一个重要的数学思想——整体思想.例6.对于题目:“化简并求值:1a +(1a -a )2,其中a =15”,甲、乙两人的解答不同. 甲的解答是:1a +(1a -a )2=1a +1a -a =2a -a =495, 乙的解答是:1a +(1a -a )2=1a +a -1a =a =15. 阅读后你认为谁的解答是错误的?为什么?分析:将a =15代入便知谁的解答正确. 解:乙的解答是错误的,因为当a =15时,1a=5. a -1a =15-5<0,所以(1a -a )2≠a -1a ,而应是(1a -a )2=1a-A. 评析:在化简a 2时,一定要注意a 的符号,并且根据算术平方根的意义,a 2的结果应为非负数.例7.利用计算器计算: …,0.0625,0.625, 6.25,62.5,625,6250,62500,…计算后,分析结果,你发现了什么规律?分析:可分析开方前和开方后小数点的变化规律.解:用计算器计算结果如下:…,0.25,0.7906,2.5,7.906,25,79.06,250,…分析计算结果可以发现:被开方数的小数点每向右(左)移动两位,算术平方根的小数点相应地向右(左)移动一位.评析:可利用开平方时小数点的这一变化规律对一些数开平方.。
第1讲《平方根、立方根与非负数》

第1讲《平方根、立方根与非负数》知识点概述1、平方根(1)定义:如果一个数的平方等于a ,这个数就叫做a 的平方根(或二次方根)。
即:如果x 2=a ,那么x 就叫做a 的平方根。
(2)平方根的表示法:一个正数a 的正的平方根,用符号“a ”表示,读作“根号a ”; 正数a 的负平方根,表示为-a ,读作“负根号a ”。
(3)正数、零、负数的平方根:正数a 的平方根有两个,它们互为相反数,可以表示为±a ; 零的平方根有一个,仍是零; 负数没有平方根. 2.算术平方根(1)定义:一个正数a 的正的平方根,叫做a 的算术平方根,记作a ;0的算术平方根是0. (2)对a 的理解:①()2a =a ; ②a ≥0.(3)对记号a ,-a ,±a 的理解: ①a 表示非负数(a ≥0); ②-a 表示a 的算术平方根的相反数; ③±a 表示a 的平方根; ④a<0时,a ,-a ,±a 都没有意义.3、如果一个数的立方等于a ,那么这个数叫做a 的立方根。
即:如果x 3=a ,那么x 就叫做a 的立方根。
一个数a 的立方根,用符号“3a ”表示,读作“三次根号a ”。
注:任何数(正数、负数或零)都有一个立方根例题讲解例1、下列语句正确的是( )A .- a 没有平方根B .-5是 – 25的平方根C .( - 3)2 的平方根为-3D .-15是225的平方根例2、94的平方根是__;算术平方根是 ;0.04的算术平方根是 。
例3、求下列各数的立方根: (1)512 (2)-0.027 (3)-12564 (4)278 (5)-125 (6)-0.008.例4、求下列各数的平方根:(1)49 (2)8136 (3)232⎪⎭⎫ ⎝⎛-例5、求下列各数的算术平方根: (1)196(2)197(3)16例6、填空:(1)当x 时,3+x 有意义。
(2)如果a 的平方根是±3,则a = .(3)如果一个正数的平方根是a+3与2a -15,那么这个正数是(4的平方根是 ;算术平方根是___________ (5)若a 2=16,则a=________;若38a =,则a =(610y +=,则x 2+y 2=____________(7)代数式-3___________,这时a 与b 的关系是_________ (8)若2(2)289x +=,则x = ; 若24250x -=,则x =(9= 例7、下列命题中,正确的个数有( )(1)1的平方根是1; (2)1是1的平方根; (3)(-1)2的平方根是-1; (4)一个数的平方根等于它的算术平方根,这个数是0. A 、1 B 、2 C 、3 D 、4例8、要使2a -有意义,则a 的值为( )A 、a>0B 、a<0C 、a≥0D 、a=0例9、一个自然数的算术平方根是a ,则与这个自然数相邻的后继自然数的平方根是( ) A 、a+1 B 、a 2+1C 、±1+aD 、±12+a例10、当x 为何值时,下列各式在实数范围内有意义.(1)32+x ; (2)x 31-; (3)2)5(-x ; (4)21+x非负数的相关知识1、非负数的意义:在实数集合里,正数和零称为非负数.a 是非负数,可记作a ≥0,读作a 大于或等于零,即a 不小于零. 2、 初中学过的几种非负数:⑴ 实数的绝对值是非负数. 若a 是实数,则a ≥0.⑵ 实数的偶数次幂是非负数. 若a 是实数,则a 2n ≥0(n 是正整数).⑶ 算术平方根是非负数,且被开方数也是非负数。
(名师整理)最新人教版数学7年级下册第6章第1节《平方根》市公开课一等奖课件

(2)通过猜想写出第⑥个等式;
解: 7+478=7 478.
