量子点激光器

合集下载

令人生畏的中国激光武器

令人生畏的中国激光武器

令人生畏的中国激光武器一、中国的激光理论和技术在世界上处于领先地位我国的激光技术发展迅速,无论是数量还是质量,中国的激光理论和技术在世界上处于领先地位。

1、注重理论研究带动激光技术的发展激光科技事业从一开始就得到了领导和科学管理部门的高度重视。

当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。

主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。

1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所——中国科学院上海光学精密机械研究所(简称“上海光机所”)成立。

2、借助重点项目的支撑,带动激光技术的发展1964年启动的“6403”高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。

我国的激光科技事业,虽然也遭遇了“文革”十年浩劫,但借助于重点项目的支撑,仍艰难地生存了下来并取得可贵的进展。

(1).“6403”高能钕玻璃激光系统1964年启动,最后从技术上判定热效应是根本性技术障碍,于1976年下马。

这一项目对发展高能激光技术有历史贡献是不可忽视的,它使我国激光技术的水平上了一个台阶。

其成果主要表现在:(1)建成了具有工程规模的大口径(120毫米)振荡—放大型激光系统,最大输出能量达32万焦耳;改善光束质量后达3万焦耳。

(2)实现了系统技术集成,成功地进行了打靶实验,室内10米处击穿80毫米铝靶,室外2公里距离击穿0.2毫米铝耙,并系统地研究了强激光辐射的生物效应和材料破坏机理。

(3)第一次揭示了强光对激光系统本身的光损伤现象和机制。

(4)第一次深入和理解激光光束质量的重要性和物理内涵,采用了一系列提高光束质量的创新性技术,如万焦耳级非稳腔激光器、片状激光器、振荡—扫瞄放大式激光系统、尖劈法光束质量诊断等。

半导体量子点激光器的发展

半导体量子点激光器的发展
图 3给 出半导 体 激光 器发 展历 程 中一些 主要 的进展 。 目前 公认 的半导 体激 光 器研究 的主要 突 破 是诺 贝 尔奖 获 得者 A frv于 16 l o e 9 6年提 出的 双异 质结 结 构 。从 8 0年代 中算 起 , 子点 激 光器 量
于微 细加 工带 来 的界 面损伤 和 光刻 、刻 蚀 等工 艺
优异 的性 能 , 如超 低 阈值 电 流密度 、 高 的 阈值 电 极 流密 度 温度稳 定性 、超高 微分 增 益 和极 高 的调制
带 宽等 。 量子 点 激光 器 已显 示 出从大 功率 激 光 、 光
都 是量 子 化 的 。称这 种 电子 在三 个维 度上 都受 到
限制 的材 料为 量 子点 。图 l表示 不 同维度 限 制的
激 光 器
摘要 : 本文综述 了半导体量手点激光器的发展和研 究现状 , 并简单介绍 了量子点材料的 自组装生长 , 量 子点在 其 他 光 电子 器件上 的应 用及 其发 展趋 势 。
霉镌量
( 国科 学 院激 发 中 ( 国科 学 院长 春光 学 中

1 量子点低 维 限制
如 果 量 子 点 的最 低 两 个 分 立 量 子 能 级 的能
( ) 子线 ; c 及 量 子点 ; d 双 异质 结 激光 器 的 b量 () ()
阈值 电流密 度特 征 与温 度特性 。对 于理 想量 子 点 激 光 器 , 论上 的特 征 温度 为 ∞ , 理 即温度 变化 对 激 光 器 的 阈值 电流密度 等 特性 没有 影 响 。 这 种 具 有 类 原 子 的 态 密 度 函数 分 布 的 量 子 点激 光器 可望 具有 比量 子 阱 、量子 线 激光 器更 加

