串口通信原理及操作流程

合集下载

串口通信的原理

串口通信的原理

串口通信的原理1. 什么是串口通信串口通信是计算机与外部设备之间进行数据传输的一种方式。

它通过串行传输数据,即一位接着一位地传输,与并行传输相对。

串口通信常用于连接计算机与外围设备,如打印机、调制解调器、传感器等。

2. 串口通信的基本原理串口通信的基本原理是通过发送和接收数据来实现信息的交流。

串口通信需要两个主要的组件:发送端和接收端。

发送端将要发送的数据转换为电信号,通过串口线传输给接收端,接收端将接收到的电信号转换为数据。

串口通信的基本原理包括以下几个方面:2.1 串口线串口通信使用的是串口线(Serial Cable),它是一根将发送端和接收端连接起来的线缆。

串口线中包含多个引脚,其中最常用的是发送引脚(TX)和接收引脚(RX),它们分别用于发送和接收数据。

2.2 串口通信协议串口通信需要使用一种协议来规定数据的传输格式和规则。

常见的串口通信协议有RS-232、RS-485等。

这些协议规定了数据的位数、校验方式、波特率等参数。

发送端和接收端必须使用相同的协议才能正常进行通信。

2.3 数据帧数据在串口通信中以数据帧的形式进行传输。

数据帧包括起始位、数据位、校验位和停止位等组成部分。

起始位用于标识数据帧的开始,停止位用于标识数据帧的结束,数据位用于存放传输的数据,校验位用于检测数据的正确性。

2.4 波特率波特率(Baud Rate)是衡量串口通信速度的单位,表示每秒传输的位数。

波特率越高,传输速度越快。

发送端和接收端必须使用相同的波特率才能正常进行通信。

3. 串口通信的工作流程串口通信的工作流程包括以下几个步骤:3.1 配置串口参数在进行串口通信之前,需要配置串口的参数,包括波特率、数据位、停止位、校验位等。

发送端和接收端必须使用相同的参数才能正常进行通信。

3.2 发送数据发送端将要发送的数据转换为电信号,通过串口线发送给接收端。

发送数据时,需要按照数据帧的格式进行封装,包括起始位、数据位、校验位和停止位。

串口工作流程

串口工作流程

串口工作流程
1.配置串口参数:首先,需要设置串口的通信参数,包括波
特率(即数据传输速率)、数据位、停止位和奇偶校验位等。

这些参数的配置需要根据实际需求和外部设备的要求进行设置。

2.打开串口:在进行数据传输之前,需要通过操作系统提供
的串口接口打开串口。

这一步骤会返回一个串口的句柄,后续
可以通过该句柄进行读写操作。

3.读取数据:在打开串口后,可以通过读取串口接收缓冲区
的数据来获取外部设备发送过来的数据。

可以通过轮询方式或
者中断方式进行读取。

如果串口接收缓冲区中有数据,可以通
过读取串口句柄来获取数据并进行处理。

4.写入数据:在需要向外部设备发送数据时,可以通过写入
串口的方式将数据发送出去。

可以通过写入串口句柄来完成数
据的发送。

5.关闭串口:在不再使用串口时,需要通过操作系统提供的
接口关闭串口,释放串口资源。

以上就是串口工作的基本流程。

在实际应用中,还需要考虑
数据的格式、数据的校验、错误处理等问题。

同时,需要根据
不同的操作系统和编程语言提供的接口进行编程,完成串口的
读写操作。

串口通讯原理

串口通讯原理

串口通讯原理串口通讯是一种常见的数据传输方式,它通过串行传输数据,将数据一位一位地发送和接收。

串口通讯常用于计算机与外部设备之间的数据传输,例如打印机、调制解调器、传感器等。

本文将介绍串口通讯的原理和工作方式。

一、串口通讯的基本原理串口通讯使用两根信号线进行数据传输,分别是发送线(TX)和接收线(RX)。

发送线用于将数据从发送端发送到接收端,接收线则用于将数据从接收端传输到发送端。

这两根信号线通过一对电缆连接在一起。

在串口通讯中,数据是按照一定的格式进行传输的。

常见的格式包括起始位、数据位、校验位和停止位。

起始位用于标识数据传输的开始,数据位用于传输实际的数据,校验位用于检测数据传输的准确性,停止位用于标译数据传输的结束。

二、串口通讯的工作方式串口通讯的工作方式可以分为同步和异步两种。

同步传输是指发送端和接收端的时钟信号保持同步,数据按照时钟信号的边沿进行传输。

异步传输则是指发送端和接收端的时钟信号不同步,数据通过起始位和停止位进行同步。

在同步传输中,发送端和接收端需要事先约定好时钟信号的频率和相位,以确保数据的准确传输。

而在异步传输中,发送端和接收端只需要约定好数据的格式,不需要同步时钟信号,因此更加灵活。

三、串口通讯的优缺点串口通讯具有以下优点:1. 简单易用:串口通讯的硬件接口简单,使用方便。

2. 跨平台性:串口通讯可以在不同的操作系统和设备之间进行数据传输。

3. 可靠性高:串口通讯的传输稳定可靠,不容易出错。

然而,串口通讯也存在一些缺点:1. 传输速率较低:串口通讯的传输速率相对较低,无法满足高速数据传输的需求。

2. 连接距离有限:串口通讯的连接距离较短,一般不超过几十米。

3. 线路复杂:串口通讯需要使用专用的串口线缆,线路较为复杂。

四、串口通讯的应用领域串口通讯广泛应用于各个领域,包括工业自动化、通信设备、医疗设备等。

例如,在工业自动化领域,串口通讯常用于PLC(可编程逻辑控制器)和外部设备之间的数据传输;在通信设备领域,串口通讯常用于调制解调器和计算机之间的数据传输。

串口通信原理及操作流程PPT(共60张).ppt

串口通信原理及操作流程PPT(共60张).ppt

模拟 电子开

模拟 电子开

合成
频带信 号输出
1 01
1.5串行通信的错误校验
1、奇偶校验 在发送数据时,数据位尾随的1位为奇偶校验位(1或0)。 奇校验时,数据中“1”的个数与校验位“1”的个数之和应 为奇数;偶校验时,数据中“1”的个数与校验位“1”的个 数之和应为偶数。接收字符时,对“1”的个数进行校验,若 发现不一致,则说明传输数据过程中出现了差错。 2、代码和校验 代码和校验是发送方将所发数据块求和(或各字节异或), 产生一个字节的校验字符(校验和)附加到数据块末尾。接 收方接收数据同时对数据块(除校验字节外)求和(或各字 节异或),将所得结果与发送方的“校验和”进行比较,相 符则无差错,否则即认为传送过程中出现了差错。 3、循环冗余校验 这种校验是通过某种数学运算实现有效信息与校验位之间的 循环校验,常用于对磁盘信息的传输、存储区完整性校验等 。这种校验方法纠错能力强,广泛应用于同步通信中。
? 典型的面向位的同步协议如ISO的高级数据链路控制规程 HDLC和IBM的同步数据链路控制规程SDLC。
? 同步通信的特点是以特定的位组合“01111110”作为帧 的开始和结束标志,所传输的一帧数据可以是任意位。所以 传输的效率较高,但实现的硬件设备比异步通信复杂。
1.3 串行通信的传输方向
①单工
? RS-422A传输速率(90Kbps)时,传输距离可达1200米。
2.3 RS-485 接口
? RS-485是RS-422A的变型
:RS-422A用于全双工,而
RS-485则还可用于半双工。
RS-485是一种多发送器标准
,在通信线路上最多可以使用
TTL
TTL 32 对差分驱动器/接收器。

