重力热管的两相流及传热极限分析-PPT资料

合集下载

重力热管两相传热特性影响参数的数值研究

重力热管两相传热特性影响参数的数值研究

Numerical Study on the Influence Parameters of Two-phaseHeat Transfer Characteristics of Gravity Heat Pipe *Li-qiang Jin 1Jian-jun Zhu 1Yi Wang 2Jia-qi Pu 1Zhi-guo Qu 1,*(1.School of Energy and Power Engineering,Xi'an Jiaotong University;2.Shengu Group Co.,Ltd.)Abstract:Gravity heat pipes are widely used in engineering fields with its excellent heat transfer performance.To improve the heat transfer performance of a single heat pipe can better rise the efficiency of heat exchange equipment.In this paper,numerical simulation is conducted to investigate the influence of parameters variation on the heat transfer performance.The results show that the VOF (Volume of Fluid )model can reveal the evaporation and condensation phenomenon inside the gravity heat pipe.The thermal resistance of the heat pipe decreases with the increase of the liquid filling rate or heating power.In a certain range,the thermal resistance of the heat pipe decreases with the increase of the inner diameter,and increases first and then decreases with the increase of the condensation section length,but the length of the condensation section should not be too small,which will lead to poor gas-liquid circulation.The heat transfer limit and safe length ratio should be considered in the actual design to ensure the safe operation of the heat pipe.Keywords:Gravity Heat Pipe;Phase Change Heat Transfer;Thermal Resistance;Numerical Simulation摘要:重力热管以其极佳的传热能力广泛应用于工程领域,而对于单根热管传热性能的提升则能够更好地提高换热设备的效率。

重力热管的两相流及传热极限分析课件

重力热管的两相流及传热极限分析课件

3.重力热管的携带传热极限及与沸腾烧毁极
限的比较分析
现采用以上的公式(16)、(17)、和(18)分别计算 一定结构的热管在一定工作条件下的携带传热极限。取热管 内径di=20mm,工作温度为100、150、200℃。计算结果见表1。
表1 不同关联式计算的热管携带极限
工作温度100℃
由式(16)得Qe,max kw 由式(17)得Qe,max kw 由式(18)得Qe,max kw
由于波长相对于液膜厚度是很大的,所以沿轴向流动的曲 率半径是:
R 2 /
Pg
gU
2 g
D 22
Pg
1
2

gU g 2
p f f U f 2
R
Pf
(
)2

f

U
2 f
Pf Pg Pc 0
表面张力: Pc / R
压力平衡式为:
2
fU
2 f
gU
2 g
2
/
2.2光滑壁面的携带传热极限
6.657 2.943 4.516
工作温度200℃ 18.032 11.613 12.232
当工作温度为200℃时,蒸发段长度分别取0.1、0.5、1.0m,热 管的沸腾传热烧毁极限分别为
Qb,max =11.5 kw , Qb,max =57.5 kw , Qb,max =115 kw
A. Heat is absorbed in the evaporating section.
B. Fluid boils to vapor phase.
C. Heat is released from the upper part of cylinder to the environment; vapor condenses to liquid phase.

第五章 传热142页PPT

第五章 传热142页PPT

Q t1 t4 t4 t0
3
bi iA
i1
1 A
t1tLeabharlann t03 bii1
iA
1 A
总推动力 总热阻
牛顿冷Q 却 A 定 t4 律 t0:
《化工原理》电子教案/第五章
Q
t0
t4
11
四、一维圆筒壁稳态热传导
1、无限长单层圆筒壁一维稳态导热(无内热源) 特点:属一维导热,A常数, Q为常数, q常数
目录
第三节 对流传热
一、实验法求 二、各种情形下的经验式
(一)无相变 1、管内层流 2、管内湍流 3、管外强制对流 4、自然对流
(二)有相变 1、冷凝 2、沸腾
对流传热系数小结
的数量级
1
化工原理》电子教案/目录
目录
第四节 间壁式换热器的传热
一、换热器简介 二、间壁式换热器的传热过程分析 三、间壁式换热器的传热过程计算
0
r
bi i Ami
i1
教材更正:
b1 b2 b3
P141例5-4中每米管长的热损失计算式左边应
为Q,不应为Q/L,单位应为W,不应为W/m。
15
《化工原理》电子教案/第五章
四、一维圆筒壁稳态热传导
思考2: 气温下降,应添加衣服,应把保暖性好的衣服穿在里面好,还是穿在
层流流动的物质内部
机理: 气体---靠分子或原子的无规则若运动;
固体---金属靠自由电子,非金属靠晶格的震动 液体---两种观点(见教材)
热量入
管内层流
❖对流传热
自 然 对 流 强 制 对 流
发 生 在流 体内 部 流体有宏观位移
牛顿冷 Q 却 A 定 t1t律 2 :

重力热管中流动与传热的CFD模拟

重力热管中流动与传热的CFD模拟

重力热管中流动与传热的CFD模拟a CFD研究中心,化学工程系,拉齐大学,克尔曼沙阿,伊朗b 机械工程学院,工程和石油学院,科威特大学有效上传时间2009年10月22日摘要:在本研究中以重力热管中的流动并同时伴随蒸发和冷凝现象为模型。

用VOF(体积模型)来模拟气/液两相的相互作用阶段。

在热管中以不同的操作条件进行实验。

重力热管温度的CFD预测曲线与实验测量值有很好的一致性。

可得出结论CDF是一种有用的模拟和解释热管中复杂流动和传热的工具。

关键词:重力热管,热管,计算流体力学,凝聚,蒸发文章大纲术语1.引言2.原理3.实验3.1.实验方面3.2.实验结果4.CDF模拟5.结果与讨论6.结论致谢参考文献1. 引言:热管是具有极高导热效率的两相热传输设备。