激光原理与技术

激光原理与技术

激光的光化学效应与光生物效应
光化学效应
激光能够激发化学反应,改变物质的化学性 质。光化学效应在光催化、光合成等领域具 有重要应用,如利用激光诱导化学反应合成 新材料。
光生物效应
激光对生物组织的作用,包括光热作用、光 化学作用和光机械作用等。光生物效应可用 于激光治疗、光遗传学等领域,如利用激光 进行视网膜修复、神经刺激等。
激光的特性
激光具有一系列独特的特性,如方向性好、亮度高、单色性好和相干性好等。这些特性使得激光在科学研 究、工业生产、医疗诊断等领域具有广泛的应用价值。
02
激光器类型与技术
固体激光器
01
02
03
晶体激光器
使用掺杂有激活离子的晶 体作为工作物质,如 Nd:YAG激光器。
玻璃激光器
以玻璃为基质,掺入激活 离子制成的激光器,如钕 玻璃激光器。
变换特性
利用光学系统,如透镜组、反射镜、波片等,可以对激光束进 行变换,如扩束、缩束、旋转、偏振状态改变等。
激光束的聚焦与整形
聚焦特性
通过透镜或反射镜等聚焦元件,可以将激光束聚焦到极小的焦点上,实现高能量密 度的集中。聚焦后的激光束可用于切割、焊接、打孔等高精度加工。
整形特性
利用特定的光学元件或算法,可以对激光束进行整形,如生成特定形状的光斑、实 现均匀照明等。整形后的激光束可应用于光刻、显示等领域。
激光治疗
利用激光的生物刺激效应,对病 变组织进行照射,以达到治疗目
的。
激光手术
使用激光代替传统手术刀进行手 术,具有精度高、出血少、恢复
快等优点。
激光美容
通过激光照射肌肤,改善皮肤质 地、去除色斑、减少皱纹等。
激光通信技术
光纤通信

量子点激光器课件

量子点激光器课件
量子点激光器的可靠性主要涉及到其寿命和故障率。由 于量子点材料的缺陷和杂质,以及激光器运行过程中产 生的热量和光子辐射等效应,会导致激光器的性能逐渐 下降,甚至发生故障。因此,需要研发具有高稳定性和 可靠性的量子点材料,并优化激光器设计,降低其故障率。
量子点激光器的可扩展性及集成问题
可扩展性
量子点激光器的可扩展性是其未来发展的关键问题之 一。目前,量子点激光器的尺寸和功率都相对较小, 难以满足大规模、高功率的应用需求。因此,需要研 发具有更大尺寸和更高功率的量子点激光器,并实现 其可扩展性。
生物医学成像
基于量子点激光器的生物医学成像技术
量子点激光器可以作为激发源,用于荧光探针标记,实现高分辨率、高灵敏度的 生物医学成像。
量子点激光器在光学分子成像中的应用
量子点激光器可以提供稳定、高效的激发光源,有助于推动光学分子成像技术的 发展。
光谱学与传感
基于量子点激光器的光谱学研究
量子点激光器具有宽光谱范围和窄线宽特性,可用于光谱学研究,如高分辨率 光谱测量和量子频率转换等。
05
量子点激光器面临的挑战 与未来发展方向
量子点激光器的稳定性与可靠性问题
稳定性问题
量子点激光器的稳定性主要受到温度、湿度、压力等环 境因素的影响,这些因素会导致量子点尺寸的变化,进 而影响激光器的性能。为了提高量子点激光器的稳定性, 需要采取恒温、恒湿、真空封装等措施来控制环境因素 的变化。
可靠性问题
量子点激光器课件
• 量子点激光器概述 • 量子点激光器的种类和特点 • 量子点激光器的应用领域 • 量子点激光器的研究进展 • 量子点激光器面临的挑战与未来发展方向 • 量子点激光器实验技术介绍
01
量子点激光器概述

第五章 纳米电子学

第五章 纳米电子学

2.电子器件、电路、系统设计
纳米结构 量子阱 量子线
物理效应 共振隧穿效应 高迁移率一维电子气
应用 谐振晶体管、电路和系统 超高速逻辑开关、电路和系统
量子点 量子点接触
可集蓄电子原理
极大容量存贮器
库仑阻塞效应、单电子 单电子晶体管、电路和系统(包 振荡和单电子隧穿效应 含单电子开关和单电子存贮器)
扫描探针显微镜(SPM)技术、分子自组装合成技术以及 特种超微细加工技术
3.4.1 三束光刻加工技术
1、光学光刻技术
光学光刻是IC产业半导体加工的主流技术。通过光 学系统以投影方法将掩模上的大规模集成电路器件结 构图形“刻”在涂有光刻胶硅片上的技术。
减小光源的波长是提高光刻分辨率的最有效途径。 光刻蚀使用240nm的深紫外光波,能否突破100nm成 为现有光学光刻技术所面临的最为严峻的挑战。
1、RT>RK; 2、e2/2C>> KBT。
➢ 1、RT>RK的物理意义:当一个隧道结两端施以偏压U
时,电子的隧穿几率Γ=U/(eR),那么两次隧穿事件的时间 间隔为1/Γ=eR/U,而由测不准原则所决定的一次隧穿事件的 周期为h/(eU)。因此,必须满足eR/U>>h/eU,即R >>h/e2。 这意味着两次隧穿事件不重叠发生,从而保证电子是一个一 个地隧穿。
光刻技术——X射线刻蚀、电子束刻蚀、软X射线刻蚀、
聚焦离子束刻蚀等
微细加工——扫描探针显微镜(SPM)作为工具的超微细
加工技术
第二节 纳米电子器件的分类
2.1纳米器件与纳米电子器件
2、纳米电子器件
➢纳米电子器件满足两个条件——
1、器件的工作原理基于量子效应; 2、都具有相类似的典型的器件结构——隧穿势垒包围“岛” (或势阱)的结构。