串口通信原理及操作流程

串口通信原理及操作流程

串口通信原理及操作流程串口通信是一种通过串行连接来传输数据的通信方式。

相对于并行通信而言,串口通信只需要一条数据线来传输数据,因此更节省空间和成本。

串口通信常用于计算机与外设之间的数据传输,如打印机、调制解调器、传感器等。

串口通信的原理主要是通过发送和接收数据的方式来实现通信。

在串口通信中,发送方将要传输的数据按照一定的协议进行封装,然后逐位地通过数据线发送给接收方。

接收方在接收到数据后,根据协议进行解封,得到传输的数据。

串口通信的操作流程如下:1.配置串口参数:在进行串口通信之前,需要先对串口进行初始化和配置。

配置包括波特率、数据位、停止位、奇偶校验等。

波特率表示每秒钟传输的位数,不同设备之间的串口通信需要保持一致。

2.打开串口:打开串口可以通过编程语言的串口操作函数来实现。

打开串口时,应该确保该串口没有被其他程序占用。

3.发送数据:发送数据时,需要将待发送的数据封装成符合协议要求的数据包。

一般情况下,数据包开头会有起始符和目标地址、源地址等标识信息,以便接收方识别数据包。

4.接收数据:接收数据时,需要通过串口接收缓冲区来获取接收到的数据。

一般情况下,接收方会设置一个数据接收完成的标志位,用于通知上层应用程序接收到了数据。

5.解析数据:接收到的数据包需要进行解析,以获取有效的数据。

解析的方式根据协议的不同而不同,可以是根据提前约定的规则进行解析,或者是根据协议中的标志位进行解析。

6.处理数据:经过解析后得到的数据可以进行相应的处理。

处理的方式根据具体的应用场景来确定,例如将数据显示在界面上、存储到文件中等。

7.关闭串口:通信结束后,需要关闭串口以释放相关资源,并防止其他应用程序对串口的访问。

需要注意的是,串口通信的可靠性和稳定性对于一些实时性要求较高的应用来说是非常重要的。

在进行串口通信时,应该合理选择合适的串口参数,确保数据的正确传输和解析。

此外,在编程时应该进行异常处理,防止因异常情况导致的数据丢失或通信中断。

串口通信原理及操作流程

串口通信原理及操作流程

串口通信原理及操作流程串口通信是计算机与外部设备之间进行数据传输的一种通信方式。

串口通信有很多应用领域,比如打印机、调制解调器、传感器、嵌入式系统等等。

本文将介绍串口通信的原理及操作流程。

一、串口通信原理串口通信是通过串行传输来传送数据的。

串行传输是指将数据位按序列发送,每个数据位连续的传输。

串口通信涉及两个主要部分,即发送端和接收端。

发送端将原始数据转换为串行数据流进行发送,接收端则接受数据流并将其转换为原始数据。

串口通信需要两根线缆来进行传输,分别是数据线和控制线。

数据线用于传输数据位,而控制线用于传输控制信号。

串口通信使用的数据传输格式通常是异步串行传输。

异步传输是指数据位之间没有时间关系,每个数据位之间通过起始位和停止位来进行区分。

起始位用于表示数据传输的开始,而停止位则表示数据传输的结束。

此外,数据位的长度和奇偶校验位的设置也是串口通信中需要注意的参数。

二、串口通信操作流程串口通信的操作流程可以分为以下几步:1.打开串口用户需要先打开串口才能进行通信。

打开串口的过程可能需要设置串口的参数,比如波特率、数据位长度、奇偶校验位等等。

2.发送数据一旦串口打开,用户可以通过向串口写入数据来进行发送。

数据可以是任何形式的,比如字符串、二进制数据等等。

3.接收数据接收数据的过程与发送数据的过程相反,用户可以从串口读取数据。

读取到的数据可以进一步处理或者显示。

4.关闭串口通信结束后,用户需要关闭串口以释放相关资源。

以上是串口通信的基本操作流程。

在实际应用中,可能还需要进行更多的操作,比如设置超时时间、错误处理等等。

三、串口通信的注意事项在进行串口通信时1.波特率的设置需要与外部设备保持一致,否则可能无法正常通信。

2.数据位长度、奇偶校验位以及停止位的设置也需要与外部设备保持一致。

3.在进行数据传输之前,最好先进行握手协议以确保通信的可靠性。

4.在进行数据传输时,需要保证发送端和接收端的数据格式是一致的,否则可能会引发数据解析错误。

串口通信流程

串口通信流程

串口通信流程串口通信是指通过串行接口进行的数据传输,它是一种广泛应用于各种设备之间数据交换的方式。

在嵌入式系统、传感器网络、工业控制等领域,串口通信都扮演着重要的角色。

本文将介绍串口通信的基本流程,包括串口通信的基本原理、串口通信的硬件连接、串口通信的软件实现等内容。

首先,我们来了解一下串口通信的基本原理。