使用热管的优势是其所需的面积和温差很小。

此外,设计简单,传热率高,单向传热(热二极管),成本低,重量轻,维修成本低,也使这一设备的要求更高。

在热管中,热量被蒸发段吸收并输送到冷凝段,在冷凝段处蒸汽冷凝将热量传输给冷却介质。

热管被称为高效传热设备,并有超过半世纪[1] [2]和[3]的重大发展。

热管由一个绝热管、吸液芯和工作流体组成。

一组热管内流体因重力发生循环则称为两相闭式热虹吸管[3]。

在这一类热管中,没有用于转移工作流体的吸液芯,而是由于重力差引起管内的流体流动。

所有热管都具有三个部分,包括:蒸发段,绝热部分和冷凝段。

在重力热管中,冷凝段总是放置在蒸发段之上,但在热管中吸液芯可以置于蒸发段的下方。

在重力热管中,热量通过蒸发段的液池输入,将工作流体变成蒸气。

蒸气上升,并通过绝热段到达冷凝段。

在冷凝段中水汽凝结,并放出其潜热。

然后,冷凝液因重力返回到蒸发段。

由于其具有较高的效率,可靠性和成本效益,重力热管已被应用于许多不同的方面。

其中包括保护冻土,除冰的道路,涡轮叶片冷却,热交换器[4],湿度控制[5],食品工业[6],太阳能系统[7]和电抗器[8]等。

热管及热管换热器 PPT

热管及热管换热器 PPT
• 1990年后热管在理论、实验、结构、应用等方面长足 发展,尤其今天,节能减排中发挥巨大作用。
• 1973年德国斯图加特(Stuttgart)第一届国际热管会议, 以后分别在不同国家举行,现已召开十五次,其中两次在 中国举行。
• 2010年4月,第十五届国际热管会议(15thInternational Heat Pipe Conference)在美国南卡罗来纳州召开。本 届会议论文大会报告:1、环路热管;2、芯结构和工质;3、 环路热管得建模;4、热虹吸管;5、热管得基础和建模;6、 空间热管和技术;7、小型热管;8、平板热管和蒸汽腔;9、 特殊热管和技术;10、脉动热管;11、热管得工业应用。
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
• 在上述过程中,存在11种传热热阻,热阻用R表示
• R1: 热源与热管外表面得传热热阻 • R2: 蒸发段管壁径向传热热阻 • R3: 蒸发段毛细芯径向传热热阻 • R4: 汽—液交界面蒸发传热热阻 • R5: 蒸汽轴向流动传热热阻 • R6: 汽—液交界面冷凝传热热阻 • R7: 冷凝段毛细芯径向传热热阻 • R8: 冷凝段管壁径向传热热阻 • R9: 管壁外表面与热汇传热热阻 • R10:管壁轴向传热热阻 • R11:吸液芯轴向传热热阻 • R10、R11与R1—R9相比很大,通常看作断路。 • 总热阻:R=R1+…、+R9 • 从热源到热汇得总温降△T也就是这9个温降得总和, △T= △T1 +… +
热管虽然就是一种传热性能极好得元件,但也不可能无限加大热负荷, 其传热能力得上限值会受到一种或几种因素得限制,如毛细力、声速、 携带、冷冻启动、连续蒸气、蒸气压力及冷凝等,因而构成热管得传 热极限(或叫工作极限)。这些传热极限与热管尺寸、形状、工作介质、 吸液芯结构、工作温度等有关,限制热管传热量得级限类型就是由该 热管在某种温度下各传热极限得最小值所决定得。具体来讲,这些极 限主要有(如图所示):

重力热管基于VOF_模型的传热特性研究

重力热管基于VOF_模型的传热特性研究

t mix - t sat
h fg .
t sat
(9)
(10)
其中:t mix 为混和温度ꎬ℃ ꎻt sat 为饱和温度ꎬ℃ ꎻS m
连续性方程
∂ρ
+ ▽( ρu) = 0.
∂t
(7)
相变发生的位置为冷凝段且温度为 t mix <
S m = βρ v φ v
2 3 控制方程
(6)
能量转移源项为
液膜的变化情况ꎬ明显反映出随着蒸汽量及蒸汽
产生速度的增加ꎬ液膜逐渐增厚ꎬ削弱了冷凝段
的换热.
图 3 蒸发段不同时刻液相和气相分布
Fig. 3 Distribution of liquid and vapor phases at
different times in the evaporation section
好地呈现出来. 当加热功率为 60 W 时ꎬ换热系数达到最大值ꎻ当加热功率继续增加到 80 W 时ꎬ换
热系数逐渐下降. 当充液率在 0 20 ~ 0 24 范围时ꎬ随着充液率的增加ꎬ等效对流换热系数也增加ꎻ
当充液率在 0 24 ~ 0 32 时ꎬ等效对流换热系数逐渐降低ꎻ充液率为 0 24 时ꎬ等效对流换热系数最
壁面的液体受热导致密度变小ꎬ与液池中心温度
泡数量增多ꎬ气泡在向液池表面运动的过程中体
2 6 边界条件
he =
热性能.
间的扰动增加. 此时ꎬ液池为核态沸腾ꎬ换热系数
最高. 液膜处的壁面过热度加大ꎬ壁面上有大量
气泡生成ꎬ彼此干扰ꎬ液膜向下流动时将汽化核
心扫离. 通过液膜导热ꎬ气泡体积增大ꎬ上升至液
膜表面破裂ꎬ形成很薄的液膜层. 随着气泡的溢
图 3 为蒸发段不同时刻液相和气相分布ꎬ可

重力热管原理图

重力热管原理图

<2>观测T’1进水温度,T’2出水温度,当其基本稳定 后,记录下T’1 , T’2。
<3>记录进水杯原水量m1,(可推算出原质量),同时 计时,经Δt后,记录进水杯现水量m2。
<4>填写表2,由
p

(m1

m2
)

C
(T2 T1 ) t
计算出其传热
功率。
测量量 测量对象
金属管
热管
表2
T’1 T’2
九、感谢:
本实验原始数据及部分资料由能源动力系统及自动 化专业2005年学生张良波、杨洋提供。
h端盖重力热管原理图热管金属管tttt2tt1t设测量量测量对象热管金属管pwm2tm1t2t1测量量测量对象16032042s360900热管082164min208900金属管tttt2tt1t设测量量测量对象951750g1000g3813min218热管35750g1000g19835min191金属管pwm2m1t2tt1测量量测量对象0560420250真空表读数356430542680冷凝端温度
由于重力热管没有吸液芯,所以不仅结构简单、 成本低廉,而且传热性能优良,工作可靠。
四、实验仪器
本实验仪器包括两部分: RG-1热管原理实验仪,热管原理实验装置。 1、RG-1热管原理实验仪 前端有三个温度显示电表,分别用来显示进水温度、 出水温度、冷凝端或蒸发端温度。 另有一蒸发端温度设置调节旋扭。
2、T’2<57℃,否则管内会形成正压。 3、管中水流不宜过小,否则T’2可能超过57℃, 但也不宜过大,否则会造成T’1 , T’2之差太小,影 响测量。 4、由于整个装置不可能完全绝热,故实际传热功 率大于测量值。 5、管中负压不能太小,可通过增加酒精加以调控。

两相流动概述PPT学习教案

两相流动概述PPT学习教案
效率高、可优化利用堆芯内的铀等),但也有许多技术上的问题(造价高、 难于提高更大功率反应堆的安全性等),相比之下,不如水堆(压水堆、沸 水堆)的经济性能好。
第19页/共30页
2. 第二代核电站
目前,世界各国在运行的核电站基本都属于第二代反应堆技术。第二代反应堆的诞生有其必 然性:一方面,核能在70年代提高了竞争力;另一方面,一些国家意识到化石能源市场的紧 张局势,希望通过发展核能,减少对能源进口的依赖性。
第3页/共30页
气液(汽液)两相流动的应用
气液两相流动与传热广泛应用于热能动力 工程、核能工程、石油化工、低温工程、 航天以及制冷、食品、冶金等工业的基本 物理过程。
然而,气液两相流动由于两相的共存且相 界面形状不规则与变形等复杂性因素,对 于气液两相流动的理解还远不充分,深入 的研究尚有很长的路要走。
氢,或制氢/发电共用; 2、GFR:用氦气作载热剂的快中子反应堆; 3、SFR:用钠作载热剂的快中子反应堆 4、LFR:用铅合金作载热剂的快中子反应堆; 5、SCWR:超临界水堆; 6、 SR:熔盐反应堆。
第27页/共30页
5. 未来的核电发展前景
可控热核聚变核反应堆是未来核电的发展目标 由于可控热核聚变的原料极为丰富,并且无污染,因而发展前景
第20页/共30页
3. 第三代核电站
第三代反应堆的特性比较符合形势的发展,尽管在运行机组的安 全性已经很高,但其研发工作仍以提高安全性为重点,同时还保 持了最好的经济性能。
设计特点: 第三代反应堆一方面提高了安全冗余系统的性能,以减 少事故发生的概率;另一方面,设计了事故状态下非能动安全保 护系统。此外,在设计方面采取了必要的措施,主要是在压力壳 下部设一个堆芯熔化物收集装置,限制反应堆熔堆事故造成的后 果。