(3)用含字母 n(n 为正整数)的式子表示上述规律.
解:
(n+1)+(n+n+1)1 2-1=(n+1)
n+1 (n+1)2-1.
学习了本课后,你有哪些收获和感想? 告诉大家好吗?
归纳小结
光读书不思考也许能使平庸之辈知识丰富,但它决不 能使他们头脑清醒。
即 (-3)2=3;
(3) 81; 解: 81=9,因为 32=9,
所以 9 的算术平方根是 3,即 (4)112414; 解:因为112=121,
12 144
81=3;
所以112414的算术平方根是1112,即 112414=1112;
(5)0.49; 解:因为 0.72=0.49, 所以 0.49 的算术平方根是 0.7, 即 0.49=0.7; (6)0. 解:0 的算术平方根是 0,即 0=0.
1.一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个 正数 x 叫做 a 的____算__术__平__方__根____. a 的算术平方根记为____a____,读作 “____根__号__a____”,a 叫 做___被__开__方__数___.规定:0 的算术平方根是__0____.
2.下列各数没.有.算术平方根的是( C )
A.0
B.(-2)2
C.-32
1 D. 6
3.下列说法: ①-1 的算术平方根是 1; ②-1 的平方是±1; ③ 1 的算术平方根是 1; ④ 0 的算术平方根是 0. 其中正确的有( B ) A.1 个 B.2 个 C.3 个
D.4 个
4.(2020·湖州) 数 4 的算术平方根是( A ) A.2 B.-2 C.±2 D. 2
北师大版数学八年级上册2《平方根》说课稿1

北师大版数学八年级上册2《平方根》说课稿1一. 教材分析北师大版数学八年级上册2《平方根》这一节的内容,主要围绕着平方根的定义、性质和运算规则展开。
通过这一节的学习,使学生能够理解平方根的概念,掌握求平方根的方法,以及能够运用平方根解决实际问题。
教材通过引入平方根的概念,让学生体会数学与现实生活的联系,培养学生的数学应用能力。
二. 学情分析学生在学习这一节内容之前,已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。
但平方根的概念和性质对于学生来说是一个新的内容,需要通过实例来引导学生理解和掌握。
在教学过程中,要充分考虑学生的认知水平,合理设计教学活动,引导学生主动探究,提高学生的数学思维能力。
三. 说教学目标1.知识与技能:理解平方根的概念,掌握求平方根的方法,能够运用平方根解决实际问题。
2.过程与方法:通过自主学习、合作交流的方式,培养学生主动探究的能力,提高学生的数学思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生对数学学科的信心,使学生能够积极主动地参与数学学习。
四. 说教学重难点1.重点:平方根的概念和性质,求平方根的方法。
2.难点:平方根的实际应用,以及解决相关问题。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方式进行教学。
2.教学手段:利用多媒体课件、教学道具等辅助教学。
六. 说教学过程1.引入新课:通过生活实例,引导学生思考平方根的概念,激发学生的学习兴趣。
2.自主学习:让学生自学教材,理解平方根的定义和性质。
3.合作交流:分组讨论,让学生通过实际操作,掌握求平方根的方法。
4.教师讲解:针对学生的疑问和难点,进行讲解和解答。
5.应用拓展:让学生运用平方根解决实际问题,提高学生的数学应用能力。
6.总结归纳:对本节课的内容进行总结,使学生对平方根的概念和性质有更深入的理解。
