理论力学-8-质点动力学

合集下载

注册工程师基础《理论力学》-动力学

注册工程师基础《理论力学》-动力学

x
a
P1 M
W
ma = P1 − W
P1
=W
+W g
a
答案:B
一、质点动力学
[例 题]
G F
已知:以上抛的小球质量为m,受空气阻力
G = −k v
,则对图示坐标轴Ox,小球的运动微
分方程为:
(A) mx = mg− kx
(B) mx = −mg− kx (C) mx = −mg+ kx (D) mx = mg+ kx
J OO
=
J CC
+
m( l )22 2
=
1 3
ml 22
O
zC
z1
C
d
C
m
l
二、动力学普遍定理
1、物理量
(5)力的功 ● 常力的功
M1
F M2
θv
W = F cosθ S
S
● 变力的功
G MM22
G MM22
∫ ∫ W1122 = F ⋅ dr = F cosθ ds
MM11
MM11
● 重力的功
二、动力学普遍定理
(7)动能定理
T2-T1=W12
(8)机械能守恒
T +V = E = 常数
2.定理
二、动力学普遍定理
2.定理
质量相同的两均质圆盘,放在光滑水平面 上,在圆盘的不同位置上,各作用一水平力F 和F′,使圆盘由静止开始运动,设F = F′, 试判断那个圆盘动能大?
A F′ B F
三、达朗贝尔原理
x B
maCx = Fx = 0
答案:C
二、动力学普遍定理
2.定理
(4)动量矩定理

理论力学第10章 质点动力学

理论力学第10章 质点动力学
4 4
y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。

质点动力学的基本方程

质点动力学的基本方程

动力学引言动力学是研究物体的机械运动与作用力之间关系的科学。

工程中的许多问题,如高速转动机械的动力计算、结构的动力计算。

宇宙飞行器和火箭轨道的计算等等,都需要应用动力学的理论。

在动力学中,物体的抽象模型有质点和质点系。

质点是具有一定质量而几何形状和尺寸大小可以忽略不计的物体。

如研究人造地球卫星的轨道时,卫星形状和大小对所研究的问题不起主要作用,可以忽略。

顾客警卫星抽象唯一的质量集中在重心的质点。

刚体作平动时,也可以抽象为一个质点系来研究。

如果物体的形状和大小在所研究的问题中不可忽略,或刚体不作平动,则应抽象为质点系。

所谓质点系是由几个或无限个相互有联系的质点所组成的系统。

我们常见的固体、流体、气体以及由几个物体组成的机构,都是质点系。

刚体是一种特殊的质点系,其中任意两个质点间的距离保持不变,也成为不变质点系。

动力学可分为质点动力学和质点系动力学。

我们以后各章都以质点动力学入手,然后再研究质点系问题。

第十章质点动力学的基本方程§10-1 动力学的基本定律质点动力学的基础是三个基本定律,这些定律是牛顿在总结前人研究成果的基础上提出的,称为牛顿三大定律:第一定律(惯性定律)不受力的指点,将永远保持静止或做匀速直线运动。

即:不受力作用的质点,不是处于静止状态,就是永远保持其原有的速度不变。

这种性质称为惯性。

第一定律阐述了物体做惯性运动的条件,故又称为惯性定律。

由此可知,质点如受到不平衡力系作用时,其运动状态一定改变。

则作用力与物体的运动状态改变的定量关系将由第二定律给出。

第二定律(力与加速度之间关系定律)质点的质量与加速度的乘积等于作用于质点的力的大小。

加速度方向与力的方向一致,即:am=F此式建立了质点的的质量、加速度与力之间的关系。

该式表明:1.加速度矢a与力矢F的方向相同。

2.力与加速度之间的关系时瞬时关系。

即:只要其瞬时有力作用于质点,则在该瞬时质点必有确定的加速度。

3.如在某段时间内没有力作用于质点,则在该段时间内质点没有加速度,质点做惯性运动。

《理论力学》第九章质点动力学

《理论力学》第九章质点动力学
《理论力学》第九章质点动力 学

CONTENCT

• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω

质点力学习题与参考解答

质点力学习题与参考解答

【郑重说明】《理论力学》课程的习题及解答方面的参考书很多,学习者可以通过各种形式阅读与学习,按照学院对教学工作的要求,为了满足学习者使用不同媒体学习的实际需要,通过各种渠道收集、整理了部分习题及参考解答,仅供学习者学习时参考。