管内螺旋液固两相流的流动行为及传热

管内螺旋液固两相流的流动行为及传热

2015年2月 The Chinese Journal of Process Engineering Feb. 2015收稿日期:2014−11−15,修回日期:2014−12−31基金项目:国家自然科学基金资助项目(编号:51206071);湖南省自然科学基金资助项目(编号:11JJ9003)作者简介:彭德其(1972−),男,湖南省衡山县人,博士,教授,主要从事强化传热和节能环保技术研究,E-mail: pengshuaike@.管内螺旋液固两相流的流动行为及传热彭德其1, 张 浪1, 俞天兰2, 吴淑英1, 支校衡3, 陈 前1(1. 湘潭大学机械工程学院,湖南 湘潭 411105;2. 湖南工业大学机械工程学院,湖南 株洲 412008;3. 湖南交通职业技术学院,湖南 长沙 410132)摘 要:利用Fluent–EDEM 耦合方法对管内插螺旋线的液固两相流动与传热进行数值模拟,分析了螺旋线对固相颗粒的诱导碰撞作用和液固两相流传热性能的影响. 通过实验验证,模拟值与实验值的偏差为6.3%∼13.8%. 模拟结果表明,与管内未插螺旋线对比,管内插螺旋线对液固两相流体具有诱导作用,使流体呈螺旋流状态;在流体离心力和螺旋线共同作用下,贴近管内壁运动的固体颗粒体积分数由0.44%提高到3.27%;相同雷诺数Re 条件下,内插螺旋线液固两相流传热方法的努赛尔数Nu 最大. 在Re ≤60000范围内,内插螺旋线液固两相流的综合评价指标值均高于内插螺旋线和液固两相流单独作用方式. 因此,该技术适用于低Re 下管内防垢除垢及强化传热的工况. 关键词:螺旋线;液固两相流;强化传热;诱导作用中图分类号:TK123 文献标识码:A 文章编号:1009−606X(2015)01−0045−051 前 言换热管内高效强化传热同时减少污垢沉积一直是国内外研究的热点[1−3],其中旋流和液固两相流作为有效的传热强化技术都得到了广泛研究及应用. 文献[4−8]分别对内插螺旋线和液固两相流强化传热特性进行了实验及数值模拟研究,内插螺旋线和液固两相流都能加剧管内流体湍流强度及边界层的扰动,且进一步提高在线清洗、强化传热能力. 段培清等[9]研究发现,在相同条件下,内插螺旋线管内液固两相流方法强化传热的同时可使污垢量减少20%∼50%. 向寓华等[10]对换热管内插螺旋线液固两相流的清洗能力及阻力进行了实验研究,未发生粒子沉积和堵塞现象,安全可靠性好. Lennart 等[11]利用Fluent–EDEM 模拟软件对流化床粒子碰撞动力学进行了研究,从颗粒平均速度、角速度、颗粒−壁面间碰撞和颗粒之间碰撞频率等方面进行了分析,发现颗粒−传热面之间的碰撞、颗粒对边界层的扰动是固体颗粒强化传热的主要原因. 钟宏伟[12]分析了固相颗粒浓度分布对传热的影响,发现管壁处固相颗粒增多,传热效果更佳. 彭德其等[13]研究了扭曲管中加入固体颗粒的强化传热,与空管相比综合性能提高15.5%,但存在固相颗粒浓度分布不均匀且管壁磨损程度相差很大等问题. 综合以上研究,本工作在实验研究基础上,利用Fluent–EDEM 耦合模拟软件模拟内插螺旋线对固相颗粒运动规律和液固两相流传热性能的影响,并与光管、内插螺旋线及液固两相流单独作用时进行对比,揭示该复合技术的强化传热行为机理.2 实 验2.1 实验设备及条件建立换热管单管实验台,对空管、内插螺旋线、液固两相流、内插螺旋线及液固两相流复合技术进行实验研究. 为描述简便,4种换热管分别用表1中型号代替.表1 换热管型号Table 1 The types of heat exchange tubeType ModelSmooth tube 1# Smooth tube with particles 2# Smooth tube with spiral insert 3# Smooth tube with spiral insert and particles 4#整套实验装置主要由水蒸汽加热系统、冷却水系统及测量控制系统组成. 加热系统为被测实验段;冷却系统主要是冷却加热管内被加热的流体,以便使实验被测段管内流体的进口温度恒定. 单管换热传热性能实验装置如图1所示.图1 实验装置示意图Fig.1 Schematic diagram of experimental apparatus1. Heating system2. Cooling system a. Water heating bath b. Water cooling bathc. Heat transfer experiment tube实验用加热管规格φ38 mm ×2 mm ,套管规格φ57 mm ×3.5 mm ,实验段加热管长2000 mm ,螺旋线外径24 mm ,固相颗粒体积浓度2.5%. 前期测试固相颗粒沉降速度为0.3 m/s ,设定实验中流体流速约为1 m/s ,有效传热温差20℃. 2.2 实验方法进行换热管传热性能实验时,热水经水泵进入套管中,冷水经水泵进入加热管中,管内冷水自下向上流动,管外热水自上向下流动. 待热水和冷水温差达到实验要求时,将热水阀门打开,热水由水泵输送到换热套管中,通过阀门控制热水流量以调节换热量,待系统稳定后,读取流量等数据. 每隔5 min 记录一次数据.3 数值模型建立3.1 控制方程内插螺旋线液固两相流强化传热涉及流体−颗粒、流体−壁面、颗粒−壁面等换热,换热类型包括热传导和对流传热. 计算时不考虑组分扩散和黏性耗散引起的能量转移,不包含化学反应放热,根据多相流理论,分别得出液固两相控制方程[14].液相连续方程:[]()f f f (1)[(1)]01,2,3,v v jC u C j t x ρρ∂−∂−+==∂∂ (1)固相连续方程:()()s s s 0,v v jC C u tx ρρ∂∂+=∂∂ (2)液相动量方程:2sff f f d 1,d (1)v u F f p u t C νρρ=−∇+∇+− (3) 第i 个固体颗粒动量方程:s s ss s s fs d d ,d ii i Ai i Au V V f f p A f t ξρρ=−−+∫ (4) 根据动量叠加原理,固体颗粒群动量方程:s s s s s s s s 1111d ,d nn n n ii i i u V V f f V p f t ξρρ=−−∇+∑∑∑∑ (5)假设液相对固相作用力相等,得固相动量方程:f s f sf s s s s d d 11,d d v u u FC C f p t t C ξξρρρρρρ⎛⎞+−=−∇+⎜⎟⎝⎠ (6) 式中,ρf 为液相密度(kg/m 3),C v 为两相流体中固相体积浓度(%),t 为时间(s),u f 为液相速度(m/s),x j 为x 轴中j 分量,ρs 为固相密度(kg/m 3),u s 为固相速度(m/s),u为液相平均速度(m/s),f f 为单位质量液体质量力(N),∇p 为压力梯度矢量,ν为流体运动粘度(m 2/s),F sf 为单位体积两相流体中固相对液相的作用力(N),V s 为固体体积(m 3),f s i 为第i 个单位质量固体质量力(N),f ξi 为附加质量力(N),p A i 为作用在固相单位面积上的压力分布函数,A 为面积(m 2),f fs i 为液体对固体颗粒的作用力(N),u s i 为第i 个固体颗粒速度(m/s),C ξ为常数(0.5),f s 为固体质量力(N). 3.2 数学模型以常规换热管φ38 mm ×2 mm 为研究对象. 换热管长2000 mm ,螺旋线外径与换热管内径之比d o /D i =0.7,螺旋线丝径1.5 mm ,螺距P =24 mm ,螺旋线起始端与加热管进口端面相距20 mm. 管内工质为清水,一般工程上流态化强化传热采用的固体颗粒直径为2∼4 mm. 本工作采用固相颗粒直径为2 mm 的惰性固体颗粒⎯陶瓷球,液固混合物中固相颗粒体积浓度为2.5%. 具体物性参数见表2.表2 物料参数Table 2 Parameters of materialsMaterial Density, ρ (kg/m 3) Viscosity, μ (×105 Pa ⋅s) Solid 2300 − Water 998.2 100.5∼300数值模拟时对模型进行如下简化和假设:(1)流体为不可压缩流体;(2)壁面为固定壁面且温度恒定;(3)因螺旋线的横截面相对换热管的横截面很小,螺旋线在管内两端固定,因此,不考虑螺旋线引起的流道截面积减小的影响,忽略螺旋线在管内的振动作用;(4)颗粒之间为点接触,碰撞过程中无变形.对不同节点步长下的网格模型进行求解,发现结果相似,因此网格的影响很小. 本工作利用Gambit 进行四面体非结构网格划分,考虑壁面边界层的影响,对壁面进行边界层网格划分,第一层厚0.01 mm ,共5层;对内插螺旋线的换热管因结构不规整,采用四面体非结构网格进行划分,网格最大为3 mm ,对螺旋线附近网格加密以提高计算精度,如图2所示.图2 内插螺旋线管网格Fig.2 Grid of the tube with spiral coil insert边界条件:管壁及螺旋线满足无滑移边界条件;管第1期 彭德其等:管内螺旋液固两相流的流动行为及传热 47进口设为速度进口边界条件,管出口设为压力出口边界条件,设定液相相关的边界条件. 从Fluent 中设置与EDEM 耦合进入EDEM 的设置中;设置EDEM 中固体颗粒的材料及属性、接触模型和颗粒生产速率、几何体的材料属性;在EDEM 中建立固体颗粒生成工厂,然后再返回Fluent 进行计算. 选用RNG κ−ε湍流模型,SIMPLEC 算法进行压力和速度的耦合,壁面采用强化壁面法处理,方程采用一阶迎风格式进行离散,采用三维双精度分离隐式求解器. 其他边界条件和实验条件相同,分别模拟分析内插螺旋线和加入固体颗粒及两者相结合的方法对传热性能的影响.4 结果及分析在相同条件下计算表面换热系数的实验值,从Fluent 后处理中得出表面换热系数模拟值. 由表3可知,不同强化传热技术的表面换热系数实验值与模拟值偏差为 6.3%∼13.8%,模拟结果与实验结果具有较好的一致性,验证了模拟的可靠性. 模拟时未考虑热量损失及测试误差,因而表面换热系数模拟值比实验值大.表3 管内表面换热系数Table 3 Internal surface heat transfer coefficientModelItem1# 2# 3# 4#Experimental value [W/(m 2⋅K)] 2238 2980 3352 4095 Simulation value [W/(m 2⋅K)] 2378 3189 3816 4388 Precision (%) 6.30 7.01 13.807.204.1 管内流体流线及颗粒分布图3为不同强化传热技术相应换热管内流体流线分布,其中标尺为流线标识号. 从图可看出,1#, 2#管内流体流线平行于轴向,3#, 4#管流体流线呈螺旋形,说明管内插螺旋线对流体有明显的诱导旋流作用.(a) 1# (b) 2# (c) 3# (d) 4#图3 管内流体流线Fig.3 Streamlines of fluid in different heat exchange tubes如图4所示,在颗粒浓度为2.5%的条件下,未插螺旋线管内中心处固相颗粒浓度比管内壁面处固相颗粒浓度大;内插螺旋线后,流体由沿轴线方向的流动方式变化为螺旋流方式,螺旋流动的流体对固相颗粒运动有诱导作用,使靠近管壁处固相颗粒明显增多. 利用Fluent–EDEM 软件后处理得出颗粒碰撞数,如图5所示,与管壁发生接触的颗粒数分别占总数的0.44%和3.27%,内插螺旋线后与管壁发生接触的颗粒数是未插螺旋线时的7.432倍,螺旋流动流体增加了固相颗粒对边界层流体的扰动和与管内壁的碰撞几率.(a) 2#(b) 4#图4 管内固体颗粒轴向分布Fig.4 Distributions of particle volume concentration of helicalcross-section with (a) and without helical coil insert (b)图5 与管内壁碰撞的固体颗粒数Fig.5 Number of the particles contacting with tube wall4.2 螺旋线对颗粒分布的诱导影响在管内平均流体流速为 1 m/s 、固相颗粒浓度为2.5%、其他条件相同的情况下,对管内插入不同外径螺旋线时的固相颗粒运动进行分析. 表4为螺旋线外径分别为15, 20, 24, 30 mm 时对固相颗粒运动的影响. 从表可知,螺旋线外径增大,颗粒平均速度减小,管中心颗粒最大速度增大;螺旋线外径越小,颗粒受到的离心力越小,管中心处颗粒越多,因此,螺旋线外径为15 mm 时管内固体颗粒平均速度最小. 