七. 说板书设计板书设计要简洁明了,能够突出平方根的概念和性质。
七年级数学平方根人教实验版知识精讲

七年级数学平方根人教实验版【同步教育信息】一. 本周教学内容: 平方根 教学目的:1、掌握算术平方根和平方根、负平方根的有关概念,了解它们之间的区别与联系,掌握开平方运算的概念。
2、会求一个数的平方根、算术平方根并能解决简单的实际问题3、掌握平方根有关的性质并能简单应用4、能估算出一个无限不循环小数的大小5、掌握被开方数的小数点的移动规律教学重点:平方根的意义和性质难点:算术平方根与平方根的区别与联系[教学过程] 一、知识点归纳1、算术平方根的定义:如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根2、a 的算术平方根,记作a ,其中叫做被开方数a 规定:0的算术平方根是0 如:0004.196.196.14.1,96.14.13993,9322=====,记作的算术平方根是的算术平方根,记作:叫做则的算术平方根,记作:叫做则 3、用计算器求一个正有理数的算术平方根用计算器上“”,输入被开方数后,按“=”键,直接计算出算术平方根。
4、平方根的性质由于正数的平方是正数。
0的平方是0负数的平方也是正数。
所以:正数有两个平方根,它们互为相反数。
0的平方根是0 负数没有平方根。
即:。
成立(或有意义),需反之,若没有平方根,若的平方根为,若的平方根为,则若0A A A 0A 0A 0A A A 0A ≥<=±>5、开平方求一个数A 的平方根的运算,叫做开平方。
,这是开平方运算。
的平方根是,这是平方运算。
的平方是如:3993±±因此,平方与开平方互为逆运算,由这种关系,可以求一个数的平方根。
到目前为止,共学习了三级运算,即: 一级:加减运算 二级:乘除运算 三级:乘方开方运算在每一级中的两种运算互为逆运算 6、被开放数的小数点的移动规律在计算一些数的算术平方根时,有时会遇到两个被开方数的有效数字相同,而小数点位置不同的数的开方运算,如:560431400000177231400004.5603140002.1773140004.56314072.17314604.54.31772.114.3..........3144.3114.3========,,,,如下规律:对于这类数字的计算有,,,计算:从以上各式可以看出,被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位。
第一讲 平方根与算术平方根

是 49 的平方根,即±
都有意义,则 a 的值是(
(A)a≥0 (B)a≤0 4、求下列各式 x 中的取值范围: (1) x 1 (2)
(C)a=0
3 x 2x 4
(3) x 2 1
(4) 9 x 2 5、求下列各式的平方根: (1)
(5) 3 x
x3
(6) x 4
-2-
3. 性质: (1) ( a ) 2 a (a 0) (2) a 2 a :①当 a 0 时, a 2 a ; ②当 a<0 时, a 2 a 。 4、开平方:①求一个数 a 的平方根的运算,叫做开平方,其中 a 叫被开方数; ②开平方是一种运算方法,与加、减、乘、除、乘方一样,都是一种运算; ③平方与开平方互为逆运算. 例 6、求下列各数的平方根: (1)121; (2)
5 3 x 18
144 ; 49
(2) 10 12 ;
(3)
1 ; 16
(4) 17 2 152
6、求 x 值: ① x 2 24 25 ② 4 x 2 25 ③ ( x 0.7 ) 3 0.027
B 组:能力提升
1、若数轴上的点 A,B,C,D 表示数-2,1,2,3,则表示 (A) AB 上 (B) BC 上 (C) CD 上 (D) OB 上 的点 P 应在线段( ).
