(完整版)通原第4章信道
合集下载
通信原理(樊昌信)第4章信道
有线信道
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
结构:
纤芯 包层
按折射率分类:
阶跃型 梯度型
按模式分类:
多模光纤 单模光纤
无线信道
视线传播 line-of-sight
d
频率: > 30 MHz
h
发射
特性:直线传播、穿透电离层 天线 r
用途:卫星和外太空通信
传播途径
d
D
接收 天线
r
超短波及微波通信
视线传播方式
距离:与天线高度有关
h D2 D2 (m) 8r 50
D 为收发天线间距离(km)
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
表 有线信道的线路种类、构造、特征和主要用途
线路种类 双绞线
同轴电缆 光纤
构造
特征
主要用途
便宜、构造简单,
传输频带宽,有漏 话现象,容易混入 杂音
电话用户线 低速LAN
价格稍高,传输
频带宽,漏话感应 少,分支、接头容 易
CATV分配电缆 高速LAN
低损耗,频带宽, 国际间主干线
重量轻,直径小,
国内城市间主
对流层:约 0 ~10 km 平流层:约 10~60 km 电离层:约 60~400 km
60 km
10 km 0 km
电磁波的传播方式:
地波 ground- wave
频率: < 2 MHz 特性:有绕射能力 距离:数百或数千米 用于:AM广播
通信原理(第四章)
27
第4章 信 道 章
四进制编码信道模型
0 0
1 送
端
发
1
收 端
接
2
2
3
3
28ቤተ መጻሕፍቲ ባይዱ
第4章 信 道 章
4.4 信道特性对信号传输的影响 恒参信道的影响 恒参信道对信号传输的影响是确定的或者 是变化极其缓慢的。因此,其传输特性可以 等效为一个线性时不变网络。 只要知道网络 的传输特性,就可以采用信号分析方法,分 析信号及其网络特性。 线性网络的传输特性可以用幅度频率特 性和相位频率特性来表征。 现在我们首先讨论 理想情况下的恒参信道特性。
平流层 60 km 对流层 10 km 0 km 地 面
6
第4章 信 道 章
电离层对于传播的影响 反射 散射
7
第4章 信 道 章
电磁波的分类: 电磁波的分类: 地波 频率 < 2 MHz 有绕射能力 距离: 距离:数百或数千千米 天波 频率: 频率:2 ~ 30 MHz 特点: 特点:被电离层反射 一次反射距离: 一次反射距离:< 4000 km 寂静区: 寂静区:
13
第4章 信 道 章
4.2 有线信道
明线
14
第4章 信 道 章
对称电缆:由许多对双绞线组成, 对称电缆:由许多对双绞线组成,分非屏蔽 (UTP)和屏蔽(STP)两种。 )和屏蔽( )两种。
塑料外皮
双绞线( 5对)
图4-9 双绞线
15
第4章 信 道 章
同轴电缆
16
第4章 信 道 章
n2 n1 折射率
25
第4章 信 道 章
4.3.2 编码信道模型
调制信道对信号的影响是通过k(t)和 使已调信号发生波形 调制信道对信号的影响是通过 和n(t)使已调信号发生波形 失真。 失真。 编码信道对信号的影响则是一种数字序列的变换, 编码信道对信号的影响则是一种数字序列的变换,即将 一种数字序列变成另一种数字序列。 一种数字序列变成另一种数字序列。误码 输入、输出都是数字信号, 输入、输出都是数字信号,关心的是误码率而不是信号 失真情况,但误码与调制信道有关, 失真情况,但误码与调制信道有关,无调制解调器时误码由 发滤波器设计不当及n(t)引起 引起。 收、发滤波器设计不当及 引起。 编码信道模型是用数字的转移概率来描述。 编码信道模型是用数字的转移概率来描述。
通信原理第4章信道
1
第4章 信道
4.0 信道的定义及分类 4.1 无线信道 4.2 有线信道 4.3 信道数学模型 4.4 信道特性及其对信号传输的影响 4.5 信道中的噪声 4.6 信道容量
2
本章教学目的:了解各种实际信道、信
道的数学模型和信道容量的概念。
本章的讨论思路:通过介绍实际信道的例
子,在此基础上归纳信道的特性,阐述信道的 数学模型,最后简介了信道容量的概念。
信道模型的分类: 调制信道 编码信道
信 息 源 信 源 编 码 加 密 信 道 编 码 数 字 调 制 数 字 解 调 信 道 译 码 解 密 信 源 译 码 受 信 者
信道 噪声源
调制信道 编码信道
31
4.3.1 调制信道模型
有一对(或多对)输入端和一对(或多对)输出端; 绝大多数的信道都是线性的,即满足线性叠加原理;
41
相位-频率畸变
指相位-频率特性偏离线性关系所引起的畸变。
1、理想相频特性是一直线
群延迟-频率特性
|H( )|
d ( ) ( ) d
( ) td
O (b) td
K0
O (a)
O (c)
42
2、实际电话信道的群延迟特性 一种典型的音频电话信道的群延迟特性。
25
光纤呈圆柱形,由芯、封套和外套三部分组成(如 图所示)。芯是光纤最中心的部分,它由一条或多 条非常细的玻璃或塑料纤维线构成,每根纤维线都 有它自己的封套。由于这一玻璃或塑料封套涂层的 折射率比芯线低,因此可使光波保持在芯线内。环 绕一束或多束有封套纤维的外套由若干塑料或其它 材料层构成,以防止外部的潮湿气体侵入,并可防 止磨损或挤压等伤害。