由于理论力学的题目解答比较灵活,技巧性也比较强,下面这些解答不一定是最好的方法,也可能会存在不够完善的地方,希望阅读时注意之。

学习理论力学课程更重要的是对物理概念的掌握与理解,学习处理问题的思想与方法,仅盲目的做题目或者阅读现成的答案,很难达到理想的结果。

质点动力学思考题与习题及参考解答思考题(1) 有一质量为m 的珠子, 沿一根置于水平面内的铁丝滑动, 采用自然坐标法描述. 珠子受重力g m W=, 铁丝施与的约束力b Nb n Nn t Nt Ne F e F e F F ++=.t Nt e F 即为滑动摩擦力f F, 设动摩擦因数为μ. 试判断下列各式正误: (1) mg F f μ=; (2) Nb f F F μ= (3)Nn f F F μ=;(4) 22Nb Nnf F F F +=μ(2) 用极坐标系描述单摆的运动. 某甲如思考题(2图(a)规定θ角正向, 得到动力学方程θθsin mg ml -= ; 某乙如思考题(2图(b)规定θ角正向, 则得到θθsin mg ml += . 你认为谁的做法正确?(a) (b)思考题(2图(3) 质量为m 的质点, 由静止开始自高处自由落下. 设空气阻力f F与速度成正比, 比例系数为k . 某甲建立竖直向上的坐标如思考题(3图(a), 得到方程为y k mg y m+-=. 某乙建立竖直向下的坐标如思考题(3图(b), 得到方程为y k mg y m-=.他们列出的方程对吗?(a) (b)思考题(3(4)有人认为: 用极坐标系讨论质点的平面运动时, 如果0≡r F , 则沿径向动量守恒,==rm p r 常量;若0≡θF , 则沿横向动量守恒. 这种看法对吗? (5) 试判断以下二论断是否正确:(1) 若质点对固定点O 的角动量守恒, 则对过O 点的任意固定轴的角动量守恒. (2) 若质点对固定轴的角动量守恒, 则对该轴上任一固定点的角动量守恒.(6) 一质点动量守恒, 它对空间任一固定点的角动量是否守恒? 如质点对空间某一固定点角动量守恒, 该质点动量是否守恒?(7) 当质点做匀速直线运动时, 其动量是否守恒? 角动量是否守恒?(8) 在固定的直角坐标系Oxyz 中, 质量为m 的质点的速度k v j v i v v z y x++=, 所受合力为k F j F i F F z y x ++=. 能否将质点的动能定理r F mv d )21(d 2⋅=向x 轴方向投影而得出分量方程x F mv x x d )21(d 2= 该方程是否正确?思考题解答(1) 仅(4)式正确.(2) 甲正确. 乙错在角度不可以定义为从动线指向定线.(3) 乙的方程正确. 甲错在空气阻力亦应为yk -,y 取负值,y k -取正值. (4) 仅对固定方向才有动量守恒的分量形式. 径向和横向均不是空间固定方向. (5) (1)对;(2)错. (6) 一质点动量守恒,则对空间任一固定点角动量守恒. 质点对空间某一固定点角动量守恒,其动量不一定守恒.(7) 质点作匀速直线运动时,其动量和角动量均守恒.(8) 动能定理是标量方程,不可能投影而得出分量方程. 但xF mv x d )21(d 2=是正确的. 仿照动能定理的导出,用x t v x d d =乘牛顿第二定律的x 分量方程x xF t v m=d d 即可证明.质点动力学习题及参考解答【1】研究自由电子在沿x 轴的振荡电场中的运动. 已知电场强度i t E E)cos(0ϕω+=,ϕω,,0E 为常量. 电子电量为e -, 质量为m . 初始时, 即当0=t 时i x r00=, i v v 00=. 忽略重力及阻力, 求电子的运动学方程.【解】力为时间的函数,积分两次可得)cos(200ϕωω+++=t m eE t V X x ,其中ϕωcos 2000m eE x X -=,ϕωsin 00m eE v V +=.【2】 以很大的初速度0v自地球表面竖直上抛一质点, 设地球无自转并忽略空气阻力, 求质点能达到的最大高度. 已知地球半径为R , 地球表面处重力加速度为g .【解】以地心O 为原点,建立x 轴经抛出点竖直向上. 质点受万有引力沿x 轴负方向. 所以2x GMm xm -= . 因为2R GMmmg =,故g R GM 2=. 故有22x g R x -= . 做变换)2(d d d d d d d d 2x x x x x t x x x x ===,则x x g R x d )2(d 222-= . 积分并用0=t 时R x =,0v x = 定积分常数,得到 )11()(212202R x g R v x -=- . 质点达最大高度时H R x +=,0=x,可求出 1220)21(2--=Rg v g v H .三点讨论:(1)令∞=H ,对应Rg v 20=为第二宇宙速度.(2)若Rg v 220<<,则回到重力场模型所得结果. (3)题中不考虑地球自转及空气阻力,均不大合理,试进一步讨论之.【3】 将质量为m 的质点竖直上抛, 设空气阻力与速度平方成正比, 其大小22gv mk F R =.如上抛初速度为0v , 试证该质点落回抛出点时的速率2201v k v v +=.【解】质点运动微分方程为(Oy 轴竖直向上);上升阶段22y g mk mg y m--=,下降阶段22y g mk mg ym +-=. 【4】向电场强度为E 、磁感应强度为B 的均匀稳定电磁场中入射一电子. 已知B E⊥, 电子初速0v 与E 和B 均垂直, 如题4图所示. 试求电子的运动规律. 设电子电量为e -.题4图【解】令m eB=ω,电子运动微分方程为y xω-=, (1) m eEx y-= ω, (2)0=z . (3)对(2)式求导,利用(1)式得02=+y yω,解出)sin(αω+=t A y . 0=t 时0=y 故0=α,由t A y ωωcos = ,且0=t 时m eBv Ee y0+-= ,故B Bv E A 0+-=,则t B Bv E y ωsin 0+-= . 积分得)cos 1()(20t m eB eB Bv E m y -+-=. 代入(1)式积分可得t m eB eB Bv E m t B E x sin )(20--=.【5】 旋轮线如题5图所示, 可理解为一半径为a 的圆轮在直线上做无滑滚动时轮缘上一点P 的轨迹, 其参数方程为)sin (ϕϕ+=a x , )cos 1(ϕ-=a y . 在重力场中, 设y 轴竖直向上, 一质点沿光滑旋轮线滑动, 试证质点运动具有等时性(绕O 点运动周期与振幅无关).题5图【解】(旋轮线是如图圆轮在直线AB 上作无滑滚动时P 点的轨迹,曲线上P 点切线方向即为轮上P 点速度方向. 因无滑,0P 为瞬心,故P 点切线与P P 0垂直,因此可知P 点切线与x 轴夹角为2ϕ. )以曲线最低点(0=ϕ)为自然坐标原点,弧长正方向与t e 一致. 质点运动微分方程为2sinϕmg s m -= .对曲线参数方程求微分,得ϕϕd )cos 1(d +=a x 和ϕϕd sin d a y =,所以ϕϕd 2cos 2d d d 22a y x s =+=,积分并用0=ϕ时0=s 定积分常数,得2sin 4ϕa s =. 代入质点运动微分方程消去ϕ,得到4=+s a gs ,s 作简谐振动而具有等时性. 其解为)cos(0αω+=t A s ,a g40=ω与振幅无关.【6】 一小球质量为m , 系在不可伸长的轻绳之一端, 可在光滑水平桌面上滑动. 绳的另一端穿过桌面上的小孔, 握在一个人的手中使它向下做匀速运动, 速率为a , 如题【6图所示. 设初始时绳是拉直的, 小球与小孔的距离为R , 其初速度在垂直绳方向上的投影为0v . 试求小球的运动规律及绳的张力.