弧长和扇形面积第一课时ppt课件
合集下载
24.4弧长及扇形面积(第1课时)课件
r
例1 如图,圆心角为60°的扇形的半径为10厘 米,求这个扇形的面积和周长.(π≈3.14) 解:因为n=60°,r=10厘米,所以扇形面积为
nr 2 60 3.14 10 2 S ≈52.33(平方厘米); 360 360
扇形的周长为
l nr 60 3.14 10 2r 20 180 180
90 图 23.3.2 360
图 23.3.2
45 360 n 360
图 23.3.2
n r 2 360
图 23.3.2
结论:
如果扇形面积为s,圆心角度数为n,圆半径 是r,那么扇形面积计算公式为
Q l n° r O
扇形面 积S
n 2 s r 360 nr r 1
180
lr 2 2
D
有水部分的面积 = S扇+ S△
A
E
B
0
0.24 0.09 3
C
4、如图所示,分别以n边形的顶点为圆心, 以单位1为半径画圆,则图中阴影部分的面积之 和为 个平方单位.
一、弧长的计算公式
n nr l 2r 360 180
二、扇形面积计算公式
n 1 2 s r 或s lr 360 2
n nr 50 l 2r = 3 cm 360 180
50 答:此圆弧的长度为 cm 3
例2制造弯形管道时,要先按中心线计算“展直长 度”,再下料,试计算图所示管道的展直长度 L(单 位:mm,精确到1mm)
解:由弧长公式,可得弧AB
180
的长
L 100 900 500 1570(mm)
3
2
3
cm
《弧长和扇形面积》课件
面积为______
3
解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵△OBD,△OCE是等腰三角形,
∴∠BDO+∠CEO=∠ABC+∠ACB=120°,
∴∠BOD+∠COE=360°-(∠BDO+∠CEO)-(∠ABC+∠ACB)
=360°-120°-120°=12DB= × 3 × 3
2
60×32
3−
360
=
9 3
3
− .
2
2
记作:扇形OCED
新知探究 知识点1
S =πR2
分别计算下图中各扇形的面积
R
180° O
2
180
R
R 2
360
2
R 90°
O
2
90
R
R 2
360
4
45°
R
O
2
45
R
R 2
360
8
n°R
O
2
n
n
R
R 2
360
360
扇形面积公式:
半径为R 的圆中,圆心角为n°的扇形的面积是
解得
135×4²
R=4,∴此扇形的面积为
=6π(cm2).
360
随堂练习
1.如图,实线部分是由两条等弧组成的游泳池,且这两条弧所在
的圆的半径均为15 m.若每条弧所在的圆都经过另一个圆的圆心,
则游泳池的周长是 40π m.
解:如图,连接O1O2,CO1,CO2,DO1,DO2,
∵O1O2= CO1 = CO2 =15m,
3
解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵△OBD,△OCE是等腰三角形,
∴∠BDO+∠CEO=∠ABC+∠ACB=120°,
∴∠BOD+∠COE=360°-(∠BDO+∠CEO)-(∠ABC+∠ACB)
=360°-120°-120°=12DB= × 3 × 3
2
60×32
3−
360
=
9 3
3
− .
2
2
记作:扇形OCED
新知探究 知识点1
S =πR2
分别计算下图中各扇形的面积
R
180° O
2
180
R
R 2
360
2
R 90°
O
2
90
R
R 2
360
4
45°
R
O
2
45
R
R 2
360
8
n°R
O
2
n
n
R
R 2
360
360
扇形面积公式:
半径为R 的圆中,圆心角为n°的扇形的面积是
解得
135×4²
R=4,∴此扇形的面积为
=6π(cm2).
360
随堂练习
1.如图,实线部分是由两条等弧组成的游泳池,且这两条弧所在
的圆的半径均为15 m.若每条弧所在的圆都经过另一个圆的圆心,
则游泳池的周长是 40π m.
解:如图,连接O1O2,CO1,CO2,DO1,DO2,
∵O1O2= CO1 = CO2 =15m,
弧长及扇形的面积ppt课件
如图所示,扇形OAB的圆心角为60°,半径为1,将它向右 滚动到扇形O′A′B′的位置,点O到O′所经过的路线长
A.π B .4/3π C.5/3π D.2π
B' A
B
C' D
A
C
扇形的定义 如图,一条弧和经过这条弧的端点的两条半径所组成 的图形叫做扇形.
弧
A B
O
探究二
1.如图,圆的半径为R,圆心角为90°, 怎样计算扇形的面积呢?
∠BAC=60°.设⊙O的半径为2,求 B⌒C 的
长.
例2、 如图:在△AOC中,∠AOC=90°, ∠C=15°,以O为圆心,AO为半径的圆交AC于B 点,若OA=6, 求弧AB的长。
C
B
O
A
试一试:
如图:AB与⊙O相切于点B,AO的延长线交⊙O 于点C,连接BC,若∠ABC=120°,OC=3,求 弧BC的长.