第4章 信道
4.0 信道的定义及分类 4.1 无线信道 4.2 有线信道 4.3 信道数学模型 4.4 信道特性及其对信号传输的影响 4.5 信道中的噪声 4.6 信道容量
2
本章教学目的:了解各种实际信道、信
道的数学模型和信道容量的概念。
本章的讨论思路:通过介绍实际信道的例
子,在此基础上归纳信道的特性,阐述信道的 数学模型,最后简介了信道容量的概念。
信道模型的分类: 调制信道 编码信道
信 息 源 信 源 编 码 加 密 信 道 编 码 数 字 调 制 数 字 解 调 信 道 译 码 解 密 信 源 译 码 受 信 者
信道 噪声源
调制信道 编码信道
31
4.3.1 调制信道模型
有一对(或多对)输入端和一对(或多对)输出端; 绝大多数的信道都是线性的,即满足线性叠加原理;
41
相位-频率畸变
指相位-频率特性偏离线性关系所引起的畸变。
1、理想相频特性是一直线
群延迟-频率特性
|H( )|
d ( ) ( ) d
( ) td
O (b) td
K0
O (a)
O (c)
42
2、实际电话信道的群延迟特性 一种典型的音频电话信道的群延迟特性。
25
光纤呈圆柱形,由芯、封套和外套三部分组成(如 图所示)。芯是光纤最中心的部分,它由一条或多 条非常细的玻璃或塑料纤维线构成,每根纤维线都 有它自己的封套。由于这一玻璃或塑料封套涂层的 折射率比芯线低,因此可使光波保持在芯线内。环 绕一束或多束有封套纤维的外套由若干塑料或其它 材料层构成,以防止外部的潮湿气体侵入,并可防 止磨损或挤压等伤害。
通信原理第四章 (樊昌信第七版)PPT课件
则接收信号为
2 1
fo(t) = K f(t - 1 ) + K f(t - 2 ) 相对时延差
F o () = K F () e j 1 + K F () e j ( 1 )
信道传输函数
H()F F o(( ))K Keejj 11((1 1 eejj ))
常数衰减因子 确定的传输时延因子 与信号频率有关的复因子
课件
精选课件
1
第4章 信道
通信原理(第7版)
樊昌信 曹丽娜 编著
精选课件
2
本章内容:
第4章 信道
信道分类
信道模型
恒参/随参信道特性对信号传输的影响
信道噪声
信道容量
定义·分类
模型·特性
影响·措施
信道噪声 信道容量
精选课件
3
概述
信道的定义与分类
n 狭义信道:
—传输媒质 有线信道 ——明线、电缆、光纤 无线信道 ——自由空间或大气层
1. 传输特性
H ()H ()ej ()
H() ~ 幅频特性
()~ 相频特性
2. 无失真传输
H()Kejtd
H() K
()td
精选课件
27
n 无失真传输(理想恒参信道)特性曲线:
恒参信道
|H()|
K
() td
td
0
H() K
幅频特性
0
0
()td
()d() d
td
相频特性
群迟延特性
精选课件
28
n 理想恒参信道的冲激响应:
恒参信道
H()Kejtd
h(t)K(ttd)
若输入信号为s(t),则理想恒参信道的输出:
通信原理第四章ppt课件
通信原理第四章
西安电子科技大学 通信工程学院
课件制作:曹丽娜
信道的定义
通信系统中的信道是指发送设备到接收设备之间信号传 输的通道,是通信系统的重要组成部分
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
按照传输媒介的不同
概述
信道的定义与分类
无线信道 ——自由空间或大气层 有线信道 ——明线、电缆、光纤
有线信道
信道频带在几百MHz至1GHz左右 主要应用: 长途通信干线,有线电视等
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
有线信道
按照系统模型中研究对象的不同:
编
调制信道
码 器
——研究调制/解调问题
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
编码信道
——研究编码/译码问题 恒参信道
按照信道中冲击响 应是否随时间变化
——特性参数变化缓慢,视为恒定值 随参信道
——特性参数随时间变化
§4.1
无线信道
光作为一种特殊的电磁波, 在人造介质(光纤)中传播, 实现大容量,高可靠性的通信 主要应用:
电信网和移动网的骨干网
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
§4.3
信道数学模型
按照系统模型中研究对象的不同:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
西安电子科技大学 通信工程学院
课件制作:曹丽娜
信道的定义
通信系统中的信道是指发送设备到接收设备之间信号传 输的通道,是通信系统的重要组成部分
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
按照传输媒介的不同
概述
信道的定义与分类
无线信道 ——自由空间或大气层 有线信道 ——明线、电缆、光纤
有线信道
信道频带在几百MHz至1GHz左右 主要应用: 长途通信干线,有线电视等