题6图【解】小球运动微分方程为T F r r m -=-)(2θ , (1) 0)2(=+θθr r m , (2)a r-= . (3) 由(3)式求出at R r -=,代入(2)式求出)/(0at R t v -=θ,再由(1)式求出3220)(at R R mv F T -=.【7】 一质量为m 的珠子串在一半径为R 的铁丝做成的圆环上, 圆环水平放置. 设珠子的初始速率为0v , 珠子与圆环间动摩擦因数为μ, 求珠子经过多少弧长后停止运动 (根据牛顿第二定律求解).【解】珠子的运动微分方程为2b 2n d d N N F F t v m+-=μ, (1)n 2/N F mv =ρ, (2)mg F N -=b 0, (3)R =ρ(约束方程). (4)把(2)、(3)、(4)式代入(1)式,作变换sv t v d /)21(d d d 2=,可求出]/)ln[()2/(224020Rg g R v v R s ++=μ.【8】 质量为m 的小球沿光滑的、半长轴为a 、半短轴为b 的椭圆弧滑下, 此椭圆弧在竖直平面内且短轴沿竖直方向. 设小球自长轴端点开始运动时其初速度为零. 求小球达到椭圆弧最低点时对椭圆弧的压力 (根据牛顿第二定律求解). 【解】以椭圆最低点为自然坐标原点O ,弧长正方向指向小球初始位置,θ为切向与水平方向的夹角,小球的运动微分方程为θsin mg vm -= , (1) θρcos /2mg F mv N -=. (2)Oy 竖直向上,将s y d /d sin =θ代入(1)式得s y g s v v d /d d /d -=,积分可求出小球达最低点时gb v 22=. 由轨道方程22x a a by --=求出当0=x 时0='y ,2/a b y ='',由公式可求出22/32)1(1a b y y ='+''=ρ. 再由(2)式求出0=θ时)/21(/cos 22a b mg mv mg F N +=+=ρθ.【9】 力1F 和2F分别作用在长方体的顶角A 和B 上, 长方体的尺寸和坐标系如题【9图所示. 试计算1F 和2F对原点O 及3个坐标轴的力矩.题9图【解】11bF M x =,11aF M y -=,01=z M ,2222/b a bcF M x +=,2222/b a acF M y +-=,02=z M .【10】 已知质量为0m 的质点做螺旋运动, 其运动学方程为t r x ωcos 0=, t r y ωsin 0=,kt z =,k r ,,0ω为常量. 试求: (1)t 时刻质点对坐标原点的角动量;(2) t 时刻质点对过),,(c b a P 点, 方向余弦为),,(n m l 的轴的角动量.【解】由运动学方程求出→v ,根据定义即可求出→→→→→→++--=⨯=k r m j t t t r km i t t t r km v r m L ωωωωωωω200000000)sin (cos )cos (sin ,)]cos ()sin )([(]cos )()sin ([000000),,(a t r k t r c kt m m t r c kt b t r k l m L n m l -+-----=ωωωωωω)sin cos (00200t br t ar r n m ωωωωω--+.【11】 如题【11图所示, 质量为m 的小球安装在长为l 的细轻杆的A 端, 杆的B 端与轴21O O 垂直地固连. 小球在液体中可绕21O O 轴做定轴转动, 轴承1O 和2O 是光滑的. 转动中小球所受液体阻力与角速度成正比, ωαm F R =,α为常量. 设初始角速度为0ω,试求经多少时间后, 角速度减小为初始值的一半,以及在这段时间内小球所转圈数.(忽略杆的质量及所受阻力.)题 11图【解】由对21O O 轴的角动量定理ωαωm l ml t -=)(d d2,积分可得lt /0e αωω-=,求出α/)2ln (l t =. 将角动量定理化为l /d d θαω-=,积分可以求得αωαωθπ4/)r a d (2/00l l ==(圈)【12】 质量为m 的质点沿椭圆轨道运动, 其运动学方程为kt a x cos =, kt b y sin = (k b a ,,为常量). 用两种方法计算质点所受合力在0=t 到k t 4π=时间内所做的功.【解】(1)由动能定理)(4121212222122b a mk mv mv W -=-=.(2)用曲线积分算⎰⎰+=⋅=→→2121)d d (y ym x x m r d F W ,把轨道参数方程kt b y kt a x sin ,cos ==代入,则曲线积分化为对t 的积分,可得同样结果.【13】 试用动能定理求解7题.【解】珠子的动能定理为sF F mv N N d )21(d 2b 2n 2--=μ,参见3.7提示【14】 有一小球质量为m , 沿如题【14图所示的光滑的水平的对数螺旋线轨道滑动. 螺旋线轨道方程为θa e r r -=0, a 为常数. 已知当极角0=θ时,小球初速为0v . 求轨道对小球的水平约束力N F 的大小. (用角动量及动能定理求解, 图中δ为θe 与v 方向间夹角,a =δtg.)题14图【解】因机械能守恒,小球动能不变,因此0v v =.过O 点作z 轴竖直向上(垂直纸面向外),质点对z 轴的角动量δcos rmv L z =. 质点所受对z 轴力矩δsin N z rF M -=. 由对z 轴的角动量定理得δδsin )cos (d d0N rF rmv t -=.由于θθθθθ ar ar t r r v a r -=-===-e d d d d 0,θθ r v =. 故a v v r =-=θδtan . 将它代入角动量定理方程,得到N N arF rF rmv -=-=δtan 0 . 而δδsin sin 0v v v r r -=-== ,所以θδδδa N a r mv a r mv ar mv ar mv F e 11tan 1tan sin 2020220222020+=+=+==.【15】 已知质点所受力F 的3个分量为z a y a x a F x 131211++=,z a y a x a F y232221++=, z a y a x a F z 333231++=,系数)3,2,1,(=j i a ij 都是常量. 这些ij a 满足什么条件时与力F相关的势能存在? 在这些条件被满足的条件下, 计算其势能.【解】当0=⨯∇→F 时势能存在,要求311332232112,,a a a a a a ===. 以原点为势能零点,则)222(21132312233222211xz a zy a xy a z a y a x a V +++++-=.【16】 一带有电荷q 的质点在电偶极子的场中所受的力为3c o s 2r pq F r θ=,3sin r pq F θθ=,p 为偶极距, r 为质点到偶极子中心的距离.试证此力场为有势场.【解】)/cos (d d d )d d (d 2r pq r F r F e r e r F r F r r θθθθθ-=+=+⋅=⋅→→→→→,故为有势场 【17】 如题17图所示, 自由质点在Oxy 平面内运动, 静止中心A 和B 均以与距离成正比的力吸引质点M , 比例系数为k . 试证明势能存在并求出质点的势能.v题【17图【解】y ky x kx y ky ky x b x k b x k r F d 2d 2d )(d )]()([d --=--+--+-=⋅→→)](d [22y x k +-=.故势能存在. 以O 为势能零点,则)(22y x k V +=.【18】 试用机械能守恒定律求解8题.【解】根据机械能守恒定律,以椭圆弧最低点为势能零点,mgbmv =221,可知gb v 2=,参见3.8提示.【20】 将质量为m 的质点竖直抛上于有阻力的媒质中。