串口通信是通过串行接口进行数据传输的一种通信方式。

在串口通信中,数据是以位的形式逐个传输的,因此在传输过程中需要保证发送端和接收端的时钟同步,以确保数据的准确传输。

常见的串口通信协议有RS-232、RS-485、TTL等,它们在电气特性、传输距离、传输速率等方面有所不同,但基本的数据传输原理是相似的。

接下来,我们将介绍串口通信的硬件连接。

在串口通信中,需要使用串口线缆将发送端和接收端连接起来。

通常情况下,串口线缆包括TX(发送端)、RX(接收端)、GND(地线)等引脚,通过这些引脚的连接,实现了数据的发送和接收。

在实际应用中,还需要注意串口线缆的长度、传输速率、数据位、校验位等参数的设置,以确保数据的可靠传输。

除了硬件连接,串口通信的软件实现也是非常重要的。

在嵌入式系统中,通常会使用串口通信进行设备之间的数据交换,因此需要在软件中实现串口通信的功能。

在实际开发中,可以使用C/C++、Python等编程语言编写串口通信的程序,通过串口库函数来实现数据的发送和接收。

在编写串口通信程序时,需要注意数据的打包和解包、数据的校验和错误处理等问题,以确保数据的可靠传输。

总结一下,串口通信是一种重要的数据传输方式,它在各种领域都有着广泛的应用。

在实际应用中,需要了解串口通信的基本原理、硬件连接和软件实现,以确保数据的可靠传输。

希望本文的介绍能够帮助大家更好地理解串口通信的流程,为实际应用提供帮助。

串口通信原理及操作流程概要课件

串口通信原理及操作流程概要课件

工业自动化控制:如 PLC、DCS等系统中 的设备间通信。
嵌入式系统之间的通 信:如智能仪表、传 感器等。
02
串口通信原理
串口通信协议
RS-232协议
一种标准化的串口通信协 议,定义了数据传输的电 压范围、数据位、停止位 等参数。
RS-485协议
RS-232的扩展,支持多点 通信,通过差分信号传输 数据,具有更强的抗干扰 能力。
USB协议
通用串行总线协议,用于 连接计算机和外部设备, 支持高速数据传输。
数据传输方式
异步传输
数据传输以字符为单位,每个字 符前有一个起始位,后有一个或 两个停止位,用于同步。
同步传输
数据传输以数据块为单位,通过 时钟信号同步,适用于高速数据 传输。
数据编码方式
曼彻斯特编码
将数据位和时钟位合并,通过电 压跳变表示0和1。
循环冗余校验,通过多项式算法计算 数据的校验码,用于检测错误。
03
串口通信操作流程
串口通信参数设置
01
02
03
04
波特率
设置串口通信的速率,常用的 波特率有9600、19200、 115200等。
数据位
设置数据传输的位数,常用的 数据位有5、6、7、8位。
停止位
设置数据传输的停止位数,常 用的停止位有1、1.5、2位。
异常处理
当串口通信出现异常时,如数据传输 错误、连接断开等,需要进行异常处 理,如重新连接、数据重传等。
04
串口通入您的内容
05
常见问题与解决方案
串口通信常见问题
数据传输错误
在串口通信过程中,数 据传输可能会出现错误 ,导致接收端无法正确
解析数据。

串口发送和接收数据硬件原理

串口发送和接收数据硬件原理

串口发送和接收数据硬件原理一、串口通信简介串口通信是一种常见的计算机外部设备与计算机之间进行数据传输的方式。

它通过将数据一位一位地发送或接收,通过串行的方式进行传输。

串口通信具有简单、可靠、成本低等优点,被广泛应用于各种设备之间的数据传输。

二、串口通信的原理串口通信主要涉及两个方面的内容,即数据的发送和数据的接收。

1. 数据的发送串口通信发送数据的原理是将待发送的数据按照一定的格式转换为电信号,通过串口线路发送出去。

具体步骤如下:(1)将待发送的数据转换为二进制形式,按照字节为单位进行处理;(2)将每个字节的数据按照位的顺序依次发送,通常采用的是低位优先(LSB)的方式;(3)在每个数据位之间加入一个起始位和一个停止位,起始位通常为逻辑0,停止位通常为逻辑1,用来标识数据的开始和结束;(4)可以选择性地在每个字节之间加入一个奇偶校验位,用于检测数据传输过程中的错误。

2. 数据的接收串口通信接收数据的原理是通过接收端口接收到发送端发送的数据,并将其转换为计算机可以识别的形式。

具体步骤如下:(1)接收端口接收到发送端发送的数据,包括起始位、数据位、停止位和奇偶校验位;(2)接收端口根据起始位和停止位之间的数据位,将其转换为二进制形式;(3)对于带有奇偶校验位的数据,接收端口会进行校验,以检测数据传输过程中是否存在错误;(4)将接收到的数据转换为计算机可以识别的形式,供后续的处理和应用。