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
有线信道
按照系统模型中研究对象的不同:
编
调制信道
码 器
——研究调制/解调问题
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
编码信道
——研究编码/译码问题 恒参信道
按照信道中冲击响 应是否随时间变化
——特性参数变化缓慢,视为恒定值 随参信道
——特性参数随时间变化
§4.1
无线信道
光作为一种特殊的电磁波, 在人造介质(光纤)中传播, 实现大容量,高可靠性的通信 主要应用:
电信网和移动网的骨干网
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
§4.3
信道数学模型
按照系统模型中研究对象的不同:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
第4章_信道
32
4.3 信道的数学模型
内蒙古大学电子信息工程学院 《通信原理》
4.3.2 编码信道模型
由于信道噪声或其它因素的影响,将导致输出数字序列发生 错误,因此输入输出数字序列之间的关系可以用一组 转移概率 来表征。 转移概率:在二进制系统中,就是“0”转移为“1”的 概率和“1”转移为“0”的概率。
8
4.1 无线信道
内蒙古大学电子信息工程学院 《通信原理》
地波
频率在2MHz以下的电磁波,趋于沿弯曲的地球表面传 播,有一定的绕射能力。 地波在传播过程中要不断损失能量,而且频率越高损 失越大,因此传播距离不大,一般在数百千米到数千千米。
传播路径 传播路径
发射天线 发射天线
地面 地面
接收天线 接收天线
导体 绝缘层
图4-9 双绞线
21
4.2 有线信道
内蒙古大学电子信息工程学院 《通信原理》
传输电信号的有线信道主要有三类:
明线、对称电缆和同轴电缆。 同轴电缆
由内外两根同心圆柱导体构成,两根导体之间用绝缘体 隔离开。内导体多为实心导线,外导体是一根空心导电管或 金属编织网,在外导体外面有一层绝缘保护层。其优点是抗 干扰特性好。
增大视线传播距离的途径 卫星中继(卫星通信)
利用三颗地球同步卫星可以覆盖全球,从而实现全球通信。
利用卫星作为中继站能够增大一次 转发的距离,但是却增大了发射功 率和信号传输的延迟。 此外,发射卫星也是一项巨大的工 程。 故开始研究使用平流层通信。 图4-5 卫星中继
15
4.1 无线信道
发射天线 发射天线
地面 地面
接收天线 接收天线
图4-4
无线电中继
特点:容量大、发射功率小、稳定可靠等。
【资料】通信原理课件第4章-信道与噪声资料汇编
结论: ●这样信道对信号的影响可归纳为两点:一是乘性干扰k(t) (依赖于网络的特性,只能用随机过程来表示),二是加 性干扰n(t)。 ●不同特性的信道,仅反映信道模型有不同的k(t)及n(t)。 ●根据信道中k(t)的特性不同,可以将信道分为: *恒参信道: k(t)~t 不变或慢变; *变参信道(随参信道): k(t)~t 随机快变。
4
第4章 信道与噪声
4.2 信道的数学模型
1.调制信道模型
调制信道的范围是从调制器输出端到解调器输入端。 (1)定义:传输已调信号的信道。
研究的问题:信道输出信号与输入信号之间的关系。 (2)通过对调制信道进行大量的分析研究,发现它们有如 下共性 :
● 有一对(或多对)输入端,一对(或多对)输出端; ●绝大部分信道是线性的,即满足叠加原理; ●信号通过信道需要一定的迟延时间; ●信道对信号有损耗(固定损耗或时变损耗); ●即使没有信号输入,在信道的输出端仍可能有一定的 功率输出(噪声)。
2020/7/14
通信原理
5
第4章 信道与噪声
(3)模型
ei1(t)
时变线
ei(t)
性网络
e0(t)
ei2(t) . .
eim(t)
时变 线性 网络
e01(t)
e02(t) . . e0n(t)
对于二对端的(信a)道模型来说,其输出与输入( b之) 间的关系式可 表示成:
e0(t图) 2- 2f图[e图i(图t)图] 图 n 图(t)
() d() d
H ( ) K
0
() t 0 0
( )
( )
0
t 0
图 a图
图 b图
图 c图
图4-A 图 图 图 图 -图 图 图 (a)图 图 -图 图 图 (b)图 图 图 图 -图 图 图 图 (c)
4
第4章 信道与噪声
4.2 信道的数学模型
1.调制信道模型
调制信道的范围是从调制器输出端到解调器输入端。 (1)定义:传输已调信号的信道。
研究的问题:信道输出信号与输入信号之间的关系。 (2)通过对调制信道进行大量的分析研究,发现它们有如 下共性 :
● 有一对(或多对)输入端,一对(或多对)输出端; ●绝大部分信道是线性的,即满足叠加原理; ●信号通过信道需要一定的迟延时间; ●信道对信号有损耗(固定损耗或时变损耗); ●即使没有信号输入,在信道的输出端仍可能有一定的 功率输出(噪声)。
2020/7/14
通信原理
5
第4章 信道与噪声
(3)模型
ei1(t)
时变线
ei(t)
性网络
e0(t)
ei2(t) . .