3
x x 有意义,则 x 1 的值是
;
;若
x
1 1 + x 有意义,则 8 8
x=
5. ( 2012 江苏)已知 x 、 y 都是实数,且 y 是 . 6. .若 4a 1 有意义,则 a 能取得最小整数是( A、0 B、1 C、 5 D、 4
人教版七年级下册6.1.1《算术平方根》(说课稿)

人教版七年级下册6.1.1《算术平方根》(说课稿)一. 教材分析《算术平方根》是人教版七年级下册第六章第一节的内容。
本节主要介绍了算术平方根的概念和性质,以及求一个数的算术平方根的方法。
这部分内容是学生学习了有理数、实数等基础知识后,进一步学习代数和几何的基础知识。
通过本节的学习,学生能够理解算术平方根的概念,掌握求算术平方根的方法,并为后续学习平方根、立方根等知识打下基础。
二. 学情分析学生在学习本节内容之前,已经学习了有理数、实数等基础知识,对数的概念和性质有一定的了解。
但是,对于算术平方根的概念和性质,学生可能还比较陌生,需要通过实例和练习来理解和掌握。
此外,学生可能对于求一个数的算术平方根的方法还不够熟练,需要通过大量的练习来提高计算能力。
三. 说教学目标1.知识与技能:理解算术平方根的概念,掌握求一个数的算术平方根的方法。
2.过程与方法:通过实例和练习,培养学生的计算能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.重点:算术平方根的概念和性质,求一个数的算术平方根的方法。
2.难点:理解算术平方根的概念,求一个数的算术平方根的方法。
五. 说教学方法与手段本节课采用讲授法和练习法相结合的教学方法。
在讲解算术平方根的概念和性质时,采用直观演示和举例说明的方法,帮助学生理解和掌握。
在练习求一个数的算术平方根时,采用引导学生自主探究和合作交流的方式,培养学生的计算能力和解决问题的能力。
六. 说教学过程1.导入:通过复习实数的概念,引导学生引入算术平方根的学习。
2.讲解:讲解算术平方根的概念和性质,举例说明求一个数的算术平方根的方法。
3.练习:布置练习题,让学生自主探究和合作交流,巩固所学知识。
4.总结:对本节课的内容进行总结,强调算术平方根的概念和性质,以及求算术平方根的方法。
七. 说板书设计板书设计要简洁明了,突出算术平方根的概念和性质,以及求算术平方根的方法。
平方根(正式)

平方根复习讲解及习题集1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),表示方法:一个正数a 的平方根表示为a ±(语言提问式) 若x 2=a (a >0)则x=a ±(方程提问式)开平方:求一个数a 的平方根的运算叫做开平方.即求a ±的运算叫开平方. 2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.当a ≥0时(a ±)2=a 即:非负数的平方根的平方等于该数算术平方根性质:<i> 当a ≥0时a ≥0(由定义得出)即非负数的算术平方根是非负数 <ii> ⎭⎬⎫⎩⎨⎧<-≥==)0()0(2a a a a a a (由定义得出) <iii> 个数性质:正数和0的算术平方根据都只有一个a a a iv =≥><2)(0:时当还原性质即非负数算术平方根的平方等于该非负数4、a ,-a ,a ±的含义:a :当a ≥0时,表示a 的算术平方根 -a :当a ≥0时,表示a 的算术平方根的相反数;a ±:当a ≥0时 表示a 的平方根 5、平方根的求法:如果正数的小数点向右或向左移动2位,那么它的算术平方根的小数点就相应地向右、向左移动一位. 查表外数小数点移动法则:(i )被开方数的小数点要两位两位地移动,移动到使被查数成为有一位或两位整数的数 (ii)被开方数的小数点每移动两位,查得的算术平方根的小数点要向相反方向移动一位6、重要公式:(1)=2)(a (2){==a a 27、平方表:8、若a 和a -都有意义,则a 的值是9、如何求一个数的整数部分和小数部分习题讲解:例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个 例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310- 例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是()A .()1+aB .()1+±aC .12+aD .12+±a 例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0练习:(一)填空: 1.0.0016的算术平方根是___________2.-3是________的一个平方根3.当m ≠0时|m|是_______的算术平方根4.16的平方根是_______5.平方根等于它本身的数是__________6.如果a 是m(m>0)的一个平方根,则m 的平方根是________7.9的平方根是_______,a (a >0)的平方根是__________8.当x 2=5 则x=________9.当a _____时,1-a 有意义,当a ________时,1-a 值为零.10.当a _____时,a 是整数, 当a ______时,a -是有理数11.______)8.7(________,)8.7(_________,)8.7(232=-=-=-12.若416.755,7416.0==x 则x =_________ 13.若_______0135.0_______1350674.35.13,162.135.1====则 14.若______03.53)(2=-=±x x 则-15.若x x -=2则x 的取值范围是_________16.使aa -+112有意义a 的取值范围是____________ 17.当1)1(2--x x =1时,x 的取值范围是__________ 18.