三、串口通信的实现方式串口通信的实现方式有多种,常见的有RS-232、RS-485和USB 串口等。

1. RS-232RS-232是一种常见的串口通信标准,通常用于计算机与外部设备之间的数据传输。

RS-232串口通信使用DB9或DB25接口,通过发送端口和接收端口来实现数据的发送和接收。

2. RS-485RS-485是一种多点通信的串行通信协议,适用于多个设备之间的数据传输。

RS-485串口通信使用两根信号线进行数据传输,其中一根用于发送数据,另一根用于接收数据。

串行通信实验原理

串行通信实验原理

串行通信实验原理序串行通信技术是一种基本的数字通信技术,它已经广泛地应用于现代的数字通信系统中。

与并行通信相比,串行通信在处理速度高、传输距离远、信号线使用少等方面具有很大的优势,因此在现代计算机内部以及计算机与外部设备之间的通信中应用广泛。

串行通信实验是理解串行通信原理和掌握串行通信应用的基本途径之一。

本文将介绍串行通信实验的原理、步骤以及注意事项,希望能够对读者在学习串行通信方面起到一定的帮助。

一、实验原理1.串行通信的基本概念串行通信是一种数据传输的方式,数据信号按照一个比特一个比特地顺序传输,每个比特之间通过同步信号进行分隔。

与之相对应的是并行通信,其数据信号在多根信号线上并行传输。

串行通信具有传输距离远、传输速度快、线路简单等优点,因此被广泛应用于各种数字通信系统中。

2.串行通信的实现串行通信的实现需要用到一些重要的电路,包括移位寄存器、同步信号发生器等。

移位寄存器用于将数据按照顺序存入、读出,并进行位移操作;同步信号发生器则用于发生用于分隔数据的同步信号,使得发送方和接收方的时序保持一致。

三、实验步骤本实验以ASM51单片机为例,演示了串行通信的应用过程。

1.硬件连接将示波器的通道1连接到P1.0引脚上,通道2连接到P3.0引脚上,波形分别对应发送数据和接收数据。

2.编写程序编写程序,对串行通信的数据发送、接收、位移等进行设置和控制,具体实现过程如下:(1) 设置移位寄存器,将需要发送的数据从高位开始存入。

(2) 设置同步信号发生器,发生用于分隔数据的同步信号。

(3) 控制寄存器进行位移操作,将数据按照顺序读出并发送。

(4) 在接收方,需要通过串行口中断方式对接收到的数据进行判断和处理。

3.实验操作按照编写的程序对硬件进行操作,发送一些测试数据,观察示波器上的波形变化,以及数据是否正确接收和处理。

四、实验注意事项1.串行通信实验需要耐心和细心,对硬件和程序进行仔细的连接和设置。

2.在传输数据时,需要保证发送方和接收方的时序保持一致,否则可能会导致数据发送失败或者数据接收错误,因此需要认真设置同步信号发生器。

串口通信原理及操作流程PPT课件

串口通信原理及操作流程PPT课件

第8页/共24页
近距离传送电路
RXD TXD GND
微机

RXD

TXD

GND

较远距离传送电 路
RXD TXD
RXD
TXD
GND
GND
RXD TXD GND
微机其他 设备


RXD

TXD

GND
第9页/共24页
接 微 机口
远距离传送电路
调电 电调
制话 话制
解分 分解
调机 机调


接微 机

T1OUT
RST
C 1
C1
C 1
1
6 7
2
8
3 4
9 5
89C51
C 2
C2
C 2
V+ VCC
MAX232
C3
+5V C4
PC机 COM1

COM2
XTAL1
GND
V-
C5
XTAL2 GND
C1=C2=C3=C4=C5=1F
第12页/共24页
51单片机串行口结构
<1>51单片机串行口是可编程全双工的通信接口,能同时进行数据的发送和 接收, 也可作为同步移位寄存器使用。
第16页/共24页
SM2:多机通信控制位 主要用于方式2、3。在不同串口工作方式下,通
过控制SM2,可以实现多机通信。
SM2作用: 在方式2,3中,发送机SM2=1(程序设置). 接收机SM2=1,若RB8=1,激活RI,引起接收中断RB8=0, 不激活RI,不引起接断。SM2=0,无论RB8=1还是RB8=0 均激活RI引起接收中断。在方式 0 中, SM2应置为0。 在方式1中, 当接收时SM2=1, 则只有收到有效停止位 才激活RI。

基本串口通信程序设计

基本串口通信程序设计

基本串口通信程序设计串口通信是指通过串行接口进行数据传输的一种通信方式。

串口通信通常用于短距离的数据传输,具有稳定性强、传输速率低的特点。

本文将介绍串口通信的基本原理和程序设计。

一、串口通信基本原理串口通信是通过串行接口将数据一位一位地传输的通信方式。

串口通信的基本原理是使用两根信号线进行通信:一根是传输数据的信号线(TX),负责向外发送数据;另一根是接收数据的信号线(RX),负责接收外部发送过来的数据。

二、串口通信程序设计步骤1. 打开串口:首先需要通过操作系统提供的串口接口函数,打开需要使用的串口。

在Windows系统中,可以使用CreateFile函数打开串口;在Linux系统中,可以使用open函数打开串口。

3. 发送数据:使用WriteFile函数(Windows系统)或write函数(Linux系统),向串口发送需要传输的数据。

4. 接收数据:使用ReadFile函数(Windows系统)或read函数(Linux系统),从串口接收数据。

5. 关闭串口:数据传输完成后,需要关闭串口,使用CloseHandle函数(Windows系统)或close函数(Linux系统)即可关闭串口。

三、串口通信程序设计示例(Windows系统)下面是一个简单的串口通信程序设计示例,实现了从串口接收数据并将接收的数据原样返回的功能。

#include <iostream>#include <windows.h>int mainHANDLE hSerial;DCB dcbSerialParams = {0}; // 串口参数hSerial = CreateFile("COM1", GENERIC_READ , GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); // 打开串口dcbSerialParams.DCBlength = sizeof(dcbSerialParams);std::cout << "Error getting serial port state\n";return 1;}dcbSerialParams.BaudRate = CBR_9600;dcbSerialParams.ByteSize = 8;dcbSerialParams.StopBits = ONESTOPBIT;dcbSerialParams.Parity = NOPARITY;std::cout << "Error setting serial port state\n";return 1;}return 1;}char buffer[100];DWORD bytesRead;while (1)if (ReadFile(hSerial, buffer, sizeof(buffer), &bytesRead, NULL) && bytesRead > 0)std::cout << "Received data: " << buffer << std::endl;DWORD bytesWritten;if (!WriteFile(hSerial, buffer, bytesRead, &bytesWritten, NULL))std::cout << "Error writing to serial port\n";return 1;}}}CloseHandle(hSerial); // 关闭串口return 0;以上程序打开串口COM1,设置波特率为9600,数据位为8位,停止位为1位。