螺旋线外径增加,管壁0.00.51.01.52.02.53.03.5050100150200250300350N u m b e r o f c o n t a c t sTime (s)48 过 程 工 程 学 报 第15卷处颗粒增多,固相颗粒在管壁处碰撞频率增大,导致固体颗粒转动动力削弱,从而管壁处固相颗粒平均角速度和最大角速度下降. 表中管壁附近颗粒浓度增大到一定程度后颗粒与颗粒、颗粒与管壁的碰撞频率增大,所以螺旋外径为24和30 mm 时平均角速度和最大角速度相继减小. 螺旋线外径增大对固相颗粒运动的诱导作用更明显,颗粒随旋流流体运动到管壁周围的数目更多,因此管内壁附近固相颗粒体积浓度增大,碰撞次数更多,更有利于强化传热与除垢防垢作用.表4 螺旋线外径对颗粒的影响Table 4 The effect of out diameter of spiral insert on particlesOut diameter of spiral insert, D spiral (mm)Item15 20 24 30Average velocity (m/s) 0.763 0.733 0.706 0.555 Maximum velocity (m/s) 0.8 0.891 1.308 1.313 Average angular velocity (r/s) 197 349 334 261 Maximum angular velocity (r/s) 765 1009 943 9204.3 固相颗粒浓度对流动及传热的影响在内插螺旋线外径为30 mm 、流体速度为1 m/s 、其他条件相同的情况下,分析了换热管内加入不同体积浓度固体颗粒对流体流动和传热性能的影响.图6为不同固相颗粒浓度湍流强度分布曲线,由图可知,改变固相颗粒浓度对流体湍流强度的影响很大. 颗粒浓度分别为0.5%, 1%, 2.5%, 5%, 8%时,流体的湍流强度依次提高至8.83%∼11.1%, 8.83%∼11.29%, 10.09%∼13.25%, 11.24%∼13.95%, 11.87%∼13.53%;固相颗粒体积浓度增至10%时湍流强度开始出现下降趋势. 因为近壁处固相颗粒体积浓度增大,对热边界层的扰动更强烈,但增大到一定浓度时固相颗粒所占空间反而影响流体运动的充分发展,因此,随固相颗粒浓度增大,湍流强度先增大后减小.图6 湍流强度分布曲线Fig.6 Variation of turbulence intensity distributionwith position under different particle contents4.4 传热及阻力分析由图7中4种强化传热技术相应的努赛尔数Nu 随雷诺数Re 变化曲线可知,Nu 随Re 增大而增大,并逐渐趋于平缓;在相同Re 条件下,4#管的Nu 最大,说明其传热效果最好;在模拟Re 范围内,与1#, 2#, 3#管相比,4#管的Nu 依次提高28%∼86%, 23%∼53%和17%∼31%. 原因是4#管中内插螺旋线使流体产生旋流及固相颗粒在管壁周围的运动都增强了管内流体的湍动,因此,更有利于强化传热.图7 努赛尔数Nu 随雷诺数Re 的变化 Fig.7 Relationship between Nu and Re螺旋线和固体颗粒同时使管内流体受到不同程度的扰动,颗粒运动也需耗散流体功,从而造成管内压降损失相应增加. 图8为不同强化传热技术的阻力系数f 随Re 的变化,由图可知,阻力系数f 随Re 增大而减小;与1#, 2#, 3#管相比,4#管的阻力系数依次提高126%∼ 152%, 104%∼107%, 22%∼24%.图8 阻力系数f 随雷诺数Re 的变化Fig.8 Relationship between friction factor f andReynolds number Re内插螺旋线液固两相流技术强化传热的同时增加了流体管程阻力损失,考虑传热和阻力的综合影响,采用广泛应用的综合性能评价值(PEC)对其综合性能进行评价:()()1/3PEC ///,i i Nu Nu f f = (7)20000400006000080000100000100120140160180200220240260280300N uRe1#2# 3# 4#468101214T u r b u l e n t i n t e n s i t y (%)Position (mm)200004000060000800001000000.030.060.090.120.150.18 C o f f i c i e n t o f r e s i s t a n c e , f1#2# 3# 4#Re第1期 彭德其等:管内螺旋液固两相流的流动行为及传热 49式中,Nu 和f 分别为4#管的努赛尔数和阻力系数,Nu i 和f i 分别为2#或3#管的努赛尔数和阻力系数,下标i 为2#或3#管.如图9所示,在Re ≤60000时,以2#管为被比较对象,4#与2#管的PEC 比值大于1;在模拟Re 范围内,以3#管为被比较对象,4#与3#管的PEC 比值也大于1. 这说明在低流速下4#管的综合性能比2#和3#管好.图9 综合性能对比Fig.9 Comparison of comprehensive performance5 结 论针对管内插螺旋线和液固两相流及其复合技术的流场分布及传热性能进行了研究,得到如下结论:(1)内插螺旋线使管内流体呈明显的螺旋流状态,且内插螺旋线后与管壁发生接触的固相颗粒数由0.44%增加至3.27%.(2)努赛尔数Nu 随雷诺数Re 增大而增大. 在相同的Re 下,螺旋线与液固两相流相结合的强化传热效果最好,但其阻力系数也相应增大.(3)当Re ≤60000时,分别以内插螺旋线和液固两相流传热技术为被比较对象,内插螺旋线与液固两相流复合强化传热技术的PEC 比值均大于1,因此,该技术适用于低Re 下管内防垢除垢及强化传热工况.参考文献:[1] 杨丽云. 防治换热器污垢,降低经济损失 [J]. 化学工程与装备,2009, 6(6): 69−71.[2] Passakorn V , Jarruwat C. Numerical Analysis of Heat Transfer andFlow Field around Cross-flow Heat Exchanger Tube with Fouling [J]. Appl. Therm. Eng., 2010, 30(10): 1170−1178.[3] 齐洪洋,高磊,张莹莹. 管壳式换热器强化传热技术概述 [J]. 压力容器, 2012, 29(7): 73−78.[4] 林霖. 螺旋内插件强化传热换热器的性能对比分析 [J].Equipment Manufacturing Technology, 2009, (7): 24−26.[5] Pronk P, Infante F C, Witkamp G J. Mitigation of Ice CrystallizationFouling in Stationary and Circulating Liquid −Solid Fluidized Bed Heat Exchangers [J]. Int. J. Heat Mass Transfer, 2010, 53(1/3): 403−411.[6] Srbislav B G , Branislav M J, Marko S J. Analysis of Fouling Factor inDistrict Heating Heat Exchangers with Parallel Helical Tube Coils [J]. Int. J. Heat Mass Transfer, 2013, 57(1): 9−15.[7] 李洪亮,柳坤,许艳芳. 惰性粒子对水沸腾传热强化的实验研究[J]. 化学工程, 2010, 38(7): 31−35.[8] 韩继广,吴新,周翼. 管内插入扭带及螺旋线圈的传热与阻力特性实验研究 [J]. 热能动力工程, 2012, 27(4): 434−438.[9] 段培清,南碎飞,窦梅,等. 换热器防除垢实验研究 [J]. 高校化学工程学报, 2009, 23(1): 51−57.[10] 向寓华,姚雪峰,彭德其. 旋液流态化流体阻力与传热的实验研究 [J]. 化工装备技术, 2012, 33(6): 5−7.[11] Lennart F, Sergiy A, Stefan H. Collision Dynamics in Fluidised BedGranulators: A DEM-CFD Study [J]. Chem. Eng. Sci., 2013, 86(2): 108−123.[12] 钟宏伟. 汽液固多相流蒸发防除垢实验研究 [D]. 河北:河北工业大学, 2003. 20−25.[13] 彭德其,于欢,俞天兰,等. 含固体粒子旋转流强化流体传热的实验及模拟研究 [J]. 过程工程学报, 2013, 13(4): 586−590. [14] 朱玉才. 离心式液固两相流泵的边界层理论及其在叶轮设计中的应用 [D]. 辽宁:辽宁工程技术大学, 2002. 18−21.Flow Behavior and Heat Transfer of Liquid −Solid Flow in Tubes with Spiral InsertPENG De-qi 1, ZHANG Lang 1, YU Tian-lan 2, WU Shu-ying 1, ZHI Xiao-heng 3, CHEN Qian 1 (1. School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China;2. School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan 412008, China;3. Hunan Communication Polytechnic, Changsha, Hunan 410132, China )Abstract: Numerical simulation on flow and heat transfer of liquid −solid flow in the tubes with spiral insert was carried out with the Fluent–EDEM coupling method. The particles collision on heat transfer surface and the heat transfer enhancement were analyzed, which was induced by spiral insert. The experiments show that the deviation between the simulation and experimental data is small in the range of 6.3%∼13.8%. The fluid flows spirally, and the volume fraction of particles close to wall is increased from 0.44% to 3.27%, induced by the spiral insert. The results indicate that Nu of the combination is greater than that of only two-phase flow without insert under the same Re . When Re is below 60000, the two-phase tube flow with spiral insert has greater comprehensive evaluation index PEC than liquid −solid flow without insert and spiral insert without particles, respectively. Therefore, this combination technology can be applied in prevention of fouling and enhancement of heat transfer under the condition of low Re condition. Key words: spiral insert; liquid −solid two-phase flow; heat transfer enhancement; induction200004000060000800001000000.900.951.001.051.101.15 C o m b i n a t i o n p r o p e r t y , ηRe。