若12=xx 则x_________ 19.若0=-+x x 则x___________20.若22)(a a =则a _________选择:1.下列说法:①1是1的平方根 ②1的平方根是1 ③-1的平方根是-1 ④-a 没有平方根其中正确的判断的个数是( ) A .0个 B .1个 C .2个 D .3个)(.22则若a a = A .a ≤0 B .a<0 C .a>0 D .a ≥03.下列计算正确的是( )A±2 B636=± D.992-=-4.下列说法中正确的是( )A .9的平方根是3 B25. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛-- 7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个 B .2个C .1个D .4个 10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5 B 、5- C 、5± D 、5±14.36的平方根是( )A 、6 B 、6± C 、 6 D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=- 17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和018.0196.0的算术平方根是( ) A 、14.0 B 、014.0 C 、14.0± D 、014.0±19.2)6(-的平方根是( )A 、-6 B 、36 C 、±6 D 、±620.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5± B 、 5 C 、5- D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根23.下列命题正确的是( )A .49.0的平方根是0.7 B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a25.3612892=x ,那么x 的值为( ) A .1917±=x B .1917=x C .1817=x D .1817±=x 26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( )(A) 1± (B) 4 (C) 3或5 (D) 530.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;31.满足x 是32.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±= 34.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x35.2)5(-的平方根是( )A 、 5± B 、 5 C 、5- D 、5±36.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-。
初中数学《平方根》教案

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。
一个正数有两个实平方根,它们互为相反数,负数没有平方根。
下面就是小编给大家带来的初中数学《平方根》教案,希望能帮助到大家!数学《平方根》教案一一、教学目标1.理解一个数平方根和算术平方根的意义;2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;3.通过本节的训练,提高学生的逻辑思维能力;4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.二、教学重点和难点教学重点:平方根和算术平方根的概念及求法.教学难点:平方根与算术平方根联系与区别.三、教学方法讲练结合.四、教学手段幻灯片.五、教学过程(一)提问1.已知一正方形面积为50平方米,那么它的边长应为多少?2.已知一个数的平方等于1000,那么这个数是多少?3.一只容积为立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空1.( )2=9;2.( )2 =;3.5.( )2=学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.由练习引出平方根的概念.(二)平方根概念如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).用数学语言表达即为:若x2=a,则x叫做a的平方根.由练习知:±3是9的平方根;±是的平方根;0的平方根是0;±是的平方根.由此我们看到+3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:( )2=-4学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).(三)平方根性质1.一个正数有两个平方根,它们互为相反数.有一个平方根,它是0本身.3.负数没有平方根.(四)开平方求一个数a的平方根的运算,叫做开平方的运算.由练习我们看到+3与-3的平方是9,9的平方根是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.例题解析 例1 求下列各数的算术平方根:
49 100 ;(2) ;(3) 0.0001 . ( 1) 64
解:(1)因为102 100 , 所以100的算术平方根是10 .
即 100=10.
3.例题解析 例1 求下列各数的算术平方根:
49 100 ;(2) ;(3) 0.0001 . ( 1) 64
7 49 解:(2)因为 , 64 8
2
49 7 所以 的算术平方根是 . 64 8
即 49 7 .