eim(t)
时变 线性 网络
e01(t)
e02(t) . . e0n(t)
对于二对端的(信a)道模型来说,其输出与输入( b之) 间的关系式可 表示成:
e0(t图) 2- 2f图[e图i(图t)图] 图 n 图(t)
() d() d
H ( ) K
0
() t 0 0
( )
( )
0
t 0
图 a图
图 b图
图 c图
图4-A 图 图 图 图 -图 图 图 (a)图 图 -图 图 图 (b)图 图 图 图 -图 图 图 图 (c)
精品课件-通信原理(第二版)(黄葆华)-第4章
y(t) kx(t td )
(4-3-1)
式中,k和td均为常数,k是衰减(或放大)系数,td为固定的 时延。
第4章 信道
对上式进行傅氏变换,得到
Y ( f ) F y(t) F kx(t td ) k X ( f )e j2 ftd
因此,传输特性为
H ( f ) Y ( f ) k e j2 ftd H ( f ) e j( f ) X( f )
第4章 信道
调制信道的共性如下: (1) 有一对(或多对)输入端和一对(或多对)输出端。 (2) 绝大多数的信道都是线性的,即满足线性叠加原理。 (3) 信号通过信道具有一定的延迟时间,而且它还会受到固 定的或时变的损耗。 (4) 即使没有信号输入,在信道的输出端仍可能有一定的噪 声输出。 根据上述共性,我们可以用一个二对端(或多对端)的时变线 性网络来表示调制信道,该网络称为调制信道模型,如图4.2.2所 示。
P(0 / 0) 1 P(1/ 0)
P(1/1) 1 P(0 /1)
Pe P(0)P(1/ 0) P(1)P(0 /1)
第4章 信道
图4.2.3 二进制编码信道模型
第4章 信道
4.3 恒参信道特点及其对信号传输的影响
1.无失真传输 无失真传输是指信号通过信道后波形形状并未发生改变, 即输出信号的波形与输入信号波形相比只是成比例地缩小(或 放大)和时间上的延迟。因此,无失真传输时,输入输出信号
(4-3-2)
式(4-3-2)表明,要保证信号通过信道不产生失真,信道传 输特性必须具备下列两个条件:
(1)幅频特性为一条水平直线,即|H(f)|=k(常数)。
第4章 信道
(2)相频特性是一条通过原点且斜率为2πtd的直线, 或者其群时延特性是一条水平直线(常数)。即
通信原理新讲稿第4章信道
23
4.5 信道中的噪声
热噪声 来源:来自一切导体中电子的热运动。 频率范围:均匀分布在大约 0 ~ 1012 Hz。 热噪声电压有效值:V 4kTRB (V)
k = 1.38 10-23(J/K) - 波兹曼常数; T - 热力学温度(ºK); R - 阻值(); B - 带宽(Hz)。性质:高斯白噪声
发送xi时收到yj所获得的信息量为
[ -log2P(xi)] - [-log2P(xi /yj)] xi的信息量 - 收到yj后xi的信息量 对所有的xi和yj取统计平均值,得到
n
m
n
P(xi ) log 2 P(xi ) [ P( y j ) P(xi / y j ) log 2 P(xi / y j )]
着重分析
18
4.4 信道特性对信号传输的影响
多径效应分析:
发射信号为 Acos0t
接收信号为
第i条路径信号延时
n
n
R(t) i (t)cos0[t i (t)] i (t)cos[0t i (t)]
i1
i1
第i条路径接收信号振幅
n
n
i (t)cosi (t)cos0t i (t)sin i (t)sin 0t
通过线性系统的分析方法。 无失真条件:
振幅~频率特性:为水平直线时无失真 相位~频率特性:过原点的直线 群时延: () d 为常数。
d
17
4.4 信道特性对信号传输的影响
恒参信道对信号传输的影响: 频率失真 相位失真 非线性失真: 其他失真:(频率偏移、相位抖动… )
变参信道对信号传输的影响 衰减变化(衰落)、 时延变化、多径。
24
4.5 信道中的噪声
热噪声 来源:来自一切导体中电子的热运动。 频率范围:均匀分布在大约 0 ~ 1012 Hz。 热噪声电压有效值:V 4kTRB (V)
k = 1.38 10-23(J/K) - 波兹曼常数; T - 热力学温度(ºK); R - 阻值(); B - 带宽(Hz)。性质:高斯白噪声
发送xi时收到yj所获得的信息量为
[ -log2P(xi)] - [-log2P(xi /yj)] xi的信息量 - 收到yj后xi的信息量 对所有的xi和yj取统计平均值,得到
n
m
n
P(xi ) log 2 P(xi ) [ P( y j ) P(xi / y j ) log 2 P(xi / y j )]
着重分析
18
4.4 信道特性对信号传输的影响
多径效应分析:
发射信号为 Acos0t
接收信号为
第i条路径信号延时
n
n
R(t) i (t)cos0[t i (t)] i (t)cos[0t i (t)]
i1
i1
第i条路径接收信号振幅
n
n
i (t)cosi (t)cos0t i (t)sin i (t)sin 0t
通过线性系统的分析方法。 无失真条件:
振幅~频率特性:为水平直线时无失真 相位~频率特性:过原点的直线 群时延: () d 为常数。
d
17
4.4 信道特性对信号传输的影响
恒参信道对信号传输的影响: 频率失真 相位失真 非线性失真: 其他失真:(频率偏移、相位抖动… )
变参信道对信号传输的影响 衰减变化(衰落)、 时延变化、多径。
24
《通信原理》第4章
时间:
2学时
一、随参数信道举例
随参信道包括: 电离层反射信道; 超短波流星余迹散射信道;
超短波电离层散射。
以及超短波视距绕射等传输媒质所分别构
成的调制信道。为了分析随参信道的一般特性,
我们主要介绍短波电离层信道,它是个典点