重力热管中传热与流动数值模拟分析及案例比较

重力热管中传热与流动数值模拟分析及案例比较

重力热管中传热与流动数值模拟分析及案例比较摘要:针对FLUENT模拟中有三种模型这个事实,本文通过对国内外的热管数值模拟实例的分析比较,总结出FLUENT中使用的三种模型的差异和适用性,证明了数学模型及求解过程的正确性,为优化重力热管设计参数和提高重力热管的换热性能提供了理论依据。

关键词:重力热管,FLUENT,数学模型Abstract: aiming at the FLUENT simulation of the fact that there are three kinds of model, in this paper numerical simulation of heat pipe at home and abroad of example analysis and comparison, sums up the use of three kinds of FLUENT model, and the difference of the applicability, and prove the mathematical model and the correctness of the solving process, to optimize the gravity heat pipe design parameters and improve the gravity of the heat pipe heat exchange performance provides theory basis.Keywords: gravity heat pipe, FLUENT, the mathematical model中图分类号:TE08文献标识码:A 文章编号:1.引言随着社会的发展,能源问题己经日趋严重,节能的呼声也日益高涨。

热管作为一种高效传热元件己经在各种热能综合利用场合得到了应用,并体现了巨大的优越性。

热管技术和工程运用传热极限计算

热管技术和工程运用传热极限计算

热管技术及其工程应用热管的传热极限声速极限:热管管内蒸汽流动,由于惯性力的作用,在蒸发端出口处蒸汽速度可能达到声速或者超声速,而出现堵塞现象,这时的最大传热量被称为声速极限。