第六讲串口通信原理及操作流程

第六讲串口通信原理及操作流程

第六讲串口通信原理及操作流程串口通信是一种通过串行数据传输的方式进行通讯的技术。

它广泛应用于计算机与外部设备之间的连接,例如打印机、模块等。

本文将介绍串口通信的原理及操作流程。

一、串口通信原理:串口通信使用串行通信方式,将数据一位一位地传输。

串行通信有两种常见的数据传输标准,即RS-232和RS-485、RS-232是一种点对点的连接方式,它使用一个传输线和一个接收线进行数据传输。

RS-485是一种多点连接方式,它使用一条传输线和多条接收线进行数据传输。

在串口通信中,数据被分为多个字节进行传输。

每个字节由起始位、数据位、校验位和停止位组成。

起始位用于标识数据传输的开始,停止位用于标识数据传输的结束。

数据位用来存储要传输的数据,校验位用于检验数据的正确性。

二、串口通信的操作流程:1.打开串口:首先需要打开串口,即建立与外部设备的连接。

在Windows系统中,可以使用CreateFile函数来打开串口。

该函数需要指定串口的名称和访问权限。

2.配置串口参数:打开串口后,需要配置串口参数。

应根据外部设备的要求设置波特率、数据位、校验位和停止位等参数。

可以使用DCB结构体来配置串口参数。

3.读取数据:配置串口参数后,可以通过ReadFile函数来读取串口接收缓冲区中的数据。

该函数需要指定串口句柄、接收缓冲区和读取的字节数。

4.发送数据:发送数据时,需要将要发送的数据写入串口发送缓冲区。

可以使用WriteFile函数来发送数据。

该函数需要指定串口句柄、发送缓冲区和发送的字节数。

5.关闭串口:在使用完串口后,需要关闭串口以释放资源。

可以使用CloseHandle 函数来关闭串口。

三、串口通信的应用场景:串口通信由于有传输距离长、抗干扰能力强、线路简单等优点,被广泛应用于各个领域。

以下是一些常见的串口通信应用场景:1.打印机:计算机与打印机之间通过串口通信来传输打印任务。

2.模块:许多外部设备(如传感器、Wi-Fi模块等)都通过串口与计算机进行通信。

单片机串口通信原理及实现方法

单片机串口通信原理及实现方法

单片机串口通信原理及实现方法串口通信是指电脑或其他设备通过串行通信接口与外部设备进行数据传输的方式。

在单片机应用中,串口通信是一种常用的方式,能够实现与外部设备的数据交互和控制。

本文将介绍单片机串口通信的原理和实现方法。

一、串口通信原理串口通信采用串行传输方式,即逐位(bit)地传输数据,其中包括一个起始位、一个或多个数据位、一个或多个校验位和一个停止位。

常用的串口通信协议有RS-232、RS-485等。

在单片机串口通信中,主要包括以下几个部分:1. 时钟信号:单片机通过时钟信号来同步数据的传输,确保发送和接收的数据在同一时间段内互相对应。

2. 波特率:波特率是指每秒钟传送的比特数,也称为传输速率。

单片机与外部设备通信时,需要设置相同的波特率,以保证数据传输的准确性。

3. 数据格式:包括起始位、数据位、校验位和停止位。

起始位用于标识数据的开始,通常为逻辑低电平;数据位表示传输的数据长度,常用的有8位和9位;校验位用于检查数据的准确性,常用的有奇偶校验和检验等;停止位表示数据传输的结束,常用的为一个或两个停止位。

4. 控制信号:单片机通过控制信号来控制数据的发送和接收。

常用的控制信号有数据发送使能信号、数据接收使能信号、复位信号等。

二、单片机串口通信的实现方法单片机串口通信的实现方法主要包括以下几个步骤:1. 设置引脚功能:确定单片机的引脚功能,将其配置为串口通信功能。

不同的单片机芯片有不同的引脚功能设置方法,可以参考芯片手册进行配置。

2. 设置波特率:根据通信需求,设置单片机的波特率。

波特率的设置包括计算波特率产生所需的时钟频率和设置相应的控制寄存器。

3. 配置数据格式:根据通信协议,设置数据的格式,包括起始位、数据位、校验位和停止位。

这些设置通常是通过控制寄存器来实现的。

4. 数据发送与接收:通过单片机的串口发送寄存器和接收寄存器进行数据的发送与接收。

发送数据时,将需要发送的数据写入发送寄存器;接收数据时,通过读取接收寄存器获取接收的数据。

串口主从机通信的原理

串口主从机通信的原理

串口主从机通信的基本原理1. 什么是串口通信?串口通信是一种利用串行接口进行数据传输的通信方式。

在计算机和其他外部设备之间,通过串行接口(也称为串口)进行数据的发送和接收。

在串口通信中,存在两个角色:主机和从机。

主机负责发送数据,从机负责接收数据。

通过串口连接,主机可以控制从机,并与其进行数据交互。

2. 串口通信的基本原理2.1. 串口硬件连接串口通信使用的是RS-232标准或RS-485标准的物理接口。

这些标准规定了连接线路、电气特性等方面的要求。

常见的物理连接方式有两种:DB9和DB25。

DB9是一种9针连接器,适用于较小规模的通信;DB25是一种25针连接器,适用于较大规模或需要更多控制信号的通信。

2.2. 数据传输方式在串口通信中,数据是按照位(bit)进行传输的。

每个字节由8个位组成。

传输一个字节时,首先发送起始位(Start Bit),一般为低电平;然后发送8个数据位(Data Bits),由低位到高位依次发送;最后发送停止位(Stop Bit),一般为高电平。