B●
B
B2
B1
F'
U
A
BCD的边AB=8,AD=6,现将矩形ABCD 放在直线l上且沿着l向右作无滑动地翻滚,当它 翻滚至类似开始的位置时(如图所示),则顶点 A所经过的路线长是_________.
如图,半径为5的半圆的初始状态是直径平行于桌 面上的直线b,然后把半圆沿直线b进行无滑动滚动 ,使半圆的直径与直线b重合为止,则圆心O运动路 径的长度等于______.
1 4
π×(652-152)=1000π(cm2)
例题解析
例2 如图,正三角形ABC的边长为2,分别以A、B、C为 圆心,1为半径的圆两两相切于点O1、O2、O3,求弧O1O2、 弧O2O3、弧O3O1围成的图形的面积S(图中阴影部分).
28.5 弧长和扇形面积的计算课件(共27张PPT)
课堂小结
弧长和扇形面积
弧长公式
扇形面积公式
圆锥的侧面积为 πrl 圆锥表面积为 πrl+πr2 = πr(r+l)
同学们再见!
授课老师:
时间:2024年9月15日
解:设该圆锥的底面的半径为r,母线长为a.
可得r=10.
解得a=30.因此,该圆锥底面半径为10,母线长为30.
拓展提升
1.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.
180°
2.草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m,求它能喷灌的草坪的面积.解:因此,它能喷灌的草坪的面积为 πm2.
(1)半径为r的圆,周长是多少?(2)圆的周长可以看作是多少度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?
思考
你能总结出弧长公式吗?
C=2πr
360°
知识点2 弧长公式
弧长公式
圆的半径.
弧所对的圆心角的度数.
解读
1.公式中,n表示1°的n倍,180表示1°的180倍,n,180 不带单位.2.在弧长公式中,已知l,n,R中任意两个量,都可求出第三个量.
4π
B
4.如图,已知扇形OAB 的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是( )A.π-2 B.2π-4 C. 4π-2 D.4π-4
A
5.一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.
3.如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留小数点后两位).
解:如图,连接OA,OB,作弦AB的垂直平分线,垂足为D,交弧AB于点C,连接AC.∵OC=0.6m,DC=0.3m,∴OD=OC-DC=0.3m.∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线.∴AC=AO=OC.从而∠AOD=60°,∠AOB=120°.有水部分的面积S=S扇形-S△OAB=
弧长和扇形面积
弧长公式
扇形面积公式
圆锥的侧面积为 πrl 圆锥表面积为 πrl+πr2 = πr(r+l)
同学们再见!
授课老师:
时间:2024年9月15日
解:设该圆锥的底面的半径为r,母线长为a.
可得r=10.
解得a=30.因此,该圆锥底面半径为10,母线长为30.
拓展提升
1.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.
180°
2.草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m,求它能喷灌的草坪的面积.解:因此,它能喷灌的草坪的面积为 πm2.
(1)半径为r的圆,周长是多少?(2)圆的周长可以看作是多少度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?
思考
你能总结出弧长公式吗?
C=2πr
360°
知识点2 弧长公式
弧长公式
圆的半径.
弧所对的圆心角的度数.
解读
1.公式中,n表示1°的n倍,180表示1°的180倍,n,180 不带单位.2.在弧长公式中,已知l,n,R中任意两个量,都可求出第三个量.
4π
B
4.如图,已知扇形OAB 的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是( )A.π-2 B.2π-4 C. 4π-2 D.4π-4
A
5.一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.
3.如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留小数点后两位).
解:如图,连接OA,OB,作弦AB的垂直平分线,垂足为D,交弧AB于点C,连接AC.∵OC=0.6m,DC=0.3m,∴OD=OC-DC=0.3m.∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线.∴AC=AO=OC.从而∠AOD=60°,∠AOB=120°.有水部分的面积S=S扇形-S△OAB=
弧长和扇形面积的计算ppt课件
式 S扇形=
lr,与三角形的面积公式有些类似,可以把扇形
看作一个曲边三角形,把弧长看作底,r 看作高;(4)注
意区分扇形面积公式和弧长公式,其存在两方面不同:一是
分母不同,二是半径的指数不同.
28.5 弧长和扇形面积的计算
对点典例剖析
考
点
典例2 某摆盘的形状是扇形的一部分,如图所示是其几
清
单 何示意图(阴影部分为摆盘),通过测量得到 AC=BD=12 cm
∠BAB′=n°,根据题意,得 2π×2=
××
,解得
,∴∠BAB′=120°,∵ 点 C′为 BB′ 的中点,
n=120
28.5 弧长和扇形面积的计算
重
∴∠BAC′= ∠BAB′=60°,∴△BAC′为等边三角形
难
题 ,∵ 点 D 为 AC 的中点,∴ 点 D′为 AC′的中点,
型
[解析]如解析图,连接 OD,∵AC=4,AB=2,∴AC=2AB
重
难
题 ,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC
型
突 = − =2 ,∴OC=OD=OB= BC= ,过点 O 作
破
OM⊥CD 于点 M,在 Rt△OCM 中,∠C=30°,∴OM= OC=
π+ π
2
3
突
破
28.5 弧长和扇形面积的计算
重 ■题型二 求阴影部分的面积
难
例 2 如图,在△ABC 中,∠ABC=90°,AB=2,AC=4,
题
型 点 O为 BC 的中点,以点 O 为圆心,OB 长为半径作半圆
突
lr,与三角形的面积公式有些类似,可以把扇形
看作一个曲边三角形,把弧长看作底,r 看作高;(4)注
意区分扇形面积公式和弧长公式,其存在两方面不同:一是
分母不同,二是半径的指数不同.