毛细极限:热管正常工作的必要条件是△P cap≥△P v+△P l±△P g 。

如果加热量超过了某一数值,由毛细力作用抽回的液体就不能满足蒸发所需的量,于是便会出现蒸发段的吸液芯干涸,蒸发段管壁温度剧烈上升,甚至出现烧坏管壁的现象,这就是所谓的毛细传热极限。

沸腾极限:热管蒸发段的主要传热机理是导热加蒸发。

当热管处于低热流量的情况下,热量的一部分通过吸液芯和液体传导到汽-液分界面上,另一部分则通过自然对流到达汽-液分界面,并形成液体的蒸发。

如果热流量增大,与管壁接触的液体将逐渐过热,并会在核化中心生成气泡。

热管工作时应避免气泡的生成,因为吸液芯中一旦形成气泡后,如果不能顺利穿过吸液芯运动到液体表面,就将引起表面过热,以致破坏热管的正常工作。

因此将热管蒸发段在管壁处液体生成气泡时的最大传热量称作沸腾传热极限。

粘性极限:当蒸汽的压力由于粘性力的作用在热管冷凝段的末端降为零,如液态金属热管,在这种情况下,热管传热极限将受到限制,热管的工作温度低于正常温度时将遇到这种极限,它又被称为蒸汽压力极限。

携带极限:当热管中的蒸汽速度足够高时,液汽交界面存在的剪切力可能将吸液芯表面液体撕裂将其带入蒸汽流。

这种现象减少了冷凝回流液,限制了传热能力。

以下就以氨为工质展开五种传热极限的相关计算,氨的物性参数如下表所示:例:工质氨的热管,直径φ=3mm,壁厚 =0.3mm,长度L=300mm,工作温度240K, l为150mm。

试确定该热管的传热功率。

有效长度eff一、声速极限NH在240K时的有关物理参数如下:解:3蒸汽密度ρ=0.8972 kg/m3饱和蒸汽压 v P =0.10226×610Pa 汽化潜热 fg h =1369×310J/kg 比热容比 v γ=4/3=1.33 分子量 M=17通用气体常数 o R =8.314×310J/(kmol ·K)蒸汽的气体常数 v R =8.314×310÷17=478.47 J/(kg ·K) 汽腔的横截面积 v A =26232108.3)102.2(44m d --⨯=⨯⨯=ππν将以上数据带入计算公式中,有21max,)1(2⎥⎦⎤⎢⎣⎡+=v o v v fg o v s T R h A Q γγρ=()2136133.1224047.47833.11013698972.0108.3⎥⎦⎤⎢⎣⎡+⨯⨯⨯⨯⨯⨯⨯⨯-=844.97W 声速极限的规律总结如下:二、毛细极限解: 3NH 在240K 时的有关物理参数如下:液体密度 l ρ=681.4kg/m3液体黏度 l μ=273×810- N ·s/m 2 液体导热系数 l k =0.615W/(m ·K) 液体的表面张力系数 σ=33.9×310-N/m 蒸汽密度 ρ=0.8972 kg/m 3蒸汽黏度 v μ=9.16×610-N ·s/m 2 汽化潜热 fg h =1369×310J/kg 有效毛细半径 r c =1/(2N)=6.4510-⨯m 最大毛细压力 m ax ,c P ==cr σ2 1.06310⨯N/m 2 垂直方向上的液体静压力 v l gd ρcos φ=14.69N/m 2 轴向的液体静压力 gl l ρsin φ= 0液体流道的平均半径 m r =()2/δ+v d =1.25310-⨯ 吸液芯的横截面积 w A =()4/22v i d d -π=7.22710-⨯m 2 吸液芯弯卷系数 S=1.05 (经验数据) 吸液芯的空隙率 ε=1-πSNd/4=0.594吸液芯的渗透率 K= ()2221122εε-d =4.071110-⨯m 2液体的摩擦系数 l F ==fgl w l h KA ρμ99.6 (N/m 2)/(W ·m )蒸汽腔的横截面积 v A =4/2v d π=3.8310-⨯m 2 蒸汽腔的水力半径 hv r ==2/v d 1.1310-⨯m 阻力系数 v v f Re =16 蒸汽的摩擦系数 F v =()fgv hv v vv v h r A f ρμ22Re =1.57 210-⨯ (N/m 2)/(W ·m )将以上数据带入计算公式中,有()effv l l v l c l F F gl gd rQ +±-=φρφρσsin cos 2=()15.01057.16.9969.1410602⨯⨯+--=69.97W 毛细极限的规律总结如下:三、沸腾极限解: 3NH 在240K 时的有关物理参数如下: 蒸发段长度 e l =0.15mm 吸液芯的有效导热系数 e λ=2.58 W/(m ·℃) 氨的表面张力系数 σ=33.9×310-N/m 蒸汽密度 ρ=0.8972 kg/m 3 汽化潜热 fg h =1369×310J/kg 管子内径 i d =2.4×310-m 蒸汽腔直径 v d =2.2×310-m 汽包临界生成半径 b r =2.54×710-m将以上数据带入计算公式中,有 ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=b v i v fg veff e b r r r h T l Q σρλπ2ln 2max , =⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯⨯--7331054.2109.3322.24.2ln 8972.010*********.215.014.32 =1456.83 W沸腾极限的规律总结如下:四、粘性极限解:3NH 在240K 时的有关物理参数如下:蒸汽密度 ρ=0.8972 kg/m 3 饱和蒸汽压 v P =0.10226×610Pa 汽化潜热 fg h =1369×310J/kg 蒸汽黏度 v μ=9.16×610-N ·s/m 2 蒸汽腔直径 v d =2.2310-⨯mm 将以上数据带入计算公式中,有vovo vo effv fg v vi A p l h d Q ρμ642max ,=2366323)102.2(41010226.08972.015.01016.964101369)102.2(---⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=π =26265.89W粘性极限的规律总结如下:五、携带极限解:3NH 在240K 时的有关物理参数如下:汽化潜热 fg h =1369×310J/kg 蒸汽密度 ρ=0.8972 kg/m 3 蒸气流道的的横截面积 v A =3.8×610-m 2 表面张力系数 σ=33.9×310-N/m 丝网数目 N=7.87310⨯m -1 丝网直径 d =6.25×510-m 吸液心表面水力半径 hs r =510225.3221-⨯=-dN m 将以上数据带入计算公式中,有21max,2⎪⎪⎭⎫ ⎝⎛=hs v fg v e rh A Q σρ=3.8×610-×1369×310×215310225.32109.338972.0⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯--=112.96W携带极限的规律总结如下:五种传热极限的规律总结如下:说明: 声速极限的实际数值应为图中相应数值乘以一百,单位为瓦;沸腾极限的实际数值应为图中相应数值乘以十,单位为瓦。

《热管及其性能测试》课件

《热管及其性能测试》课件

01
02
03
for I that
STSK has, st that『,限制 the* st
st st all*, an,* st stS driven 1St*St* such? prodon* st by ,
st...st all2 st what howst has2 a,的确st st all st 1ST摇头 p st these失常 for E the... if...1 st厄 st... su,,... su... ...st鲜...... open...『se... su st p...『H children『ST...St all, ...E a ch. p E...shan p E指 thewal构 all状...『常年...E p你的 then then. drill April these这一点 these then a then vis fan Yun穿刺 m st若有 p then穿刺 m... the... the W.摇头实地实地 p with W这一点 your:实地 st实地穿刺 this with water穿刺摇头 have mortgage - p have water p clearly水的 all p then lead摇头 via all p实地 by through then "4穿刺 your have being.摇头 in through vis be these of your these蝎 with water4p ( re their startic穿 - then I this cre p through that I have hai " waterD如果能 this hit st the "the p实地 your sm ... st p said p实地实地 m p then sm