《理论力学》习题三答案

《理论力学》习题三答案

《理论力学》习题三答案一、单项选择题(本大题共30小题,每小题2分,共60分)1. 求解质点动力学问题时,质点的初始条件是用来( C )。

A 、分析力的变化规律; B 、建立质点运动微分方程; C 、确定积分常数; D 、分离积分变量。

2. 在图1所示圆锥摆中,球M 的质量为m ,绳长l ,若α角保持不变,则小球的法向加速度为( C )。

A 、αsin g ;B 、αcos g ;C 、αtan g ;D 、αtan gc 。

3. 已知某点的运动方程为2bt a S +=(S 以米计,t 以秒计,a 、b 为常数),则点的轨迹为( C )。

A 、是直线;B 、是曲线;C 、不能确定;D 、抛物线。

4. 如图2所示距地面H 的质点M ,具有水平初速度0v,则该质点落地时的水平距离l 与( B )成正比。

A 、H ; B、H ; C 、2H ;D 、3H 。

5. 一质量为m 的小球和地面碰撞,开始瞬时的速度为1v ,碰撞结束瞬时的速度为2v(如图3),若v v v ==21,则碰撞前后质点动量的变化值为( A )。

A 、mv ;B 、mv 2 ;C 、mv 3;D 、 0。

6. 一动点作平面曲线运动,若其速率不变,则其速度矢量与加速度矢量( B )。

A 、平行; B 、垂直; C 、夹角随时间变化; D 、不能确定。

7. 三棱柱重P ,放在光滑的水平面上,重Q 的匀质圆柱体静止释放后沿斜面作纯滚动,则系统在运动过程中( A )。

A 、沿水平方向动量守恒,机械能守恒;B 、动量守恒,机械能守恒;C 、沿水平方向动量守恒,机械能不守恒;D 、均不守恒。

图1图2图38. 动点M 沿其轨迹运动时,下列几种情况中,正确的应该是( A )。

A 、若始终有a v⊥,则必有v 的大小等于常量; B 、若始终有a v ⊥,则点M 必作匀速圆周运动;C 、若某瞬时有v ∥a,则点M 的轨迹必为直线;D 、若某瞬时有a 的大小为零,且点M 作曲线运动,则此时速度必等于零。

理论力学总复习(3).

理论力学总复习(3).

R ,质量为
m的匀质圆盘在其自身平面内作平面运动。
点速度大小为 B
在图示位置时,若已知图形上 A、B 二点的速度方向如图所示。
45 ,且知
v B ,则圆轮的动能为

2、已知匀质杆长L,质量为m,端点B的速度为v,则杆的动能为 ②
3、图示三棱柱重P,放在光滑的水平面上,重Q的匀质圆柱体静止释放后
(a 0 g ) sin / L 0
1、倾角为 的楔形块A质量为 m1 ,置于光滑水平面上,物块B的 质量为 m2 ,放置在楔块斜面上。系统由静止开始运动。求A、 B的相互作用力。(不计两物块之间的摩擦)
第九章 质点系动力学基础
一、是非题
1、任意质点系(包括刚体)的动量可以用其质心(具有系统的质量)的动量来 表示。 (√ ) 2、质点系中各质点都处于静止时,质点系的动量为零。于是可知如果质点系的 动量为零,则质点系中各质点必须静止。 ( ×) 3、不管质点系作什么样的运动,也不管质点系内各质点的速度如何,只要知道 质点系的总质量和质点系质心的速度,即可求得质点系的动量。 (√ ) √ 4、冲量的量纲与动量的量纲相同。 ( ) 5、质点系对某轴的动量矩等于质点系中各质点的动量对同一轴之矩的代数和。 (√ ) 6、刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体 绕该轴转动时惯性大小的度量。 ( ) √
1、半径为r,质量为M的光滑圆柱放在光滑水平面上,如图所示。一质 量为m的小球从圆柱顶点无初速下滑,试求小球离开圆柱前的轨迹。
2、重为 W1 的物体A,沿三棱体D的光滑斜面下降,同时借一绕过滑轮 C的绳子使重为 W2 的物块B运动。三棱体D重为 W 0 ,斜面与水平 面成 角,如略去绳子和滑轮的重量,求三棱体D给凸出部分E

理论力学 质点动力学

理论力学 质点动力学

第8章质点动力学
[例8-1]桥式起重机跑车吊挂一质量为m的重物,沿水平横梁作
ν
匀速运动,速度为,重物中心至悬挂点距离为l。

突然刹车,
重物因惯性绕悬挂点O向前摆动,求钢丝绳的最大拉力。

解:1)以重物为研究对象2)受力分析mg
F T
a n a t 3)运动分析4)牛顿第二定律
ϕ
sin mg ma t −=ϕ
cos mg F ma T n −=∑=t
t F ma ∑=n
n F ma 5)补充方程
ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=
mg
F T
a n a t ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=0<dt
dv 重物减速
=ϕ0
max v v =max
T T , 0F F ==时ϕ)
1(20
max
T gl
v
mg F +=
a n
F N
a t
a n
ma
mg
F N
a t a n
mg
O
解释非惯性系一些物理现象
飞机急速爬高时
飞行员的黑晕现象
爬升时:a > 5g
惯性参考系——地球
非惯性参考系——飞机
动点——血流质点
牵连惯性力向下,从心脏流向头部的血流受阻,造成大脑缺血,形成黑晕现象。