28.5 弧长和扇形面积的计算
对点典例剖析
考
点
典例2 某摆盘的形状是扇形的一部分,如图所示是其几
清
单 何示意图(阴影部分为摆盘),通过测量得到 AC=BD=12 cm
∠BAB′=n°,根据题意,得 2π×2=
××
,解得
,∴∠BAB′=120°,∵ 点 C′为 BB′ 的中点,
n=120
28.5 弧长和扇形面积的计算
重
∴∠BAC′= ∠BAB′=60°,∴△BAC′为等边三角形
难
题 ,∵ 点 D 为 AC 的中点,∴ 点 D′为 AC′的中点,
型
[解析]如解析图,连接 OD,∵AC=4,AB=2,∴AC=2AB
重
难
题 ,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC
型
突 = − =2 ,∴OC=OD=OB= BC= ,过点 O 作
破
OM⊥CD 于点 M,在 Rt△OCM 中,∠C=30°,∴OM= OC=
π+ π
2
3
突
破
28.5 弧长和扇形面积的计算
重 ■题型二 求阴影部分的面积
难
例 2 如图,在△ABC 中,∠ABC=90°,AB=2,AC=4,
题
型 点 O为 BC 的中点,以点 O 为圆心,OB 长为半径作半圆
突
《弧长和扇形面积》-完整版课件
D
180
由上面的弧长公式,可得 AB的长
因此所要求的展直长度
L 2700 1570 2970mm.
如图,由组成圆心角的两条半 径和圆心角所对的弧所围成的 图形叫做扇形,可以发现,扇 形面积与组成扇形的圆心角的 大小有关,圆心角越大,扇形 面积也就越大.怎样计算圆半 径为R,圆心角为n°的扇形面 积呢?
A
O ·n°
R
B
1. 你还记得圆面积公式吗? 2. 圆面积可以看作是多少度的圆心角所对的扇 形的面积? 3. 1°的圆心角所对的扇形面积是多少? 4. n°的圆心角呢?
圆的面积公式: S R2,
360°的圆心角所对的扇形的面积,
1°的圆心角所对的扇形面积是 1 2R2,
360
nR2
圆心角为n°的扇形面积是
制造弯形管道时,经常要先按中心线计算 “展直长度”(图中虚线成的长度),再下料, 这就涉及到计算弧长的问题.
A
700mm
R=900mm B
100°
700mm
C
D
1. 你ห้องสมุดไป่ตู้记得圆周长的计算公式吗?
2. 圆的周长可以看作是多少度的圆 心角所对的 弧长? 3. 1°的圆心角所对弧长是多少? 4. n°的圆心角呢?
解:在半径为R的圆中,弧长l与所对的圆心角
度数n之间有如下关系:
l= n 2 R= n R .
360
180
带入数据,得
l= 60 24 =8 .
180
即弧长为8 .
2.已知扇形的圆心角为120°,弧长为20π,求 扇形的面积.
解 : 由 l= n R , 得 R = 180l .
180
n
又 S扇形 =
《弧长和扇形面积的计算》PPT课件下载(第1课时)
n
180l BC
180 25
143.
πr 3.1410
所以∠BOC约为143° .
总结
扇形的面积公式有两个,若已知圆心角的度数和 半径,则用S扇形=n3π6r02 ;若已知扇形的弧长和半径, 则用S扇形=12 lR(l是扇形的弧长).
1 若扇形的面积为3π,圆心角为60°,则该扇形的半径为( D )
= 120π 0.62 - 1 AB OD
360
2
=0.12π- 1 0.6 3 0.3 2
0.22(m2).
1. 弧长公式为 l n • πr nπr .
180 180
2.
扇形的面积计算公式为
S扇形
nπr 2 360
.
3. 弧长和扇形面积都和圆心角n°,半径r有关系,
因此l和S之间也有一定的关系,列式表示为:
O
垂足为D,交AB于点C,连接AC .
∵OC=0.6 m,DC=0.3 m,
O
∴OD=OC-DC=0.3(m). ∴OD=DC .
A
D
B
图1
又AD⊥DC, ∴AD是线段OC的垂直平分线 .