起始位和停止位的作用是标志一个字节的开始和结束,使接收端可以正确识别数据的边界。

2.3. 通信协议串口通信需要使用一种协议来规定数据的格式、传输方式等。

常见的通信协议有UART、SPI和I2C等。

UART(Universal Asynchronous Receiver/Transmitter)是最常用的串口通信协议。

它采用异步传输方式,不需要时钟信号,只需发送方和接收方约定好波特率(Baud Rate)即可。

SPI(Serial Peripheral Interface)是一种同步串行通信协议,适用于在主机和多个从机之间进行高速数据传输。

I2C(Inter-Integrated Circuit)是一种双线制串行总线,适用于连接多个从机到同一个主机,并且可以灵活地扩展从机数量。

2.4. 数据帧在串口通信中,数据被划分为多个帧进行传输。

51单片机串口通信

51单片机串口通信

51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。

而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。

本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。

一、串口通信的原理串口通信是以字节为单位进行数据传输的。

在串口通信中,数据传输分为两个方向:发送方向和接收方向。

发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。

接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。

在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。

其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。

二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。

具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。

b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。

2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。

b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。

c. 清除TI标志位。

3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。

b. 将接收到的数据从SBUF寄存器中读取出来。

c. 清除RI标志位。

三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。

解决方法是在初始化时确保两端的波特率设置一致。

2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。

单片机中的串口通信原理与实现

单片机中的串口通信原理与实现

单片机中的串口通信原理与实现串口通信是一种常用的数字通信方式,广泛应用于单片机领域。

本文将介绍单片机中串口通信的原理和实现方法。

一、串口通信原理串口通信是通过数据线将数据逐位地传输,并根据一定的协议规定传输格式和速率。

在单片机中,常用的串口通信协议有UART和SPI。

1. UART通信UART(Universal Asynchronous Receiver/Transmitter)是一种异步串行通信协议,它通过单线传输数据。

UART通信常用于短距离传输,适用于单片机与外部设备的通信。

UART通信包含以下几个关键参数:- 波特率(Baud Rate):表示每秒传输的比特数,常见的波特率有9600、115200等。

发送和接收双方必须设置相同的波特率。

- 数据位(Data Bits):表示每个字节的位数,常见的数据位有8位。

- 停止位(Stop Bit):表示在每个字节之后发送的停止位的数量,常见的停止位有1位、2位。

- 校验位(Parity Bit):用于检测数据传输中的错误,常见的校验位有无校验位、奇校验位、偶校验位。

UART通信的原理是通过波特率控制传输速率,数据位和停止位控制数据的位数,校验位用于检测传输错误。

2. SPI通信SPI(Serial Peripheral Interface)是一种同步串行通信协议,它通过四线(时钟线、数据线、主从选择线、使能线)传输数据。

SPI通信常用于短距离高速传输,适用于单片机与外部设备的通信。

SPI通信包含以下几个关键参数:- 时钟极性和相位:SPI通信可以选择不同的时钟极性和相位,用于控制数据的传输方式。

- 数据位顺序:SPI通信可以选择先传输最低位还是最高位。

SPI通信的原理是通过时钟信号同步传输数据,数据线上的数据在时钟上升或下降沿进行传输。

二、串口通信实现在单片机中,串口通信的实现需要硬件和软件两部分。

1. 硬件实现硬件上,需要使用UART或SPI模块,并连接相应的引脚。

第六讲 串口通信原理及操作流程

第六讲 串口通信原理及操作流程

1.5串行通信的错误校验 串行通信的错误校验
1、奇偶校验 、 在发送数据时,数据位尾随的1位为奇偶校验位 位为奇偶校验位( 或 )。 在发送数据时,数据位尾随的 位为奇偶校验位(1或0)。 奇校验时,数据中“ 的个数与校验位 的个数与校验位“ 的个数之和应 奇校验时,数据中“1”的个数与校验位“1”的个数之和应 为奇数;偶校验时,数据中“ 的个数与校验位 的个数与校验位“ 的个 为奇数;偶校验时,数据中“1”的个数与校验位“1”的个 数之和应为偶数。接收字符时, 的个数进行校验, 数之和应为偶数。接收字符时,对“1”的个数进行校验, 的个数进行校验 若发现不一致,则说明传输数据过程中出现了差错。 若发现不一致,则说明传输数据过程中出现了差错。 2、代码和校验 、 代码和校验是发送方将所发数据块求和(或各字节异或), 代码和校验是发送方将所发数据块求和(或各字节异或), 产生一个字节的校验字符(校验和)附加到数据块末尾。 产生一个字节的校验字符(校验和)附加到数据块末尾。接 收方接收数据同时对数据块(除校验字节外)求和( 收方接收数据同时对数据块(除校验字节外)求和(或各字 节异或),将所得结果与发送方的“校验和”进行比较, ),将所得结果与发送方的 节异或),将所得结果与发送方的“校验和”进行比较,相 符则无差错,否则即认为传送过程中出现了差错。 符则无差错,否则即认为传送过程中出现了差错。 3、循环冗余校验 、 这种校验是通过某种数学运算实现有效信息与校验位之间的 循环校验,常用于对磁盘信息的传输、 循环校验,常用于对磁盘信息的传输、存储区完整性校验等 这种校验方法纠错能力强,广泛应用于同步通信中。 。这种校验方法纠错能力强,广泛应用于同步通信中。
1.3 串行通信的传输方向
①单工
TXD 发送 RXD 接收

uart串口通信的基本原理和通信过程

uart串口通信的基本原理和通信过程

UART串口通信的基本原理和通信过程UART(Universal Asynchronous Receiver/Transmitter)是一种常见的串口通信协议,用于在计算机和外部设备之间进行数据传输。