飞行员的黑晕与红视现象
在北半球的弹道偏右;在南半球的弹道偏左
a
C
F
IC。

理论力学质点动力学的运动方程

理论力学质点动力学的运动方程
mk 工程实际中的动力学问题
消去t, 得轨迹方程 由初始条件:t=0时,q0=0,
代入上式得
如果已知这种变化即可确定球与棒的相互作用力。
分析: 由(1)、(2)式可得:
3m 的绳上,绳的另一端系在固定点O,并与铅直线成
角。
作用下从甲板上起飞
y
eA mk 2
cos
k v0
x
1
这是第二类基本问题。
例10-3 一圆锥摆,如图所示。质量m=0.1kg的 小球系于长l=0.3m 的绳上,绳的另一端系在固定点O,
1661年牛顿进入了剑桥大学的三一学院,1665年 获文学学士学位。在大学期间他全面掌握了当时的数 学和光学。1665-1666的两年期间,剑桥流行黑热病, 学校暂时停办,他回到老家。这段时间中他发现了二 项式定律,开始了光学中的颜色实验,即白光由7种 色光构成的实验。而且由于一次躺在树下看到苹果落 地开始思索地心引力问题。在30岁时,牛顿被选为皇 家学会的会员,这是当时英国最高科学荣誉。
初始条件为
a a t 0 :x 0 y 0 0 ,v 0 x v 0 c o s,v 0 y v 0 s i n
确定出积分常数为:
a a C 1 v 0 c o s,C 2 v 0 s i n ,C 3 C 4 0
于是物体的运动方程为:
xv0tcoas
y
v0t
1 2
gt2
轨迹方程为:
有 mr 2 F l 2 r2 l
得 F mr 2 2 l 2 r 2
这属于动力学第一类问题。
例10-2 质量为m的质点带有电荷e,以速度v0进入强 度按E=Acoskt变化的均匀电场中,初速度方向与电场强
度垂直,如图所示。质点在电场中受力 F eE 作用。

理论力学质点动力学的基本方程

理论力学质点动力学的基本方程

F mg 1.96N
cos
v
Fl sin 2
m
2.1m s
这是混合问题。
例11-4 粉碎机滚筒半径为R,绕通过中心的水
平轴匀速转动,筒内铁球由筒壁上的凸棱带着上升。
为了使小球获得粉碎矿石的能量,铁球应在 0
时才掉下来。求滚筒每分钟的转数n 。
已知:匀速转动。 0 时小球掉下。
gl
其中 ,v为变量. 由1式知 重物作减速运动 ,
因此 0时 , T Tmax
Tm
ax
G(1
v02 gl
)
[注]①减小绳子拉力途径:减小跑车速度或者增加绳子长度。
②拉力Tmax由两部分组成, 一部分等于物体重量,称为静拉力, 一部分由加速度引起,称为附加动拉力。全部拉力称为动拉力。
速圆周运动,求小球的速度v与绳的张力。
已知: m 0.1kg, l 0.3m, 60 匀速
求: v, F
已知: m 0.1kg, l 0.3m, 600 匀速
求: v, F
解:
v2
研究小球,m

F sin
0 F cos mg
其中, l sin ,解得
第十一章 质点动力学的基本方程
第十一章 质点动力学的基本方程
§11-1 动力学的基本定律
第一定律(惯性定律) 不受力作用的质点,将保持静止或作匀速直线运动。
第二定律(力与加速度之间的关系定律)
质点的质量与加速度的乘积,等于作用于质点的力的大小, 加速度的方向与力的方向相同。
ma F
质量是质点惯性的度量。 国际单位制:长度(m米),
引言
一.研究对象:研究物体的机械运动与作用力之间的关系。

理论力学课件-动力学精选全文完整版

理论力学课件-动力学精选全文完整版
第一类问题-----已知质点的运动,求作用在质点上的力; 第二类问题-----已知作用在质点上的力,求质点的运动规律。
26
总结 4.求解质点动力学问题的步骤:
(1)根据题意确定研究对象,选择恰当的坐标系; (2)分析研究对象的受力情况,作受力图; (3)分析研究对象的运动情况; (4)列出质点的动力学基本方程,然后求解;如是第二类问题,
(相对地面静止或作匀速直线平动的参考系)
(3)矢量性和瞬时性
二. 质点运动微分方程
F
ma
m
dv dt
m
d2r dt 2
6
利用合矢量投影定理 ,可以在直角坐标系, 自然坐标系及其他坐标系中建立投影方程.
1.质点运动微分方程在直角坐标系上的投影
d2x m dt 2 XFx
m
d2y dt 2
YFy
m
还需根据初始条件确定积分常数。
27
作业
• 9-2 • 9-12
28
例题:电梯以加速度a上升,在电梯地板上,放
有质量为m的重物。求重物对地板的压力。 解:取重物为研究对象
进行受力分析与运动分析。
Fy= m ay
N - mg=m a
mg
N=mg+ma=N'
(静约束力;附加动约束力)
a
讨论:若加速度方向向下 N
b
l
FT
n
r
v
τ
z
mg
m
dv dt
F
t
0
m
v2 r
F
n
FT sin 600
0 F b mg FT cos 600
FT
mg cos 600
19.6N