C
∴AC=AO=OC . 从而∠AOD=60°,∠AOB=120°. 图2
有水部分的面积 S =S扇形OAB -S OAB
A.π
B.2π
C.4π
D.6π
3 如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=
4,则 BC 的长为( B )
A. 10 π
3
C. 5 π
9
B. 10 π
9
D. 5 π
18
知识点 2 扇形面积公式
半径为r的⊙O,面积为πr2,圆心角为360°. 按下表的圆心角,计算所
弧长和扇形面积ppt
这个公式是计算扇形面积的基础,通过将扇形角度转换为弧度,并将其除以360, 然后乘以π和半径的平方,可以得出扇形的面积。
扇形面积在几何图形中的应用
总结词
扇形面积在几何图形中有着广泛的应用,如计算圆的面积、 解决实际问题等。
详细描述
在几何学中,扇形面积常常用于计算更复杂的图形,如椭圆 、弓形等。此外,在实际生活中,扇形面积也常用于计算各 种实际问题,如建筑物的通风、管道的通风等。
03
扇形面积
扇形面积的定义
总结词
扇形面积是指一个扇形的内部区 域的面积。
详细描述
扇形面积是从一个圆中切割出来 的一部分,由两条半径和圆弧围 成。它可以用圆的面积和切割角 度来表示。
扇形面积的计算公式
总结词
扇形面积的计算公式是 (θ/360) × π × r^2,其中θ是扇形的角度,r是半径。
详细描述
04
弧长和扇形面积的关系
弧长和扇形面积的关联性
01
弧长和扇形面积都是圆或圆弧的一部分,它们之间存在密切的 关联性。
02
弧长是圆弧的长度,而扇形面积是圆心角和半径的函数。
在相同的圆心角和半径条件下,弧长和扇形面积可以通过特定
03
的公式相互转换。
弧长和扇形面积的转换关系
弧长(s)和扇形面积(A)之 间的关系可以用以下公式表示: s = αr,其中α是圆心角的弧
度数,r是半径。
扇形面积也可以表示为 A = 0.5lr,其中l是弧长。
通过这两个公式,我们可以将 弧长和扇形面积相互转换。
弧长和扇形面积在实际问题中的应用
1
在几何学中,弧长和扇形面积是研究圆和圆弧性 质的重要参数。
2
在物理学中,弧长和扇形面积可以用于描述旋转 体的运动轨迹和能量分布。
扇形面积在几何图形中的应用
总结词
扇形面积在几何图形中有着广泛的应用,如计算圆的面积、 解决实际问题等。
详细描述
在几何学中,扇形面积常常用于计算更复杂的图形,如椭圆 、弓形等。此外,在实际生活中,扇形面积也常用于计算各 种实际问题,如建筑物的通风、管道的通风等。
03
扇形面积
扇形面积的定义
总结词
扇形面积是指一个扇形的内部区 域的面积。
详细描述
扇形面积是从一个圆中切割出来 的一部分,由两条半径和圆弧围 成。它可以用圆的面积和切割角 度来表示。
扇形面积的计算公式
总结词
扇形面积的计算公式是 (θ/360) × π × r^2,其中θ是扇形的角度,r是半径。
详细描述
04
弧长和扇形面积的关系
弧长和扇形面积的关联性
01
弧长和扇形面积都是圆或圆弧的一部分,它们之间存在密切的 关联性。
02
弧长是圆弧的长度,而扇形面积是圆心角和半径的函数。
在相同的圆心角和半径条件下,弧长和扇形面积可以通过特定
03
的公式相互转换。
弧长和扇形面积的转换关系
弧长(s)和扇形面积(A)之 间的关系可以用以下公式表示: s = αr,其中α是圆心角的弧
度数,r是半径。
扇形面积也可以表示为 A = 0.5lr,其中l是弧长。
通过这两个公式,我们可以将 弧长和扇形面积相互转换。
弧长和扇形面积在实际问题中的应用
1
在几何学中,弧长和扇形面积是研究圆和圆弧性 质的重要参数。
2
在物理学中,弧长和扇形面积可以用于描述旋转 体的运动轨迹和能量分布。
弧长和扇形面积(公开课)课件
电磁学
在电磁学中,弧长和扇形面积可以用 于计算带电粒子在磁场中运动的轨迹 长度和角度,进而研究电磁场的变化 。
在日常生活中的应用
建筑学
在建筑学中,弧长和扇形面积可以用 于计算各种形状的建筑物的表面积、 体积等参数,进而进行建筑设计、施 工和预算等工作。
艺术
在艺术领域中,弧长和扇形面积可以 用于设计各种形状的艺术作品,例如 雕塑、绘画等,使作品更加美观、协 调。
圆心角与弧长的关系
通过弧长公式可以看出,圆心角越大 ,弧长越长。
弧长计算的实例
实例1
一个圆的半径为5cm,圆 心角为60°,求弧长。
实例2
一个圆的半径为8cm,圆 心角为90°,求弧长。
实例3