64 8
3.例题解析 例1 求下列各数的算术平方根:
49 100 ;(2) ;(3) 0.0001 . ( 1) 64
解:(3)因为 0.012 0.0001 , 所以0.0001的算术平方根是0.01 . 即 . 0.0001 0.01
【练习1】求下列各数的算术平方根
(1)0.0025 (2)81 (3)3²
解: (1) 0.0025 0.5
(2) 81 9
(3) 3 3
2
练习:
2 。 1. 16的算术平方根是 36 。 2.算术平方根是 6的数是
3. ( 4) 的算术平方根等于 2 。
2
6.1 平方根 (第1课时)
课件说明
学习目标: (1)了解算术平方根的概念. (2)会求一些数的算术平方根,并用算术平 方根符号表示. 学习重点: 算术平方根的概念和求法.
1.情境导入 学校要举行美术作品比赛, 小鸥想裁出一块面积为25 dm2的 正方形画布,画上自己的得意之 作参加比赛,这块正方形画布的 边长应取多少? 请你说一说解决问题的思路.
有多大? 2
无限不循环小数
2 =1.4142135623 73095
04880 1688724209 698 0785696 7187537694 8 073176679 737990732 4 7846210703 8850387 534 3276415727 35013 84623 0912297024 924 8360558 5073721264 4 121497099‥‥‥
折纸游戏
如下图,是一个面积为4的正方形纸片.
(1)你能否利用此折出面积为1的小正方形? (2)你能折出面积为2的小正方形吗? (3)折出面积为2的小正方形的边长为多少?
2 有多大?
因为
2 ( ) 1 < 2 < 2 2 2
所以
1 <
2
2 < 2
2
因为 1.4 < ( 2 ) < 1.5 2 所以 1.4 <
… …
1.414 <
2 < 1.5 2 < 1.415
逼 近 法
2 = 1.4142135623730950 …
无限不循环小数
有多大? 2
无限不循环小数
2 =1.4142135623 73095
04880 1688724209 698 0785696 7187537694 8 073176679 737990732 4 7846210703 8850387 534 3276415727 35013 84623 0912297024 924 8360558 5073721264 4 121497099‥‥‥
x a
规定:0的算术平方根是0.
x
2
记作:0 0
a
1.双重非负性: 2.一个非负数的
a 0, a 0
2
( a) 算数平方根的平 方是它本身: 3.任何一个数的平方的算术平 方根等于这个数的绝对值.
______ a (a 0)
a a _____
2
4.练习 求下列各式的值:
9 (1) 1 ;(2) ;(3) 42 ;(4) 0 . 25 解:(1) 1 1 ;
9 3 ( 2) ; 25 5
(3) 42 4 ; ( 4) 0 0 .
1 4 ;(3) 3 ;(4) 2 . (1)4 ;(2) 10
2
解: (1)无意义; (3)有意义;
(2)有意义; (4)有意义.
一般地,如果一个正数x 的平方等于a, 即 x2=a,那么这个正数x 叫做a的算术平方根. a的算术平方根记为 a 读作: “根号a”,a 叫做被开方数.
4. ( 3) 的算术平方根是 3 。
4
5.提出问题 被开方数的大小与对应的算术平 方根的大小之间有什么关系呢? 被开方数越大,对应的算术平方根也越大.
-4有算术平方根吗?什么数才有 算术平方根?
≥ 0 a 对于 a : 算术平方根的双重非负性. } a≥ 0
6.例题ቤተ መጻሕፍቲ ባይዱ析
例2 下列各式是否有意义,为什么?
1.情境导入 (1)若正方形的面积如下,请填表:
正方形的
面积/dm2 正方形的 边长/dm2
1
1
9
16
4
36
6
4 25
2 5
3
(2)你能指出它们的共同特点吗? 都是已知一个正数的 平方,求这个正数.
2.总结概念 一般地,如果一个正数的平方等于 a , 2 即 x a ,那么这个正数 x 叫做 a 的算术 平方根.a 的算术平方根记为 a ,读作 “根号 a ”, a 叫做被开方数. 规定:0的算术平方根是0 ,也就是说, 2 若 x a( x 0),则 x a . 例如,由于 52 25 ,5是25的算术平方根, 即 25 5 .