质点动力学基本方程

质点动力学基本方程

y 质心C 质心 x F1 G F2 FA
l 解:(1)取活塞为研究对象; (2)受力分析,画受力图; (3)运动分析,写出运动方程;
x = OA cos ωt + l
求加速度
d 2x = OAω 2 cos ωt dt 2
d x 由 m 2 = ∑ Fx dt
2
2
FA
F1

d 2x = OAω 2 cos ωt dt 2
此速度为质点在阻尼介质中运动的极限速度 极限速度.跳伞运 极限速度 动员着地时的速度即可由该式求出.
例5 发射火箭,求脱离地球引力的最小速度. 求 属于已知力是位置的函数的第二类问题. 解:属于已知力是位置的函数的第二类问题. 属于已知力是位置的函数的第二类问题 取火箭(质点)为研究对象, 建立坐标如图示. 火箭在任意位置x 处受地球引力F 的作用.
dv dv , 再分离变量积分. =v dt ds
例4:求质量为m的质点M在粘性介质中自由下落的 : 运动方程.设质点受到的阻尼力Fr=-cv,c称为粘度系 数,简称粘度.初始时质点在介质表面上被无初速度 释放.
解:取质点M为研究对象,作用其上的力有重力和介质阻尼 力,均为已知,求质点的运动,属于动力学第二类问题. 在任意位置上,有 d 2x dx m 2 = mg c dt dt
于是 分离变量, 再积分一次 质点的运 动方程

e
g t v′
v′ v = v′
)
dx = v = v ′(1 e dt
g t v′

x
0
dx = ∫ v ′(1 e
0
t
g t v′
)dt
g ′ 2 v′ t v x = v ′t + (e 1) g

ch质点动力学基本方程

ch质点动力学基本方程


2
mg 0
如果sinθ≠0,则由第(1)式可解得:
S l (k m 2 )
此即杆AB所受的力,方向与S相反。 再将S的值代入第(2)式,注意到三角关系,可解 得:
kl m g m lcos
系统稳定转动时的最小角速度为
(此时 cos 1 )
min
kl m g ml
⑤求解未知量
v2 由 2 式得 T G (cos ), gl
, 因此 0时 , T Tmax 其中 ,v为变量. 由1式知 重物作减速运动
Tmax
2 2 v0 G v0 G(1 )G gl g l
2 G v0 [注]①动拉力Tmax由两部分组成, 一部分即物体重量G,称为静拉力;一部分 g l
理论力学引Fra bibliotek力学模型:言
动力学:研究物体的运动与所受力之间的关系
1.质点:具有一定质量而不考虑其形状大小的物体。 例如: 研究卫星的轨道时,卫星 刚体作平动时,刚体 质点;
质点。
2.质点系:由有限或无限个有一定联系的质点组成的系统。 刚体是一个特殊的质点系,由无数个相互间保持距离
不变的质点组成,又称为不变质点系。
2 2
例:求质量为m的质点M在粘性介质中自由下落的运动方程。 设质点受到的阻尼力Fr=-cv,c称为粘度系数,简称粘度。初始 时质点在介质表面上被无初速度释放。
解:取质点M为研究对象,受力及运动分析如图所示。作用 其上的力有重力和介质阻尼力,均为已知,求质点的运动, 属于动力学第二类问题。
在任意位置上,有 d 2x dx m 2 mg c dt dt
2.人造卫星、洲际导弹问题:地心为原点,三轴指向三个恒星;

理论力学习题-质点动力学基本方程

理论力学习题-质点动力学基本方程

理论力学习题-质点动力学基本方程.(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--104第9章 质点动力学基本方程一、是非题(正确的在括号内打“√”、错误的打“×”)1. 凡是适合于牛顿三定律的坐标系称为惯性参考系。

( √ )2. 一质点仅受重力作用在空间运动时,一定是直线运动。

( × )3. 两个质量相同的物体,若所受的力完全相同,则其运动规律也相同。

( × )4. 质点的运动不仅与其所受的力有关,而且还和运动的初始条件有关。

( √ )5. 凡运动的质点一定受力的作用。

( × )6. 质点的运动方向与作用于质点上的合力方向相同。

( × )二、填空题1.质点是指大小可以忽略不计,但具有一定质量的物体。

2.质点动力学的基本方程是∑=i m F a ,写成自然坐标投影形式为∑=τF dt s d m22∑=nFv m ρ2∑=b F 0。

、 、1053.质点保持其原有运动状态不变的属性称为惯性。

4.质量为m 的质点沿直线运动,其运动规律为0ln(1)v t x b b=+,其中0v 为初速度,b 为常数。

则作用于质点上的力=F 2020()mbv b v t -+。

5.飞机以匀速v 在铅直平面内沿半径为r 的大圆弧飞行。

飞行员体重为P ,则飞行员对座椅的最大压力为2(1)vP gr+。

三、选择题1.如图所示,质量为m 的物块A 放在升降机上, 当升降机以加速度a 向上运动时,物块对地板的压力等于( B )。

(A) mg(B) )(a g m +(C) )(a g m -(D) 02.如图所示一质量弹簧系统,已知物块的质量为m ,弹簧的刚度系数为c ,静伸长量为s δ,原长为0l ,若以弹簧未伸长的下端为坐标原点,则物块的运动微分方程可写成( B )。

(A) 0=+x m cx(B) 0)(=-+s x mcxδ (C) g x m cx s =-+)(δ (D) 0)(=++s x mcxδ 3.在介质中上抛一质量为m 的小球,已知小球所受阻力R kv =-,坐标选择如图所示,试写出上升段与下降段小球的运动微分方程,上升段( A ),下降段( A )。

《理论力学 动力学》 第十六讲 变质量质点的动力学普遍定理

《理论力学 动力学》 第十六讲 变质量质点的动力学普遍定理

3、变质量质点的动力学普遍定理(1) 变质量质点的动量定理设变质量质点在任一瞬时的动量p =m v ,其中m =m (t )是时间的函数,将动量对时间求导,得到:d d()d d d d d d m m m t t t t==+p v v v 而,代入上式得:d d d d r mm t tf =+=+v F F F v d d d d d d r m m t t t =++p v F v 记并入或放出质量的绝对速度为v 1, 则:1=+rv v v 则动量对时间的导数等于:1d d d d m t t =+p F v 记1d d a m tf =F v 称F ϕa 为由于并入或放出质量的绝对速度引起的反推力,它具有力的量纲且能改变质点的动量。

于是有:d d a tf =+pF F —变质量质点动量定理的微分形式变质量质点的动量对时间的导数,等于作用其上的外力与由于并入或放出质量的绝对速度而引起的反推力的矢量和。