一个圆的半径为10cm,圆 心角为120°,求弧长。
03
扇形面积的计算方法
扇形面积公式
总结词
扇形面积公式是计算扇形面积的关键公式,它基于圆的面积 和圆心角。
02
弧长的计算公式:对于半径为r的 圆,其对应的圆心角为θ(以弧度 为单位),弧长l可以通过公式 l=rθ计算得出。
扇形面积的定义
扇形面积是指由圆心角和半径确定的 扇形区域的面积,通常用字母"A"表 示。
扇形面积的计算公式:对于半径为r的 圆,其对应的圆心角为θ(以弧度为单 位),扇形面积A可以通过公式 A=(θ/2π)×πr²计算得出。
详细描述
扇形面积公式为 (S = frac{1}{2} r^2 (θ)),其中 (S) 是扇形面 积,(r) 是半径,(θ) 是圆心角(以弧度为单位)。这个公式 是计算扇形面积的基础,通过它可以将扇形的面积与半径和 圆心角联系起来。
扇形面积公式的应用
总结词
在电磁学中,弧长和扇形面积可以用 于计算带电粒子在磁场中运动的轨迹 长度和角度,进而研究电磁场的变化 。
在日常生活中的应用
建筑学
在建筑学中,弧长和扇形面积可以用 于计算各种形状的建筑物的表面积、 体积等参数,进而进行建筑设计、施 工和预算等工作。
艺术
在艺术领域中,弧长和扇形面积可以 用于设计各种形状的艺术作品,例如 雕塑、绘画等,使作品更加美观、协 调。
圆心角与弧长的关系
通过弧长公式可以看出,圆心角越大 ,弧长越长。
弧长计算的实例
实例1
一个圆的半径为5cm,圆 心角为60°,求弧长。
实例2
一个圆的半径为8cm,圆 心角为90°,求弧长。
实例3
一个圆的半径为10cm,圆 心角为120°,求弧长。
03
扇形面积的计算方法
扇形面积公式
总结词
扇形面积公式是计算扇形面积的关键公式,它基于圆的面积 和圆心角。
02
弧长的计算公式:对于半径为r的 圆,其对应的圆心角为θ(以弧度 为单位),弧长l可以通过公式 l=rθ计算得出。
扇形面积的定义
扇形面积是指由圆心角和半径确定的 扇形区域的面积,通常用字母"A"表 示。
扇形面积的计算公式:对于半径为r的 圆,其对应的圆心角为θ(以弧度为单 位),扇形面积A可以通过公式 A=(θ/2π)×πr²计算得出。
详细描述
扇形面积公式为 (S = frac{1}{2} r^2 (θ)),其中 (S) 是扇形面 积,(r) 是半径,(θ) 是圆心角(以弧度为单位)。这个公式 是计算扇形面积的基础,通过它可以将扇形的面积与半径和 圆心角联系起来。
扇形面积公式的应用
总结词
弧长和扇形面积-ppt课件
第二十四章
圆
24.4
弧长和扇形面积
感悟新知
知1-讲
知识点 1 弧长公式
1.弧长公式
在半径为 R 的圆中, n°的圆心角所对的
弧长 l 的计算公式为l=
.
感悟新知
知1-讲
特别提醒
●公式中,n表示1°的n 倍, 180 表示1°的180 倍,
n, 180 不带单位.
●题目若没有写明精确度,可以用含“π”的式子表
知3-讲
感悟新知
知3-讲
(2)圆锥的母线: 连接圆锥顶点和底面圆周上任意一点的
线段叫做圆锥的母线 .
(3)圆锥的高: 连接圆锥顶点与底面圆心的线段叫做圆锥
的高 .
感悟新知
知3-讲
特别提醒
1.圆锥的轴通过底面的圆心,并且垂直于底面 .
2.圆锥的母线长都相等 .
3.圆锥的母线l、高h及底面圆的半径r构成直角三角
∠ACB=90°,AC=BC=2 ,以点A为圆心,AC为半
径画弧,交AB于点E,以点B为圆心,BC为半径画弧,
交AB于点F,则图中阴影部分的面积是
(
)
A.π-2
B.2π-2
C.2π-4
D.4π-4
感悟新知
知2-练
思路导引:
感悟新知
知2-练
解:在等腰直角三角形ABC中,∠ACB=90 °,AC=BC=
求所得旋转体的全面积 .
知3-练
感悟新知
知3-练
思路导引:
感悟新知
解:(1)∵∠ C=90°, AC=6, BC=8,
∴ AB= + =10.
∴ S 底=π AC2=36π, S 侧=π× 6× 10=60π .
圆
24.4
弧长和扇形面积
感悟新知
知1-讲
知识点 1 弧长公式
1.弧长公式
在半径为 R 的圆中, n°的圆心角所对的
弧长 l 的计算公式为l=
.
感悟新知
知1-讲
特别提醒
●公式中,n表示1°的n 倍, 180 表示1°的180 倍,
n, 180 不带单位.
●题目若没有写明精确度,可以用含“π”的式子表
知3-讲
感悟新知
知3-讲
(2)圆锥的母线: 连接圆锥顶点和底面圆周上任意一点的
线段叫做圆锥的母线 .