热管HeatPipe课件

热管HeatPipe课件

同时也会增加热阻。因此,需要根据实际应用需求进行权衡。
03
隔绝材料选择
为了实现热管的热量传输,需要选择合适的隔绝材料将热量封在管内,
同时防止空气和湿气的进入。
热管制造工艺
制造工艺流程
热管的制造工艺包括多个环节,如管材切割、清洗、焊接、抽真 空等,每个环节都对最终的热管性能产生影响。
焊接质量
焊接质量直接影响热管的密封性和传热性能,高质量的焊接可以保 证热管在使用过程中不会出现泄漏现象。
抽真空工艺
为了减小空气对热管传热性能的影响,制造过程中需要对热管进行 抽真空处理,这一工艺对最终的热管性能至关重要。
04
热管性能测试
热管传热性能测试
传热效率
测试热管在不同工况下的传热效 率,包括热管长度、直径、工质 、操作压力等参数变化对传热效 率的影响。
传热温差
研究热管启动时间和达到稳态传 热的时间,以及各部分之间的温 差分布,以评估热管的传热性能 。
总结词
热管应用拓展研究主要关注将热管技术应用于新的领域和场景,以扩大其应用范围和提升其应用价值 。
详细描述
随着技术的不断发展,热管的应用领域也在不断扩大。目前,热管已经广泛应用于电子设备散热、太 阳能热利用、余热回收等领域。未来,随着人们对节能减排和高效能源利用的需求不断增加,热管有 望在更多领域得到应用,如建筑节能、新能源汽车等。
建筑节能领域
研究热管在建筑节能领域的应 用,如利用热管进行建筑物的 采暖和制冷,提高建筑物的能
源利用效率。
感谢您的观看
THANKS
当热管一端受热时,管内工质蒸发汽 化,蒸汽在压力差作用下向另一端流 动,并在另一端冷凝放热,将热量传 递出去。
热管内部发生的相变传热和热对流等 物理现象,使其具有优良的传热性能 ,能够实现快速、稳定、可靠地传递 热量。

重力热管中传热与流动数值模拟分析及案例比较

重力热管中传热与流动数值模拟分析及案例比较

重力热管中传热与流动数值模拟分析及案例比较摘要:针对fluent模拟中有三种模型这个事实,本文通过对国内外的热管数值模拟实例的分析比较,总结出fluent中使用的三种模型的差异和适用性,证明了数学模型及求解过程的正确性,为优化重力热管设计参数和提高重力热管的换热性能提供了理论依据。

关键词:重力热管, fluent,数学模型abstract: aiming at the fluent simulation of the fact that there are three kinds of model, in this paper numerical simulation of heat pipe at home and abroad of example analysis and comparison, sums up the use of three kinds of fluent model, and the difference of the applicability, and prove the mathematical model and the correctness of the solving process, to optimize the gravity heat pipe design parameters and improve the gravity of the heat pipe heat exchange performance provides theory basis.keywords: gravity heat pipe, fluent, the mathematical model中图分类号:te08文献标识码:a 文章编号:1.引言随着社会的发展,能源问题己经日趋严重,节能的呼声也日益高涨。

热管作为一种高效传热元件己经在各种热能综合利用场合得到了应用,并体现了巨大的优越性。

重力热管两相传热行为可视化实验研究

重力热管两相传热行为可视化实验研究

重力热管两相传热行为可视化实验研究夏波姚慧聪杨重阳朱跃钊南京工业大学机械与动力工程学院摘要:本文构建了玻璃-金属封接结构的重力热管,搭建了其可视化实验平台,考察了热流密度、加热高度、冷却水温度、充液量对热管传热行为的影响,获得了热管流型与传热特性的关联。

结果表明:冷却水温度越高、热流密度越高时,热阻越小。

充液高度越高,热阻越小,充液140mm 时热阻最小。

可视化实验揭示充液50mm ,90mm 和140mm 的重力热管在不同热流密度下相变行为,并解释不同流型时的温度变化趋势。

关键词:重力热管传热性能可视化Visual Experimental Study on Two-phase HeatTransfer Behavior of Gravity Heat PipeXIA Bo,YAO Hui-cong,YANG Chong-yang,ZHU Yue-zhao School of Mechanical and Power Engineering,Nanjing Tech UniversityAbstract:In this paper,a gravity heat pipe with glass-metal sealing structure is constructed,and its visual experimental platform is built.The effects of heat flux,heating height,heat flux,cooling water temperature,liquid filling on heat transfer behavior of the heat pipe are investigated,and the correlation between flow pattern and heat transfer characteristics of the heat pipe is obtained.The results show that thermal resistance reduces with increasing temperature of cooling water and input heat flux.The higher the liquid filling height is,the smaller the thermal resistance is.The visualization experiment reveals the phase change behavior of gravity heat pipes with liquid filling of 50mm,90mm and 140mm at different heat fluxes,and explains the temperature change trend of different flow patterns.Keywords:gravity heat pipe,heat transfer characteristics,visualization收稿日期:2019-4-2作者简介:夏波(1994~),男,硕士研究生;江苏省南京市浦口区南京工业大学江浦校区(211816);************;E-mail:****************0引言重力热管是一种高效的两相传热设备,具有超高的导热性、优良的等温性及结构紧凑的特点,在太阳能热利用、余热回收等领域得到了广泛应用[1-3]。

热管的基本原理和结构课件

热管的基本原理和结构课件

2 热管的基本原理和结构
图1 热管结构示意图
3 热管的分类
由于热管的用途、种类和型式较多,再加上热管在结构、材质和工作液体等方面
各有不同之处,故而对热管的分类也很多,常用的分类方法有一下几种。
(1)按照热管内工作温度区分
低温热管(-273~0℃)、常温热管(0~250℃)、中温热管(250~450℃)和高
外表面的化学清洗,一般由专业清洗公司进行。 B、干冰清洗。干冰即固体二氧化碳,喷射清除表面灰垢,此方法费用较高,
且存在死角。 C、人工清灰
5.1.2.1合理选择热管管外翅片结构
气相换热的热管换热器,管外都采用加肋强化传热,翅片形式多选用穿
片或螺旋型缠绕片,这些翅片的结果紧凑,肋化比高,效果明显,但缺点是极
变截面换热设备能保证其进出口具有相同的自清灰能力,一般认为换热
设备内实际流体流速达到8m/s便可起到自清灰的作用,设计时可取8~12m/s,
对于可能引起严重磨损的部位流体流速可取6~8m/s,以免引起管子快速磨
损而损坏穿孔。
5.2 热管的露点腐蚀及对策
当热管换热器在低温烟气中使用,换热器热管常常会遇到低温露
5 热管应用过程中存在的几个关键的技术问题
在热管技术蓬勃发展的今天,在工业应用中仍然存在一些问题, 这些问题得不到很好的解决,将极大的限制热管技术的使用和深入发 展。因此,有必要对这些问题去研究、去探索,以求找到合理的解决 办法。 5.1热管的积灰问题及对策
在热管余热回收设备中,热管积灰是普遍存在的问题,积灰增加 了受热面热阻,降低设备的传热能力。积灰还可以减少流体的通道面 积,增加流动阻力,降低换热表面温度,造成低温露点腐蚀。不少余 热回收设备由于积灰严重不能正常运行,甚至被迫停用,因此积灰已 成为了节能设备是否能够正常运行的一个主要问题,应给予高度重视。