设t=0时质点质量为m 0、速度为v 0,积分上式得:00a 10d d d d tttmm m m t t t mf -=+=+òòòòv v F F F v 3、变质量质点的动力学普遍定理如果并入或放出质量的绝对速度v 1=0,则积分形式变为:000d tm m t-=òv v F 即使F =0,v 也不是常量,v =m 0v 0/m .(2) 变质量质点的动量矩定理变质量质点对任一定点O 的动量矩为:O m =´L r v对时间t 求导,得到:d d d d d ()()()d d d d d O m m m m t t t t t=´=´+´=´L r r v v r v r v 代入变质量质点动量定理的微分形式得到:d()d a m tf =+v F F d d()d d O a m t tf =´=´+´L r v r F r F —变质量质点的动量矩定理变质量质点对某定点的动量矩对时间的导数,等于作用于质点上外力的合力对该点之矩与由于并入或放出质量的绝对速度引起的反推力对该点力矩的矢量和。

理论力学质点动力学

理论力学质点动力学

˙ 、和时 质点的加速度¨ r 和作用力F 成正比。一般情况下,力可以是坐标r、速度r 间t 的函数。这里m 为惯性质量。
1.2 动量、角动量和能量
(1) 动量与冲量 动量的定义:p = mv;冲量:Fdt; 动量定理: ˙ = F(r, r ˙ , t), p dp = Fdt;动量对时间的变化率等于力。 冲量定理:p2 − p1 = p1 ,意味着动量守恒。 (2) 角动量与力矩 角动量的定义:J = r × p. 力矩:M = r × F.
Contents
1 质点动力学 1.1 1.2 1.3 1.4 1.5 牛顿动力学方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 动量、角动量和能量 . . . . . . . . . . . . . . . . . . . . . . . . . . 各种坐标系下的牛顿方程 . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 4
r
F · dr = V (r) − V (0)
0 r
=
0 r
dV ∂V ∂V ∂V dx + dy + dz ∂x ∂y ∂z ∇V · dr.
0
=
0 r
=
r
(F − ∇V ) · dr = 0.
0 r
(1.6)
因为路径是任意的,故F = ∇V ,可以看出V (r) = V (0) + 0 F · dr,只要知 道保守力的表达式,即可由此得到势能的表达式。注意,这里如果假定无穷远 处为能量零点,即可得F = −∇V 。 (iii) 机械能 机械能:势能和动能之和 T + V 。 对于保守力,我们有 dT = F • dr = −∇V (r) • dr = −dV 。 于是,d(T + V ) = 0,即机械能守恒。

理论力学第8章动力学普遍定理3

理论力学第8章动力学普遍定理3


W 得
i
2Q 9 P 2 2 l 0 M 12 g
——(*)

2 l
3 gM 2Q 9 P
将(*)式对t 求导数,得
2Q 9 P 12 g l 2
2
d dt
M
d dt


d dt
T 1 2 mv
2

1 2
J A
2

1 2
mv
2
JA
1 2
mr , v r
2
T
5 4
mv
2
当圆盘A质心沿斜面向下运动dS时:
δW
5 4
i
2 mg d S sin f mg d S cos mg d S ( 2 sin f cos )
由动能定理的微分形式dT=∑Wi得:
δ W F d s F r d m z ( F ) d
2
W
1

m z ( F )d
若 m z ( F ) 常量,则
W m z ( F )( 2 1 )
7
如果作用力偶m , 且力偶的作用面垂直转轴,则
W md
1 2
W 若m = 常量, 则 注意:功的符号的确定。
注意:圆轮作纯滚动时摩擦力F不做功
( d r 0 )
(2) 滚动摩擦阻力偶m的功 若m = 常量则 6.约束反力的功 约束反力元功为零或元功之和为零的约束称为理想约束。
W m m s R
即:理想约束的约束反力做功为零。
9
(1)光滑支承面
N dr δW N dr 0
2
——质点动能定理的微分形式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知:质点M(质量m), 作用其上的力有F1,F2,…, Fn。 根据牛顿第二定律,在不同 坐标系中,质点在惯性系中 的运动微分方程有以下几种 形式:
矢量形式
mr Fi
i
8.1 质点运动微分方程
直角坐标形式
mx Fix
i
my Fiy
i
mz Fiz
i
8.1 质点运动微分方程
自然坐标形式
FN
mgcos
m
l 2
l
2
8.2 质点动力学的两类基本问题
x
解:4. 讨论 :
本例如果采用直角坐标形式
建立运动微分方程,建立如图 所示的直角坐标系
y
mx Fix
i
my Fiy
i
mz Fiz
mx FNsin
my
mg
FN
cos
i
8.2 质点动力学的两类基本问题
例题4
一圆锥摆,如图所示。 质量m=0.1kg的小球系于 长l=0.3m 的绳上,绳的另一 端系在固定点O,并与铅直 线成θ=60°角。如小球在 水平面内作匀速圆周运动,
cos
v
Fl sin 2
m
2.1m s
这是混合问题。
8.2 质点动力学的两类基本问题
例题5
质点与圆柱面间的动滑动摩擦因数为 f,圆柱半径为 r 为
1m。(1)建立质点的运动微分方程;(2)分析其运动。
Fo
FN n r
解:对象:质点;受力:如图;
运动:圆周运动;方程:质点运
动微分方程为
当:
ms
Nanjing University of Technology
理论力学课堂教学软件(8)
理论力学 第三篇 动力学
第三篇 动力学
动力学
质点动力学 动量定理及其应用
动量矩定理及其应用 动能定理及其应用
达朗贝尔原理
第三篇 动力学
H 舰载飞机在发动机和弹射器推力作用下从甲板上起飞
第三篇 动力学
已知推力和跑道可能 长度,则需要多大的 初速度和一定的时间 间隔后才能达到飞离
作用下得到的加速度称为重力加速度,用 g 表示。由第二
定律有
P mg 或 m P
g
g 9.780491 0.0052884sin2 0.0000059sin2 2
为纬度
国际计量标准g=9.80665 m/s2,一般取g=9.8 m/s2
在国际单位制(SI)中,长度、时间、质量为基本量,它们 的单位以米(m)、秒(s)和千克(kg)为基本单位。其它量均为 导出量,它们的单位则是导出单位。
8.2 质点动力学的两类基本问题
常见问题的数学处理方法
1. 力是常数或是时间的简单函数
v
t
mdv F(t)dt
v0
0
2. 力是位置的简单函数, 利用循环求导变换
dv dv dx v dv dt dx dt dx
v
x
mvdv F(x)d x
v0
x0
3. 力是速度的简单函பைடு நூலகம்,分离变量积分
d(mv)
dt
n i 1
Fi
在经典力学中质点的质量是守恒的
ma
n
Fi
i 1
质点的质量越大,其运动状态越不容易改变,也就是质点
的惯性越大。因此,质量是质点惯性的度量。上式是推导
其它动力学方程的出发点,称为动力学基本方程。
8.1 质点运动微分方程
在地球表面,任何物体都受到重力 P 的作用。在重力
数值方法给出质点位置、 速度和切向加速度随时间
的变化规律
o
r
mg (t)
(t ) (t )
f 0.1
t(s)
0 0rad,0 0rad/s,
8.2 质点动力学的两类基本问题
思考题1:给出垂直上抛物体上升时的运动微分方程。
(设空气阻力的大小与速度的平方成正比)
yv
A : my mg cy 2
vm
t
d v dt
v0 F (v)
0
8.2 质点动力学的两类基本问题
例题1
曲柄连杆机构如图所示.曲柄OA以匀角速度 转动,OA=r,
AB=l,当 r / l 比较小时,以O 为坐标原点,滑块B 的运动方程
x
l
1
2
4
可近r 似co写s为t
4
cos
2
t
如滑块的质量为m, 忽略摩擦及连杆AB的质量,试求
第8章 质点动力学
8.1 质点运动微分方程
8.1 质点运动微分方程
理论基础:牛顿定律与微积分
第一定律(惯性定律) 不受力作用的质点,将保持静止或作匀速直线运动。
质点保持其原有运动状态不变的属性称为惯性。
第二定律(力与加速度关系定律)
质点的质量与加速度的乘积,等于作用质点的力的大
小,加速度的方向与力的方向相同。
积分
dv vx
v0
x
0