(3)圆锥的高: 连接圆锥顶点与底面圆心的线段叫做圆锥
的高 .
感悟新知
知3-讲
特别提醒
1.圆锥的轴通过底面的圆心,并且垂直于底面 .
2.圆锥的母线长都相等 .
3.圆锥的母线l、高h及底面圆的半径r构成直角三角
∠ACB=90°,AC=BC=2 ,以点A为圆心,AC为半
径画弧,交AB于点E,以点B为圆心,BC为半径画弧,
交AB于点F,则图中阴影部分的面积是
(
)
A.π-2
B.2π-2
C.2π-4
D.4π-4
感悟新知
知2-练
思路导引:
感悟新知
知2-练
解:在等腰直角三角形ABC中,∠ACB=90 °,AC=BC=
求所得旋转体的全面积 .
知3-练
感悟新知
知3-练
思路导引:
感悟新知
解:(1)∵∠ C=90°, AC=6, BC=8,
∴ AB= + =10.
∴ S 底=π AC2=36π, S 侧=π× 6× 10=60π .
《弧长和扇形面积》课件
总结:弧长和扇形面积的重要性及应用场 景
学习弧长和扇形面积的知识可以帮助我们解决许多现实生活中的问题。无论是在工程上,还是在日常生活中, 这些概念都具有重要的应用价值。
扇形面积 = (中心角/360°) x π x 半径²
如何求解缺失的角度和弧长?
当只知道扇形的半径或面积时,可以使用相应的公式来计算缺失的角度或弧长。这对于实际应用中的问题求解 非常有用。
1 求解缺失角度
角度 = (扇形面积/π x 半径²) x (360°/π)
2 求解缺失弧长
弧长 = (角度/360°) x 2π x 半径
周长公式
周长 = 2π x 半径
面积公式
面积 = π x 半径²
圆的周长与直径的关系
周长
直径
2πr
2r
圆的面积与半径的关系
面积
半径
πr²
r
实际应用中的弧长和扇形面积
弧长和扇形面积的概念在现实生活中有许多应用。例如,测量道路的弯曲程 度或计算圆形花坛的面积。这些概念能够帮助我们更好地理解和处理各种实 际问题。
圆周角是什么?
圆周角是指一对半径线相交的角,在圆的圆心处形成一个完整的?
圆心角是指圆的边界上两条半径线之间的角度,其顶点位于圆心。圆心角的大小可以通过弧度或角度来度量。
计算公式
圆心角度数 = 弧长/半径
圆的周长和面积是什么?
圆的周长是圆形边界的长度,可以通过直径或半径来计算。圆的面积是圆内部区域的大小,可以通过半径来计 算。
弧度是什么?
弧度是用于度量圆心角大小的单位。一个圆的一周对应的弧度数是2π,也就是360°。弧度和角度 之间有一种简单的转换关系。
转换关系公式
角度 = 弧度 x (180/π)
人教版九年级上册 24.4 第1课时 弧长和扇形面积(共22张PPT)
问题2 怎样来计算弯道的“展直长度”?
获取新知
知识点一:与弧长有关的计算
弧是圆的一部分,弧长就是圆周长的一部分.在半径为R的圆中,
360°的圆心角所对的弧长C=___2_π_R___.
(1)1°的圆心角所对的弧长 l 是:l 1 2πR= πR
360
180
(2)60°的圆心角所对的弧长 l 是:l= 60 2πR= πR
人教版九(上)数学精简课堂课件
24.4 弧长及扇形的面积 第1课时 弧长和扇形面积
知识回顾 获取新知 随堂演练
情景导入 例题讲解 课堂小结
情景导入 问题1 如图,在运动会的4×100米比赛中,甲和乙分别 在第1跑道和第2跑道,为什么他们的起跑线不在同一处? 因为要保证这些弯道的“展直长度”是一样的.
连接AB,则图中阴影部分的面积是 ( A )
A.π-2
B.π-4
C.4π-2
D.4π-4
4.如图所示,⊙O的半径为6 cm,直线AB是⊙O的切线,
切点为B,弦BC∥AO.若∠A=30°,求 BC的长.
解:连接OB,OC.
∵AB是⊙O的切线,∴AB⊥OB.
∵∠A=30°,∴∠AOB=90°-∠A=60°.
如图,黄色部分是一个扇形,记作扇形OAB.
B
弧 圆心角 O
A
B
扇形 O
A
合作探究
扇形是圆周的一部分,扇形面积就是圆面积的一部分.在半径为R的
圆中, 360°的圆心角所对的扇形的面积S=__π_R_2__.
(1)1°的圆心角所对的扇形面积 S 是:S 1 πR2 = πR2
360
360
(2)60°的圆心角所对的弧长 S 是:S= 60 πR2 = πR2
获取新知
知识点一:与弧长有关的计算
弧是圆的一部分,弧长就是圆周长的一部分.在半径为R的圆中,
360°的圆心角所对的弧长C=___2_π_R___.