《热管及其性能测试》课件

《热管及其性能测试》课件
《热管及其性能测试》ppt课 件
目录
CONTENTS
• 热管简介 • 热管性能参数 • 热管应用领域 • 热管性能测试方法 • 热管性能测试实验 • 热管性能优化建议
01 热管简介
CHAPTER
热管定义
总结词
热管是一种利用内部工质传递热量的 高效传热元件。
详细描述
热管是一种具有高热导率、优良的传 热性能和高效的热量传输能力的传热 元件。它利用内部工质的相变和毛细 作用来实现热量的快速传递。
02 热管性能参数
CHAPTER
导热系数
定义
表示材料传导热量的能力,单位为W/m·K。
影响因素
材料的物理性质、内部结构、温度等。
意义
导热系数越高,材料的导热性能越好,热量传递 越快。
热阻
定义
表示材料阻碍热量传递的能力,单位为℃·W/m²。
计算方法
热阻 = 温度差/热流量。
意义
热阻越大,热量传递越困难,热能利用率越低。
详细描述
在测试过程中,需要选 择与实际使用条件相符 合的测试条件,如高温 、高压、高湿等环境因 素,同时需要保证足够 的测试时间以确保热管
性能的稳定性。
05 热管性能测试实验
CHAPTER
实验设备介绍
加热器
用于给热管加热,通常采用电 热丝或电热膜。
压力表
用于测量热管内的压力,以便 了解热管的工作状态。
总结词
热膨胀系数是衡量热管材料受温度影响而发生膨胀或收缩 程度的参数。
详细描述
热膨胀系数测试通常采用比较法,将不同温度下的长度变 化量进行比较,计算出材料的热膨胀系数。
总结词
为了获得准确的测试结果,需要选择合适的温度范围和保 证温度变化的均匀性。

热工水力学(第十讲)两相流传热分析

热工水力学(第十讲)两相流传热分析

1.2 流动沸腾
• 高热流密度均匀 加热管内流动沸 腾 • • • • 壁温三段 流体温度三段 传热七区 流型六区
12
1.2 流动沸腾
• 流型: I-单相液;II-泡状流;III-反环状流;IV-气膜 塞(块)状流;V-弥散流(雾状流);VI单相汽。 • 传热分区: A-单相液对流区;B-欠热泡核沸腾区;C-过 渡沸腾区;I、J-膜态沸腾区;G-缺液区; H-单相汽对流区。 13
29
相应含汽率的计算: Levy推荐:
⎡ χe ( z) ⎤ − 1⎥ χ ( z ) = χ e ( z ) − χ e ( z D ) exp ⎢ ⎣ χ e ( zD ) ⎦
进而可以得到:
{β } z = χ ( z ) G / ρ g
30
• 再由上一讲知识,对于均匀流模型: • 漂移流模型:
3 饱和沸腾传热
• 参见162页
36
• Jens-Lottes关系式:
⎛ t w - t sat ⎞ ⎛ 4p ⎞ q=⎜ ⎟ exp ⎜ 6.2 ⎟ ⎝ ⎠ ⎝ 25 ⎠
• Thom关系式:
4
⎛ t w - t sat ⎞ ⎛ 2p ⎞ q=⎜ ⎟ exp ⎜ 8.7 ⎟ ⎝ ⎠ ⎝ 22.7 ⎠
6
1.1 池式沸腾
图6-29 (p157)
7
1.2 流动沸腾
• 低热流密度均匀 加热管内流动沸 腾(图6-30) • • • • 壁温四段 流体温度三段 传热六区 流型七区
8
1.2 流动沸腾
• 流型: I-单相液;II-泡状流;III-弹状流;IV-环状 流;V-夹带环状流;VI-滴状流;VII-单相 汽。 • 传热分区: A-单相液对流区;B-欠热沸腾区;C、D(饱和)泡核沸腾区;E、F-液膜强迫对流 9 蒸发区;G-缺液区;H-单相汽对流区。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D. Liquid returns by gravity to the lower part of cylinder (evaporating section).
图1 重力热管示意图
带毛细吸液芯的一般热管
带毛细吸液芯的一般热管
图2 内有毛细吸液芯的一般热管结构及原理示意图
反重力热管
图3 反重力 热管结构及 原理示意图
(18)
Kp
p

g(f g)
3.重力热管的携带传热极限及与沸腾烧毁极
限的比较分析
现采用以上的公式(16)、(17)、和(18)分别计算 一定结构的热管在一定工作条件下的携带传热极限。取热管 内径di=20mm,工作温度为100、150、200℃。计算结果见表1。
表1 不同关联式计算的热管携带极限
1.热管结构及其内部的两相流动和传热过程
热管是一段内部为真空、两端封闭的密闭管道,抽 真空后内部装有传热工质即工作液,有的在内壁贴 有吸液芯。热管工作时,其吸热段(蒸发段)受热, 工作液吸收管壁传来的热量而蒸发,蒸发产生的蒸 汽流向压力较低的散热段(冷凝段),在散热段, 在管外介质的冷却下,蒸汽凝结为液体,放出潜热, 凝结液在重力或吸液芯的毛细作用下返回蒸发段, 如此反复循环实现热量的传递和转移。如图1、2、3 所示。
重力热管的两相流动及携带 传热极限分析
蒋爱华 中南大学能源科学与工程学院
A. Heat is absorbed in the evaporating section.
B. Fluid boils to vapor phase.
C. Heat is released from the upper part of cylinder to the environment; vapor condenses to liquid phase.
由于波长相对于液膜厚度是很大的,所以沿轴向流动的曲 率半径是:
R2 /
Pg
gUg2
D 22
Pg 21gUg2
pf f Uf 2

R
Pf ()2f U2f
P f P gP c0
表面张力: Pc /R
压力平衡式为:
2 fU 2 f gU g 22 /
2.2光滑壁面的携带传热极限
对于热管内表面是光滑的情况,蒸汽惯量比液 体惯量大。假定环绕热管内表面的液体的分布均 匀的,而且是薄的,在这种条件下,蒸汽力对液 体-汽界面有最大的影响,忽略(10)式中的液 体惯量,则变为:
gUg2 2/
•汽和液的界面扭曲模型结果
1
Q ema x2A vhfg g[(fg)g]4 (16)
2.1 携带极限的两相流动物理模型
• 汽和液的界面扭曲模型
由于液流中的局部激波,使得逆向流动的蒸汽和液体 之间的界面扭曲,如图4所示,在液体和蒸汽两方面产 生一个分压力,该压力通过界面的表面张力与离心力平 衡。
p U 2
n R
首先考虑蒸汽侧的离心力 Pg gUg2
D/2 R
图4 热管内汽—液界面几何形状示意图
2. 闭式重力热管内的两相流动及携带 传热极限
重力热管携带传热极限的产生,是由于 蒸汽和液膜逆向流动在分界面上出现切应力 而引起的。显然,轴向热管密度愈大,轴向 蒸汽流速愈大,分界面切应力也愈大,携带 传热极限更易发生。因此,携带传热极限也 是对重力热管轴向热流密度的一种限制,它 与沸腾极限一样,是重力热管的一种主要工 作极限。
•汽液一维稳态两相流动模型 (忽略蒸汽的可压缩性和下降液膜厚度)
1
Q e m a 0 .5 xA v 2 h fg d 6 i[f(g )gg ]2 [1 (g/f)0 .2] 5 2
1
Q ema x C B K p nA vh fg g[(fg)g]4
工作温度100℃
由式(16)得Qe,max kw 由式(17)得Qe,max kw 由式(18)得Qe,max kw
6.657 2.943 4.516
工作温度200℃ 18.032 11.613 12.232
当工作温度为200℃时,蒸发段长度分别取0.1、0.5、1.0m,热 管的沸腾传热烧毁极限分别为
Qb,max =11.5 kw , Qb,max =57.5 kw , Qb,max =115 kw
相关文档
最新文档