本文将详细解释UART串口通信的基本原理和通信过程,并提供一个全面、详细、完整且深入的解释。

1. UART串口通信的基本原理UART串口通信是一种基于异步传输的通信协议,它使用两根信号线(TX和RX)来实现数据的传输。

UART通信的基本原理如下:•数据位:UART通信中的每个字符由一定数量的数据位组成,通常为8位。

每个数据位可以表示一个字节(8位二进制数)。

•停止位:每个字符之后会有一个停止位,用于指示一个字符的结束。

通常情况下,UART通信中的停止位为1个。

•起始位:每个字符之前会有一个起始位,用于指示一个字符的开始。

通常情况下,UART通信中的起始位为1个。

•波特率:UART通信中的波特率(Baud Rate)表示每秒钟传输的比特数。

常见的波特率有9600、115200等。

UART通信使用的是异步传输,即发送端和接收端没有共同的时钟信号。

因此,在通信过程中,发送端和接收端需要事先约定好相同的波特率,以确保数据的正确传输。

2. UART串口通信的通信过程UART串口通信的通信过程包括数据的发送和接收两个步骤。

下面将详细介绍UART串口通信的通信过程。

数据发送过程1.发送端准备数据:发送端需要准备要发送的数据,并将数据存储在发送缓冲区中。

2.发送端发送起始位:发送端在发送数据之前,会先发送一个起始位,用于指示一个字符的开始。

起始位的电平通常为低电平。

3.发送端发送数据位:发送端按照数据位的顺序,将数据位的电平依次发送出去。

每个数据位的电平表示一个二进制位(0或1)。

4.发送端发送停止位:发送端在发送完所有的数据位之后,会发送一个停止位,用于指示一个字符的结束。

停止位的电平通常为高电平。

数据接收过程1.接收端等待起始位:接收端在接收数据之前,会等待接收到一个起始位的电平变化,用于指示一个字符的开始。

串行口通信原理及操作流程

串行口通信原理及操作流程

串行口通信原理及操作流程51单片机的串行口是一个可编程全双工的通信接口,具有UART(通用异步收发器)的全部功能,能同时进行数据的发送和接收,也可以作为同步移位寄存器使用。

51单片机的串行口主要由两个独立的串行数据缓冲寄存器SBUF(发送缓冲寄存器和接收缓冲寄存器)和发送控制器、接收控制器、输入移位寄存器及若干控制门电路组成。

51 单片机可以通过特殊功能寄存器SBUF队串行接收或串行发送寄存器进行访问,两个寄存器共用一个地址99H,但在物理上是两个独立的寄存器,由指令操作决定访问哪一个寄存器。

执行写指令时访问串行发送寄存器;执行读指令时,访问串行接收寄存器。

(接收器具有双缓冲结构,即在接收寄存器中读出前一个已接收到的字节之前,便能接收第二个字节,如果第二个字节已接收完毕,而第一个字节还没有读出,则将丢失其中一个字节,编程时应引起注意。

对于发送器,因为是由cpu控制的,所以不需要考虑。

与串行口紧密相关的一个特殊功能寄存器是串行口控制寄存器SCON,它用来设定串行口的工作方式、接收/发送控制以及状态标志等。

串行口控制寄存器SCON串行口控制寄存器SCON在特殊功能寄存器中,字节地址为98H,可位寻址,单片机复位时SCON全部被清零。

位序号D7D6D5D4D3D2D1D0位符号SM0SM1SM2RENTB8RB8T1R1SM0,SM1为工作方式选择位。

串行口有四种工作方式,它们由SM0、SM1设定。

其中方式一最为常用。

SM2为多机通信控制位。

REN为允许串行接收位。

TB8为方式2、3中方式数据的第九位。

RB8为方式2、2中接收数据的第九位。

TI为发送中断标志位,在方式0时,当串行发送第8位数据结束时,或在其他方式,串行发送停止位的开始时,由内部硬件使TI置一,向CPU发出中断申请。

在中断服务程序中,必须使用软件将其清零,取消此中断申请。

RI为接收中断标志位。

在方式0时,当串行接收第8位数据结束时,或在其他方式,串行接收停止位的中间时,由内部硬件使RI置一,向CPU发出中断申请。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四步
第三步
说出同学B 的名字或学 号
提 问
实例3
老师让学习委员来取作业本的两种方式
(1) 老师等着学习委员来取
(2)
将作业本放在办公桌上,学习委员自己来取
串行通信基础知识
1.1 串行通信与并行通信 1.2 异步通信与同步通信 1.3 串行通信的传输方向 1.4 信号的调制与解调 1.5 串行通信的错误校验 1.6 传输速率与传输距离
TTL 电平
双向仅需2条线
TTL 电平
RS-485是一点对多点的通信接口,一般采用双绞 线的结构。 普通的PC机一般不带RS485接口,因此要使用 RS-232C/RS-485转换器。对于单片机可以 通过芯片MAX485来完成TTL/RS-485的电平 转换。 在计算机和单片机组成的RS-485通信系统中, 下位机由单片机系统组成,上位机为普通的PC机, 负责监视下位机的运行状态,并对其状态信息进 行集中处理,以图文方式显示下位机的工作状态 以及工业现场被控设备的工作状况。系统中各节 点(包括上位机)的识别是通过设置不同的站地 址来实现的。
信号定义
DataA, DataB, GND
1.6 传输速率与传输距离
码元传输速率RB简称传码率,又称符号速率等 。它表示单位时间内传输码元的数目,单位是 波特(Baud),记为B。
• 例如,若1秒内传2400个码元,则传码率为2400B。
数字信号有多进制和二进制之分,但码元速率 与进制数无关,只与传输的码元长度T有关:
1 RB = ( B) T
典型应用: PC + 直连电缆 + Modem
TXD 计 RXD 算 机 甲
TXD RXD 计 算 机 乙
计 算 机 甲
TXD RXD 4 5 6 20
TXD RXD 4 计 5 算 6 机 20 乙
近程通信连接
RS-232C接口存在的问题
1
2
3
传输距离短 ,传输速率 低
有电平偏移
抗干扰能力 差
外同步
自同步
同步通信
SYN SYN SOH 标题 STX 数据块 ETB/ETX 块校验
SOH(01H):表示标题的开始 标题:中包含源地址、目标地址和路由指示等信息 STX(02H),表示传送的数据块开始 组终字符ETB(17H)或文终字符ETX(03H)。 校验码 典型的面向字符的同步规程:IBM的二进制同步规程BSC
电话线
远程通信连接
RS-232 连接类型 I
DTE 信号 TxD RxD RTS CTS DTR DSR DCD GND 接线 DTE信号 TxD RxD RTS CTS DTR DSR DCD GND
典型应用: PC + 交叉电缆 + PC
RS-232 连接类型 II
DTE 信号 TxD RxD RTS CTS DTR DSR DCD GND 接线 DCE 信号 RxD TxD CTS RTS DSR DTR DCD GND
串行通信与并行通信
在计算机系统中,CPU和外部通信有两种通信方式:并行通 信和串行通信。 并行通信,即数据的各位同时传送;串行通信,即数据一位一 位顺序传送。
发送
GND (a)