(1)1°的圆心角所对的弧长 l 是:l 1 2πR= πR
360
180
(2)60°的圆心角所对的弧长 l 是:l= 60 2πR= πR
人教版九(上)数学精简课堂课件
24.4 弧长及扇形的面积 第1课时 弧长和扇形面积
知识回顾 获取新知 随堂演练
情景导入 例题讲解 课堂小结
情景导入 问题1 如图,在运动会的4×100米比赛中,甲和乙分别 在第1跑道和第2跑道,为什么他们的起跑线不在同一处? 因为要保证这些弯道的“展直长度”是一样的.
连接AB,则图中阴影部分的面积是 ( A )
A.π-2
B.π-4
C.4π-2
D.4π-4
4.如图所示,⊙O的半径为6 cm,直线AB是⊙O的切线,
切点为B,弦BC∥AO.若∠A=30°,求 BC的长.
解:连接OB,OC.
∵AB是⊙O的切线,∴AB⊥OB.
∵∠A=30°,∴∠AOB=90°-∠A=60°.
如图,黄色部分是一个扇形,记作扇形OAB.
B
弧 圆心角 O
A
B
扇形 O
A
合作探究
扇形是圆周的一部分,扇形面积就是圆面积的一部分.在半径为R的
圆中, 360°的圆心角所对的扇形的面积S=__π_R_2__.
(1)1°的圆心角所对的扇形面积 S 是:S 1 πR2 = πR2
360
360
(2)60°的圆心角所对的弧长 S 是:S= 60 πR2 = πR2
人教版九年级数学上册《弧长和扇形面积》圆PPT课件(第1课时)
(2)弧长单位和半径单位一致.
创设情境
探究新知
应用新知
巩固新知
做一做
弧长公式
:
l=
π
180
1.在半径为24 cm的圆中,30°的圆心角所对的弧长为 4π cm,
60°的圆心角所对的弧长为 8π cm,120°的圆心角所对的弧
长为
16π cm.
2.半径为6 cm的圆中,75°的圆心角所对的弧长是 2.5π cm;
D.80°
,扇形OAB的面积为15π,则
(
巩固新知
π,半径是6,那么此扇形的
AB 所对的圆心角是( B )
课堂小结
布置作业
A.120°
B.72°
C.36°
D.60°
创设情境
随堂练习
3.如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水
探究新知
面高0.9 m,求截面上有水部分的面积(结果保留小数点后两位).
线,垂足为D,交
于点C,连接
O●
巩固新知
课堂小结
布置作业
AC.
∵OC=0.6 m,DC=0.3 m,
∴OD=OC-DC=0.3(m).
∴OD=DC.
又AD⊥DC,
∴AD是线段OC的垂直平分线.
∴AC=AO=OC.
A
D
C
B
创设情境
典型例题
【例2】如图,水平放置的圆柱形排水管道的截面半径是0.6m,
探究新知
圆心角
有关,
创设情境
典型例题
【例1】制造弯形管道时,要先按中心线计算“展直长度”,
探究新知
再下料,试计算图所示管道的展直长度L (结果取整数) .
A
创设情境
探究新知
应用新知
巩固新知
做一做
弧长公式
:
l=
π
180
1.在半径为24 cm的圆中,30°的圆心角所对的弧长为 4π cm,
60°的圆心角所对的弧长为 8π cm,120°的圆心角所对的弧
长为
16π cm.
2.半径为6 cm的圆中,75°的圆心角所对的弧长是 2.5π cm;
D.80°
,扇形OAB的面积为15π,则
(
巩固新知
π,半径是6,那么此扇形的
AB 所对的圆心角是( B )
课堂小结
布置作业
A.120°
B.72°
C.36°
D.60°
创设情境
随堂练习
3.如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水
探究新知
面高0.9 m,求截面上有水部分的面积(结果保留小数点后两位).
线,垂足为D,交
于点C,连接
O●
巩固新知
课堂小结
布置作业
AC.
∵OC=0.6 m,DC=0.3 m,
∴OD=OC-DC=0.3(m).
∴OD=DC.
又AD⊥DC,
∴AD是线段OC的垂直平分线.
∴AC=AO=OC.
A
D
C
B
创设情境
典型例题
【例2】如图,水平放置的圆柱形排水管道的截面半径是0.6m,
探究新知
圆心角
有关,
创设情境
典型例题
【例1】制造弯形管道时,要先按中心线计算“展直长度”,
探究新知
再下料,试计算图所示管道的展直长度L (结果取整数) .
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
6
答:管道的展直长度约为2970mm.
精讲点拨
如下图,由组成圆心角的两条半径和
圆心角所对的弧围成的图形是扇形。
B
弧 圆心角 O
A
B
扇形
O A
.
7
自学提纲2
自学教材P120----P121,思考下列内容:
(1)半径为R的圆,面积是__S_=__π_R__2__
(2)圆的面积可以看作是_3_6__0__度的
24.4.1弧长和扇形面积
(第一课时)
.