层 名 D 高度(km) 电子密度Ne (电子数/m3) 109 特点 出现在太阳升起时,消失在太阳降落 后;Ne不足以反射短波,对电波吸收 衰减远大于其它层,又称吸收层。 白天Ne较大,可以反射频率高于 1.5MHz的电波;夜间Ne很小,对短波 传播基本不起作用。
60~90
E
F1
100~120
170~220
5109~1011
41011
白天存在,夜间消失,常出现于夏季。
Ne白天大,夜间降低一个数量级,均 足以反射短波电波,对短波传播最为 重要,习惯称反射层。
F2
225~450
1011~21012
2.电离层对电波传播的影响
① 电离层对电波的吸收衰减
当电波入射到电离层后,自由电子在电波 的作用下作强迫运动,与处于热运动中的其它 分子、离子碰撞而损失能量,从而使电波受到 衰减,这种现象称之为电离层吸收。
输出端;
(2)绝大多数的信道都是线性的,即满足叠加 原理; (3)信号通过信道具有一定的迟延时间,而且 它还会受到(固定的或时变的)损耗;
(4)即使没有信号输入,在信道的输出端仍有
一定的功率输出(噪声)。
e i1 ( t )
ei(t)
时变线 性网络
eo1 (t)
时 变 线 性 网 络
eo (t )
制成的细丝,它主要由纤芯和包层构成。
纤芯 包层
通信原理第4章
P(0 / 0) P(1 / 0)
0 接收端
1
1
P(1 / 1)
图4-13 二进制编码信道模型
P(0 / 0)和P(1 / 1) - 正确转移概率 P(1/ 0)和P(0 / 1) - 错误转移概率
散射传播 电离层散射 机理 - 由电离层不均匀性引起 频率 - 30 ~ 60 MHz 距离 - 1000 km以上 对流层散射 机理 - 由对流层不均匀性(湍流)引起 频率 - 100 ~ 4000 MHz 最大距离 < 600 km
有效散射区域
地球
图4-7 对流层散射通信
h
10
第4章 信 道
第4章 信 道
n2 n1 折射率
光纤
结构
(a)
纤芯 包层
n2 n1 折射率
Hale Waihona Puke 按折射率分类 (b) 阶跃型
梯度型 按模式分类
n2 n1 折射率
125
多模光纤
7~10
(c)
单模光纤
单模阶跃折射率光纤
h 图4-11 光纤结构示意图
16
第4章 信 道
损耗与波长关系
1.31 m 1.55 m
0.7
0.9
1.1
1.3
1.5
1.7
光波波长(m)
图4-12光纤损耗与波长的关系
损耗最小点:1.31与1.55 m
h
17
第4章 信 道
4.3 信道的数学模型
信道模型的分类:
调制信道 编码信道
信 息 源
信 源 编
码
加 密
信 道 编
码
数 字 调
制
信道
数 字 解 调
信 道 译
通信原理(樊昌信)第4章信道
i1
根据概率论中心极限定理:当 n
足够大时,x(t)和y(t) 趋于正态分布。
西安电子科技大学 通院
发送信号
接收信号
s(t)Acosct r(t)
0
结论
fc
f
f
0
fc
f
我们更关心的问题:
多径效应
设两条路径的信道为
多径效应
f (t)
传输衰减均为 K
fo(t)
第4章
信道
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
概述
信道的定义与分类
信道的定义:信道是指以传输媒质为基础的信号通道。 信道的分类:狭义信道:仅是指信号的传输媒质;
广义信道:不仅是指传输媒质,而且包括通 信系统中的一些转换装置。
信道的功能:将信号从发送端传送到接收端。
无感应,无漏话
干线高速LAN
§4.3
信道数学模型
信道模型的分类:
调制信道 编码信道
信 息 源
信 源 编
码
加 密
信 道 编
码
数
字 调
信道
制
数 字 解 调
信 道 译
码
解 密
信 源 译
码
受 信 者
噪声源
调制信道 编码信道
§4.3.1 调制信道模型
模型:
叠加有噪声的线性时变/时不变网络:
共性:
有一对(或多对)输入端和输出端 大多数信道都满足线性叠加原理 对信号有固定或时变的延迟和损耗 无信号输入时,仍可能有输出(噪声 n(t) )
1880年纽约街貌
对称电缆
有线信道
由多对
根据概率论中心极限定理:当 n
足够大时,x(t)和y(t) 趋于正态分布。
西安电子科技大学 通院
发送信号
接收信号
s(t)Acosct r(t)
0
结论
fc
f
f
0
fc
f
我们更关心的问题:
多径效应
设两条路径的信道为
多径效应
f (t)
传输衰减均为 K
fo(t)
第4章
信道
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
概述
信道的定义与分类
信道的定义:信道是指以传输媒质为基础的信号通道。 信道的分类:狭义信道:仅是指信号的传输媒质;
广义信道:不仅是指传输媒质,而且包括通 信系统中的一些转换装置。
信道的功能:将信号从发送端传送到接收端。
无感应,无漏话
干线高速LAN
§4.3
信道数学模型
信道模型的分类:
调制信道 编码信道
信 息 源
信 源 编
码
加 密
信 道 编
码
数
字 调
信道
制
数 字 解 调
信 道 译
码
解 密
信 源 译
码
受 信 者
噪声源
调制信道 编码信道
§4.3.1 调制信道模型
模型:
叠加有噪声的线性时变/时不变网络:
共性:
有一对(或多对)输入端和输出端 大多数信道都满足线性叠加原理 对信号有固定或时变的延迟和损耗 无信号输入时,仍可能有输出(噪声 n(t) )
1880年纽约街貌
对称电缆
有线信道
由多对
第四章《通信原理》信道
理想无失真信道, 理想无失真信道,它的
H ( jω ) = ke
jω t d
H ( jω ) = k 幅频特性 (ω ) = ωt d 相频特性
实际的信道往往不能满足这些要求。例如电话信号 实际的信道往往不能满足这些要求。 的频带在300Hz 3400Hz范围内 300Hz范围内; 的频带在300Hz-3400Hz范围内;而电话信道的幅频特性 和相频特性示于下图。