计算机1
计算机2 或外设 GND
计算机1 GND
接收
计算机2 或外设 GND
(b)
并行通信
串行通信
串行通信 通信距离 远
RS-422A接口
SN75174 +5V SN75175
TTL 电平
+5V
双向需4条线
TTL 电平
SN75175
SN75174
RS-422A输出驱动器为双端平衡驱动器。如果其中一条线为逻辑 “1”状态,另一条线就为逻辑“0”,比采用单端不平衡驱动对电压 的放大倍数大一倍。 差分电路能从地线干扰中拾取有效信号,差分接收器可以分辨 200mV以上电位差。若传输过程中混入了干扰和噪声,由于差分放 大器的作用,可使干扰和噪声相互抵消。因此可以避免或大大减弱地 线干扰和电磁干扰的影响。 RS-422A传输速率(90Kbps)时,传输距离可达1200米。
2.3 RS-485接口
RS-485是RS-422A的变型 :RS-422A用于全双工,而 RS-485则还可用于半双工。 RS-485是一种多发送器标准 ,在通信线路上最多可以使用 32 对差分驱动器/接收器。 RS-485的信号传输采用 两线间的电压来表示逻辑1和逻 辑0。由于发送方需要两根传输 线,接收方也需要两根传输线 。传输线采用差动信道,所以 它的干扰抑制性极好,又因为 它的阻抗低,无接地问题,所 以传输距离可达1200米,传 输速率可达1Mbps。
并行通信 近
抗干扰能力
传输速度 成本

慢 低

快 高
异步通信与同步通信
1.异步通信 异步通信是指通信的发送与接收设备使 用各自的时钟控制数据的发送和接收过程。 为使双方的收发协调,要求发送和接收设 备的时钟尽可能一致。
间隙任意 接 收 10100100 设 备
1 0 10100100 1 0 11100110 1
1.3 串行通信的传输方向
①单工
发送 TXD RXD 接收
②半双工
发 送 接 收 TXD / RXD
接 收
发 送
③全双工
发送 TXD RXD RXD TXD
接收
发送
接收
1.4 信号的调制与解调
调制器(Modulator):把数字信号转换成模拟信 号,然后送到通信线路上去。 解调器(Demodulator):把从通信线路上收到的 模拟信号转换成数字信号。 调制解调器MODEM:由于通信是双向的,调制器和 解调器合并在一个装置中。
串行接口或终端直接传送串行信息位流的最大距 离与传输速率及传输线的电气特性有关。当传输 线使用每0.3m(约1英尺)有50PF电容的非平 衡屏蔽双绞线时,传输距离随传输速率的增加而 减小。当比特率超过1000 bps 时,最大传输距 离迅速下降,如9600 bps 时最大距离下降到只 有76m(约250英尺)。
RS-232信号传输及信号波形
功能特性
X=213 -N
X=216 -N
X=213 -N
X=213 -N
X=216 -N
过程特性
过程特性规定了信号之间的时序关系,以便正 确地接收和发送数据 。
TXD 计 算 机 RXD RTS DSR M O D E M M O D E M TXD RXD RTS DSR 计 算 机
同步通信
建立发送方时钟对接收方时钟的直接控制,使 双方达到完全同步。此时,传输数据的位之间的距 离均为“位间隔”的整数倍,同时传送的字符间不 留间隙,即保持位同步关系,也保持字符同步关系。
计 算 机 甲
0 1 1 0 1
数据 时钟
时钟
ห้องสมุดไป่ตู้
计 算 机 乙
计 算 机 甲
数据
0 1 1 0 1
数据+时钟
计 算 机 乙
RS-232C RS-232C
电话网 DTE DCE DCE DTE
调制解调的方式有多种,这里调频为例: 通过数字信号对二个不同频率的正弦载波信号的键 控和信号的合成实现。
高频 正弦 信号 模拟 电子开 关 频带信 号输出 低频 正弦 信号 数字信号 10101010 模拟 电子开 关 合成
1
0
1
2 串行通信总线标准及其接口
2.1 RS-232C接口
用于串行通讯的标准。 规定采用一个25 个脚的DB-25 连接器 对连接器的每个引脚的信号加以规定 对各种信号的电平加以规定。 IBM 将RS232 简化成了DB-9 连接器 工业控制的RS-232 一般只使用 RXD、TXD、GND 三条线。
第六讲串口通信原理及操作流程
曾铁军
主要内容
1 2
串行通信基础知识
串行通信总线标准及其接口
3 4
MCS-51的串行接口
51单片机串口应用举例
实例1
信息编码:文字 信息载体:文字、 纸张 信息传送方式: 邮递员
实例2
第一步 第二步 提问 说出同学A的名字或学号
课堂上老师先让同学A、 再让同学B回答问题的 过程?
面向位的同步格式 :
8位 01111110 8位 地址场 8位 控制场 ≥0位 信息场 16位 校验场 8位 01111110
将数据块看作数据流,并用序列01111110作为开始和结 束标志。为了避免在数据流中出现序列01111110时引起 的混乱,发送方总是在其发送的数据流中每出现5个连续的1 就插入一个附加的0;接收方则每检测到5个连续的1并且其 后有一个0时,就删除该0。 典型的面向位的同步协议如ISO的高级数据链路控制规程 HDLC和IBM的同步数据链路控制规程SDLC。 同步通信的特点是以特定的位组合“01111110”作为 帧的开始和结束标志,所传输的一帧数据可以是任意位。所 以传输的效率较高,但实现的硬件设备比异步通信复杂。
1
13
1
5
14
25
6
9
笔记本通过本设备 可连接到串口鼠标、各种串口设备, PLC、POS、门禁、检测、 通讯用仪器仪表等 串口232接口的外设。
电气特性、逻辑电平
EIA-RS-232C对电气特性、逻辑电平和各种信号线功能 都作了规定。 在TxD和RxD上:逻辑1=-3V~-15V 逻辑0=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V
RS-232 & RS-422 & RS-485 比较
相关文档
最新文档