1
创设情境
制造弯形管道时,要先按中心线计算“展直 长度”(虚线的长度),再下料,试计算图所
示管道的展直长度L(单位:mm,精确到1mm)
.
2
自学提纲1
自学教材P120----P121,思考下列内容:
(1)半径为R的圆,周长是_C_=_2__π_R___
(2)圆的周长可以看作是_3_6_0__度的圆心角
0
0.6
D
A
0.3 C
1200.621ABOD
360 2
0.1210.630.3 0.22
2
B 答:截面.上有水部分的面积约为0.22平16方米
变式:如图、水平放置的圆柱形排水管道的 截面半径是0.6m,其中水面高0.9m,求截面 上有水部分的面积。
弓形的面积 = S扇+ S△
A
D EB 0
C
.
17
弧长公式
若设⊙O半径为R,n°的圆心角所对
的弧长为l,则
l nR
180
注意:
O
在应用弧长公式 l nR
180
n°
A
B
l
进行计算时,要注意公式中n的意义,n表 示1°圆心角的倍数,它是不带单位的;
尝试练习1
已知弧所对的圆周角为90°,半径是4, 则弧长为多少?
解:∵弧所对的圆周角为90°,
∴弧所对的圆心角为1800,即n=180
S扇形,则
nR 2
S扇形
注意:
360
(1)公式中n的意义.n表示1°圆心角的 倍数,它是不带单位的;
(2)公式要理解记忆(即按照上面推导 过程记忆).
尝试练习2
1.扇形的弧长和面积都由_半__径____、_圆__心__角___决定? 2.(当圆半径一定时)扇形的面积随着圆心角 的增大而__增__大__。
3.圆心角是1800的扇形面积是整个圆的多少? 圆心角是900的扇形面积是整个圆的多少?
圆心角是2700的扇形面积是整个圆的多少?
1
个圆面积
1 个圆面积
2
4
尝试练习2
4.已知扇形的圆心角为120°,半径 为2,则这个扇形的面积为多少?
解: S扇形
n R2
360
120 22
360
4
3
精讲点拨
问题:扇形的弧长公式与面积公式有联系吗?
圆心角所对的扇形 R 2 圆心角为1°的扇形的面积是_3_60____
(3)圆心角为n°的扇形的面积是圆 O
心是角 圆为面积1°的的_扇__形__3的_6n0_面__积_ 的__n____倍n ,
A
R2
n°
B
(4)圆心角为n°的扇形的面积是__36_0___
扇形面积公式
若设⊙O半径为R,圆心角为n°的扇形的面积
所对的弧
1
(3)圆心角是10的扇形是圆周长的_3_6_0__ 1°圆心角所对弧长是_3_16__0_2__R___1R 80
(4)n°圆心角所对的弧长是
O
1°圆心角所对的弧长的___n___倍, n°
是圆周长的_____36_n0 ____
A
nR
B
(5)n°圆心角所对弧长是__1_8_0______
3
2.
14
加深拓展
如图、水平放置的圆柱形排水管道的截面 半径是0.6m,其中水面高0.3m,求截面上 有水部分的面积。(精确到0.01m)。
提示:要求的面积,可
以通过哪些图形面积的
0
和或差求得
A
D
B
弓形的面积 = S扇- S⊿
.
C
15
解:如图,连接OA、OB,作弦AB的垂线,垂足为D, 交弧AB于点C.
规律提升
0
0
❖
S弓形=S扇形-S三角形
❖
S弓形=S扇形+S三角形
弓形的面积是扇形的面积与三角形 面积的和或差
l nR
180
S扇形
n R2
360
S扇形
1 lR 2
1.扇形的弧长和面积大小与哪些因素有关?
(1)与圆心角的大小有关
(2)与半径的长短有关 2. 扇形面积公式与弧长公式的区别:
l nR
180
nR2
S扇形 360
S扇形 n 1R 8R 2 01 2n 1R 8R 0 12 lR
1
S扇形
lR 2
S
类似?
回顾思考
已知扇形的半径为3cm,扇形的弧长为
πcm,则该扇形的面积是__23____cm2,
解: S扇形
1lR 2
1 3
2
∴ l nR 180 4 4
180
180
.
5
解决问题:制造弯形管道时,要先按中心线计算
“展直长度”,再下料,试计算图所示管道的展
直长度L(单位:mm,精确到1mm)
想一想
你
现
在
能
解
解:由弧长公式,可得弧AB的长
决
因此l所要求n18的0R展直10长0度19800L 0 2 507 0 0 500 0 吗2 ? 9
∵OC=0.6,DC=0.3 ∴OD=OC-DC=0.6-0.3=0.3
在Rt△ OAD中,∵OD=½OA ∴∠ OAD=30° ∴∠AOD=60°, ∠ AOB=120°
在Rt△OAD中,OA=0.6,利用勾股定理可得:
A D O 2 O A2 D 02 . 0 6 .3 2 0. 3 3
∴有水部分的面积为= S扇形 OABSOAB