vy 0
dvy
dx
vx dt
eA m
v0
t
0 cos
vy
ktdt
dy dt
eA mk
sin
kt
8.2 质点动力学的两类基本问题

dx vx dt v0
dy eA
vy
dt
sin mk
kt
由 t 0时 x y 0,积分
x
t
dx
0
0 v0dt ,
8.2 质点动力学的两类基本问题 两类问题综合
已知部分力和部分运动,求另一部分的力和运动
已知:发动机的输出扭矩、车的重力、车沿直线行驶。 待求:地面约束力,车身的运动(前行速度,上下振动)。
8.2 质点动力学的两类基本问题
求解质点动力学问题的过程与步骤如下
1.对象:确定研究对象,选择适当的坐标系; 2.受力:进行受力分析,画出相应的受力图; 3.运动:进行运动分析,计算出求解问题所需的运动量; 4.方程:列出质点动力学的运动微分方程,分清是第一类 问题还是第二类问题,分别用微分或积分法求解。
mr 0mg
cos
F
(1)
mg 由(2)式解得:
FN
mr2
m s2 mr2 mg sin
r
mg sin
F f FN
FN
(2)
代入(1)式得: mr mg cos f (mr2 mg sin )
同理,当: 0 mr mg cos f (mr2 mg sin )
8.2 质点动力学的两类基本问题
ax x r 2 cos t cos 2 t
max F cos
当 时,
2
ax r 2
且 cos
l2 r2 l
有 mr 2 F l 2 r 2 l
得 F mr2 2 l 2 r 2 这属于动力学第一类问题。
8.2 质点动力学的两类基本问题
例题2
,。 、
质量为m的质点带有电 荷e,以速度v0进入强度按 E=Acoskt变化的均匀电场 中,初速度方向与电场强度 垂直,如图所示。质点在电 场中受力F=-eE作用。已
刚体:质点系的一种特殊情形,其中任意两个质点间的距 离保持不变,也称不变的质点系。
第三篇 动力学
第8章 质点动力学
第三篇 动力学
质点动力学(dynamics of a particle):研究作用 在质点上的力和质点运动之间的关系。本章主要介
绍质点在惯性系下的运动微分方程。
第8章 质点动力学
8.1 质点运动微分方程 8.2 质点动力学的两类基本问题 8.3 结论与讨论
甲板时的速度。
若已知初速度、一定的时间间隔后飞离甲板时 的速度,则需要弹射器施加多大推力,或者确定需 要多长的跑道。
第三篇 动力学
爆破时烟囱怎样倒塌
第三篇 动力学
v1
F v2
棒球在被球棒击打后,其速度的大小 和方向发生了变化。如果已知这种变化
即可确定球与棒的相互作用力。
第三篇 动力学
v2 v1
B A
载人飞船的交会与对接
第三篇 动力学
高速列车的振动问题
第三篇 动力学
航空航天器 的姿态控制
第三篇 动力学
动力学研究物体的机械运动与作用力之间的关系。 动力学中所研究的研究对象是质点和质点系(包括刚体)。 质点:具有一定质量而几何形状和尺寸大小可以忽略不计
的物体。 质点系:由几个或无限个相互有联系的质点所组成的系统。
y
dy
eA
t
sin ktdt
0
mk 0
得运动方程
x v0t,
y
eA mk 2
cos
kt
1
消去t, 得轨迹方程
y
eA mk 2
cos
k v0
x
1
这是第二类基本问题。
8.2 质点动力学的两类基本问题
例题3
单摆由一无重量细
长杆和固结在细长杆一
端的重球组成。杆长为
l,球质量为m。
m
试求:
1. 单摆的运动微分方程;
动力学的基本问题:
第一类基本问题:已知运动求力。 如:万有引力定律的发现。
在求解过程中需对运动方程求导即可。
“我(牛顿)之所以看得远,是因为我站在巨人的肩膀之上。” 牛顿在总结前人的研究成果,包括: 1)哥白尼(1473-1543) 日心说
2)第谷·布拉赫(1546-1601)积累的天文观察资料 3)开普勒(1571-1630)行星三定律
当t 0和 时
,连杆AB所受的力。
2
8.2 质点动力学的两类基本问题
解:对象:滑块 受力:如右图 运动:平移
相关文档
最新文档