调制信道 编码信道
1、调制信道 指从调制器输出到解调器输入端的所有变换装置 及传输媒介。因为从调制解调角度而言, 及传输媒介。因为从调制解调角度而言,调制信道仅 对已调信号进行传输,因此可视为一个整体。 对已调信号进行传输,因此可视为一个整体。
2、编码信道 、 指从编码器输出到译码器输入端的所有变换装置 及传输媒介。因为从编译码的角度而言, 及传输媒介。因为从编译码的角度而言,它们之间的 一切环节只起了传输数字信号的作用, 一切环节只起了传输数字信号的作用,因此可视为一 个整体。 个整体。
第四章 信道
在讲通信系统模型中我们知道, 在讲通信系统模型中我们知道,信道是信息传 输的媒介。它可分为两大类:有线信道和无线信道。 输的媒介。它可分为两大类:有线信道和无线信道。 传统的固定电话网用有线信道作为传输媒介。 传统的固定电话网用有线信道作为传输媒介。而无 线电广播则是用无线信道传播电台节目。 线电广播则是用无线信道传播电台节目。 信号在信道中传输,一方面受信道特性的影响; 信号在信道中传输,一方面受信道特性的影响; 另一方面还要受到信道中噪声的影响。 另一方面还要受到信道中噪声的影响。本章简单介 绍信道特性和信道中的噪声, 绍信道特性和信道中的噪声,以及信道特性对信号 传输的影响。 传输的影响。
一、加性噪声的分类
通信原理_第四章 信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
短波电离层反射信道 (1) 传播路径
地面高度为60km — 400km
反射层 入射角φo 4000km D F2 F1 E 吸收层
地球
■ □ □ □
电离层: 各个层次的高度、厚度、电子密度等都会随时间变化。 一次或多次反射的距离也会发生变化,且与入射角有关。 不同层次(F1、F2)的不同高度上都会产生反射。
通信原理
4.1 无线信道
第四章
信
道
东北大学网
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
一 地球大气层的结构:
对流层:地面上 0 ~ 10 km 平流层:约10 ~ 60 km 电离层:约60 ~ 400 km
60 km 对流层 10 km 0 km 地 面 电离层
典型的模拟信道是调制信道。 典型的数字信道是编码信道。
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
引言(调制信道与编码信道) 调制信道与编码信道分别是模拟信道与数字信道的 典型例子。
自编码器
调 制 器
发 送 转 换 器
传输媒体 调制信道 编码信道
第四章
信
道
东北大学网
通信卫星
卫星中继信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
通信原理 第四章信道 ppt课件
§4.4 信道特性对信号传输的影响 一、恒参信道
举例:各种有线信道和部分无线信道,如卫星通 信链路信道,微波中继链路信道,…
恒参信道 实质是 非时变线性网络 信号通过 线性系统的分析方法(假设输入源这确知信号)
ei( t)h(t)
eo(t)=ei(t)*h(t)+n(t)
n(t)
下面首先介绍一种理想的恒参信道。
有效散射区域
地球
通信原理 第四章信道 图4-7 对流层散射通信 12
阜阳师范学院物电学院
流星流星余迹散射
流星余迹
图4-8 流星余迹散射通信
流星余迹特点 - 高度80 ~ 120 km,长度15 ~ 40 km
存留时间:小于1秒至几分钟
频率 - 30 ~ 100 MHz
距离 - 1000 km以上
特点 - 低速存储、高速突发、断续传输阳师范学院物电学院
•架空明线:架空明线,即在电线杆上架设的互相平行而绝
缘的裸线,它是一种在20世纪初就已经大量使用的通信介质。
•双绞线:双绞线又称为双扭线,它是由若干对且每对有两
条相互绝缘的铜导线按一定规则绞合而成。采用这种绞合结
(2) 对信号在时间上产生固定的迟延。
这种情况也称信号是无失真传输。
通信原理 第四章信道
28
阜阳师范学院物电学院
理想信道的幅频特性、 相频特性和群迟延—频率特性
|H(w)|
K0
j (w) w td
t w
td
O
w
a 幅频特性 性
O
w
b 相频特性
O
w
c 群迟延特
理想恒参信道在整个信号频带范围之内:
➢ 幅频特性和群迟延-频率特性为常数;
通信工程第4章
图 4-3 视线传播
D2 D2 520 h 50 m
8r 5050
增大视线传播距离的其他途径
➢ 中继通信:
➢ 卫星通信:静止卫星、移动卫星 ➢ 平流层通信:
图4-4 无线电中继
7
第4章 信 道
散射传播 电离层散射 机理 - 由电离层不均匀性引起 频率 - 30 ~ 60 MHz 距离 - 1000 km以上 对流层散射 机理 - 由对流层不均匀性(湍流)引起 频率 - 100 ~ 4000 MHz 最大距离 < 600 km
性质:高斯白噪声
32
第4章 信 道
按噪声性质分类
脉冲噪声:是突发性地产生的,幅度很大,其持续 时间比间隔时间短得多。其频谱较宽。电火花就是 一种典型的脉冲噪声。
窄带噪声:来自相邻电台或其他电子设备,其频谱 或频率位置通常是确知的或可以测知的。可以看作 是一种非所需的连续的已调正弦波。
起伏噪声:包括热噪声、电子管内产生的散弹噪声 和宇宙噪声等。 讨论噪声对于通信系统的影响时,主要是考 虑起伏噪声,特别是热噪声的影响。
28
第4章 信 道
定义:相关带宽=1/
实际情况:有多条路径。
设m - 多径中最大的相对时延差 定义:相关带宽=1/m
多径效应的影响:
图4-18 多径效应
多径效应会使数字信号的码间串扰增大。为了减 小码间串扰的影响,通常要降低码元传输速率。因为 ,若码元速率降低,则信号带宽也将随之减小,多径 效应的影响也随之减轻。
i 1
i 1
R (t) X c(t)co0 ts X s(t)sin 0 t
缓慢随机变化振幅 V (t)co0 ts [(t)]
缓慢随机变化振幅
上式中的R(t)可以看成是由互相正交的两个分量组成的。这两个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
So () C()Si ()
C n(t)
不同的物理信道具有不同的特性C() = 常数(可取1)
加性高斯白噪声信道模型
§4.3.2 编码信道模型 模型: 可用 转移概率来描述。
二进制 无记忆 编码信道
模型
P(0/0) + P(1/0) = 1
P(1/1) + P(0/1) = 1
d
频率: > 30 MHz
h
发射
特性:直线传播、穿透电离层 天线 r
用途:卫星和外太空通信
传播途径
d
D
接收 天线
r
超短波及微波通信
视线传播方式
距离:与天线高度有关
D2 D2 h (m)
8r 50
D 为收发天线间距离(km)
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
D = 44.7 km
H () Ke jtd
h(t) K (t td )
若输入信号为s(t),则理想恒参信道的输出:
so (t) K s(t td )
固定的迟延 固定的衰减 —— 这种情况称为无失真传输
3. 失真 影响 措施 幅频失真: H () K
恒参信道
相频失真: td
微波中继(微波接力) 卫星中继(静止卫星、移动卫星) 平流层通信
微波中继
无线信道
卫星中继
无线信道
地面站
地面站
地球
散射通信
无线信道
有效散射区域
地球
对流层
流星余迹
特性: 高度80 ~ 120 km,长度15 ~ 40 km 存留时间:小于1秒至几分钟
频率: 30 ~ 100 MHz 距离: 1000 km以上 用途: 低速存储、高速突发、断续传输
§4.2
有线信道
明线 对称电缆 同轴电缆 光纤
明线
1880年纽约街貌
对称电缆
有线信道
由多对
双绞线组成 非屏蔽双绞线(UTP)
(便宜、易弯曲、易安装)
屏蔽双绞线(STP)
(可减少噪声干扰)
同轴电缆
群迟延失真: ( ) td
典型音频电话信道:
恒参信道 幅度衰减特性
相频特性
群迟延频率特性
随参信道 特性及其对信号传输的影响
指传输特性随时间随机快变的信道。
短波电离层反射信道
衰减随时间变化 时延随时间变化 多径传播
地波 ground- wave
频率: < 2 MHz 特性:有绕射能力 距离:数百或数千米 用于:AM广播
天波 sky- wave
频率:2~30 MHz 特性:被电离层反射 距离:< 4000 km(一跳) 用于:远程、短波通信
无线信道
传播路径 地波传播方式
传播路径
天波传播方式
无线信道
视线传播 line-of-sight
2. 无失真传输
H ( ) ~ 幅频特性
( ) ~ 相频特性
H () Ke jtd
H () K
() td
恒参信道
H () K
幅频特性
() td
( )
d ( ) d
td
相频特性
群迟延特性
理想恒参信道的冲激响应:
恒参信道
1970-1974任香港中文大学电子学系教授及讲座教授。1987-1996任香港中文 大学校长, 1992当选中央研究院院士。
1996年至今任香港高科桥集团有限公司主席兼行政总裁。
高锟在电磁波导、陶瓷科学(包括光纤制造)方面获28项专利。1964年,他 提出在电话网络中以光代替电流,以玻璃纤维代替导线。1966年,在标准电话 实验室与何克汉共同提出光纤可以用作通信媒介。高锟曾获巴伦坦奖章、利布 曼奖、光电子学奖等,被称为“光纤之父”。
多模光纤 单模光纤
有线信道
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
高锟(1933~ )美国物理学家。 1933年11月4日 生于中国上海 。 1957年获伦敦大学理学士学位,1965年获博士学位。 1957~1960年任英国国际电话电报公司工程师,1960~1970年 任该公司的标准电信实验室主任研究工程师, 1974年为首席科学 家,1982年任工程总裁、行政科学家, 1986年任研究事务总裁。
编 码 器
调 制 器
发 转 换 器
信道分类
媒 质
收 转 换 器
解 调 器
译 码 器
信道模型
§4.1
无线信道
地球大气层的结构:
电离层 平流层 对流层
对流层:约 0 ~10 km 平流层:约 10~60 km 电离层:约 60~400 km
60 km
10 km 0 km
电磁波的传播方式:
正确
错误
Pe P(0)P(1/ 0) P(1)P(0 /1)
四进制
无记忆
编码信道
0
发1 送 端
2
3
0
1接 收 端
2
3
§4.4
恒参/随参信道特性 对信号传输的影响
恒参信道 特性及其对信号传输的影响
线性时不变系统
特点:传输特性随时间缓变或不变。 举例:各种有线信道、卫星信道…
1. 传输特性 H ( ) H ( ) e j( )
有线信道
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
结构:
纤芯 包层
按折射率分类:
阶跃型 梯度型
按模式分类:
第4章
信道
通信原理(第7版) 樊昌信 曹丽娜 编著
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
概述
狭义信道:
—传输媒质 有线信道 ——明线、电缆、光纤 无线信道 ——自由空间或大气层
信道的定义与分类
广义信道:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
§4.3
信道数学模型
§4.3.1 调制信道模型
模型:叠加有噪声的线性时变/时不变网络:
共性:
有一对(或多对)输入端和输出端 大多数信道都满足线性叠加原理 对信号有固定或时变的延迟和损耗 无信号输入时,仍可能有输出(噪声)
入出关系:
r(t) s0 (t) n(t) so (t) f [si (t)] c(t) si (t)
C n(t)
不同的物理信道具有不同的特性C() = 常数(可取1)
加性高斯白噪声信道模型
§4.3.2 编码信道模型 模型: 可用 转移概率来描述。
二进制 无记忆 编码信道
模型
P(0/0) + P(1/0) = 1
P(1/1) + P(0/1) = 1
d
频率: > 30 MHz
h
发射
特性:直线传播、穿透电离层 天线 r
用途:卫星和外太空通信
传播途径
d
D
接收 天线
r
超短波及微波通信
视线传播方式
距离:与天线高度有关
D2 D2 h (m)
8r 50
D 为收发天线间距离(km)
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
D = 44.7 km
H () Ke jtd
h(t) K (t td )
若输入信号为s(t),则理想恒参信道的输出:
so (t) K s(t td )
固定的迟延 固定的衰减 —— 这种情况称为无失真传输
3. 失真 影响 措施 幅频失真: H () K
恒参信道
相频失真: td
微波中继(微波接力) 卫星中继(静止卫星、移动卫星) 平流层通信
微波中继
无线信道
卫星中继
无线信道
地面站
地面站
地球
散射通信
无线信道
有效散射区域
地球
对流层
流星余迹
特性: 高度80 ~ 120 km,长度15 ~ 40 km 存留时间:小于1秒至几分钟
频率: 30 ~ 100 MHz 距离: 1000 km以上 用途: 低速存储、高速突发、断续传输
§4.2
有线信道
明线 对称电缆 同轴电缆 光纤
明线
1880年纽约街貌
对称电缆
有线信道
由多对
双绞线组成 非屏蔽双绞线(UTP)
(便宜、易弯曲、易安装)
屏蔽双绞线(STP)
(可减少噪声干扰)
同轴电缆
群迟延失真: ( ) td
典型音频电话信道:
恒参信道 幅度衰减特性
相频特性
群迟延频率特性
随参信道 特性及其对信号传输的影响
指传输特性随时间随机快变的信道。
短波电离层反射信道
衰减随时间变化 时延随时间变化 多径传播
地波 ground- wave
频率: < 2 MHz 特性:有绕射能力 距离:数百或数千米 用于:AM广播
天波 sky- wave
频率:2~30 MHz 特性:被电离层反射 距离:< 4000 km(一跳) 用于:远程、短波通信
无线信道
传播路径 地波传播方式
传播路径
天波传播方式
无线信道
视线传播 line-of-sight
2. 无失真传输
H ( ) ~ 幅频特性
( ) ~ 相频特性
H () Ke jtd
H () K
() td
恒参信道
H () K
幅频特性
() td
( )
d ( ) d
td
相频特性
群迟延特性
理想恒参信道的冲激响应:
恒参信道
1970-1974任香港中文大学电子学系教授及讲座教授。1987-1996任香港中文 大学校长, 1992当选中央研究院院士。
1996年至今任香港高科桥集团有限公司主席兼行政总裁。
高锟在电磁波导、陶瓷科学(包括光纤制造)方面获28项专利。1964年,他 提出在电话网络中以光代替电流,以玻璃纤维代替导线。1966年,在标准电话 实验室与何克汉共同提出光纤可以用作通信媒介。高锟曾获巴伦坦奖章、利布 曼奖、光电子学奖等,被称为“光纤之父”。
多模光纤 单模光纤
有线信道
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
高锟(1933~ )美国物理学家。 1933年11月4日 生于中国上海 。 1957年获伦敦大学理学士学位,1965年获博士学位。 1957~1960年任英国国际电话电报公司工程师,1960~1970年 任该公司的标准电信实验室主任研究工程师, 1974年为首席科学 家,1982年任工程总裁、行政科学家, 1986年任研究事务总裁。
编 码 器
调 制 器
发 转 换 器
信道分类
媒 质
收 转 换 器
解 调 器
译 码 器
信道模型
§4.1
无线信道
地球大气层的结构:
电离层 平流层 对流层
对流层:约 0 ~10 km 平流层:约 10~60 km 电离层:约 60~400 km
60 km
10 km 0 km
电磁波的传播方式:
正确
错误
Pe P(0)P(1/ 0) P(1)P(0 /1)
四进制
无记忆
编码信道
0
发1 送 端
2
3
0
1接 收 端
2
3
§4.4
恒参/随参信道特性 对信号传输的影响
恒参信道 特性及其对信号传输的影响
线性时不变系统
特点:传输特性随时间缓变或不变。 举例:各种有线信道、卫星信道…
1. 传输特性 H ( ) H ( ) e j( )
有线信道
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
结构:
纤芯 包层
按折射率分类:
阶跃型 梯度型
按模式分类:
第4章
信道
通信原理(第7版) 樊昌信 曹丽娜 编著
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
概述
狭义信道:
—传输媒质 有线信道 ——明线、电缆、光纤 无线信道 ——自由空间或大气层
信道的定义与分类
广义信道:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
§4.3
信道数学模型
§4.3.1 调制信道模型
模型:叠加有噪声的线性时变/时不变网络:
共性:
有一对(或多对)输入端和输出端 大多数信道都满足线性叠加原理 对信号有固定或时变的延迟和损耗 无信号输入时,仍可能有输出(噪声)
入出关系:
r(t) s0 (t) n(t) so (t) f [si (t)] c(t) si (t)