量子点激光器工作原理

量子点激光器工作原理

量子点激光器工作原理量子点激光器是一种基于量子点材料的激光器,其工作原理是通过量子点材料的特殊能带结构和量子效应实现的。

量子点是一种尺寸在纳米尺度的半导体结构,其尺寸约为1-10纳米。

量子点材料具有独特的光学和电学性质,使其在激光器领域具有广泛的应用前景。

量子点激光器的工作原理可以分为三个主要步骤:激发、载流子注入和辐射。

首先,通过外部能源的激发,如光激发或电激发,将量子点材料中的载流子激发到激发态。

这个过程可以通过吸收外部光线或施加电场来实现。

接下来,通过载流子注入,使激发态的载流子在量子点材料中形成高浓度。

载流子注入可以通过电压施加或电流注入来实现,其中电流注入是最常用的方法。

注入的载流子会在量子点材料中形成电子空穴对,这些电子空穴对会在量子点材料中快速扩散和重新组合。

由于量子点材料的能带结构和量子效应的存在,电子空穴对在扩散和重新组合的过程中会发生辐射。

这种辐射过程会产生具有特定波长和相干性的光,形成激光输出。

量子点材料的能带结构决定了激光的波长,而量子效应则决定了激光的相干性和输出功率。

量子点激光器相比传统的激光器具有许多优点。

首先,量子点材料具有宽广的发射波长范围,可以实现从紫外到红外的全波段覆盖。

其次,量子点材料具有窄的发射谱线宽度,可以实现高光谱纯度的激光输出。

此外,量子点激光器具有高的发光效率和低的激光阈值,可以实现高功率和高效率的激光输出。

量子点激光器在众多领域中具有广泛的应用。

在通信领域,量子点激光器可以用于光纤通信、无线通信和光存储等。

在显示领域,量子点激光器可以用于显示屏的背光源,可以实现更高的色彩饱和度和更广的色域。

此外,量子点激光器还可以应用于生物医学、光电子学和光学传感等领域。

然而,量子点激光器也存在一些挑战和限制。

首先,量子点激光器的制备和工艺相对复杂,需要高精度的材料生长和器件制备技术。

其次,量子点材料的发光特性受到温度和环境的影响较大,需要有效的温度控制和环境隔离措施。

高功率固体激光器的研究与制造

高功率固体激光器的研究与制造

高功率固体激光器的研究与制造近年来,高功率固体激光器在科技领域中的应用越来越广泛,它已经深刻地影响和改变了我们的生活和生产方式。

固体激光器相比于其他类型的激光器,具有能量密度高、波长多样性、偏振可控性强、精度高等优点,因此具有不可替代的地位。

然而,高功率固体激光器的研究与制造并非易事,涉及许多科学原理和技术难题。

本文将全面分析高功率固体激光器的研究与制造现状,并展望其未来的发展趋势。

一、高功率固体激光器研究现状1.1 固体激光器的产生原理通常,固体激光器的产生是靠将电能转化为光能,这一过程被称为泵浦,泵浦的方式很多,例如氙灯泵浦、二极管泵浦、光纤泵浦等。

所产生的激光通过激光共振腔改变光程,增强输出功率。

对于固体激光器来说,它通常由一个激光材料、电源和多个齐次反射镜组成。

激光材料通过泵浦产生激发态,然后被反射镜全反射,由于反射次数增多,激发态的电子在发射光子时与其他原子的发光相干而放大,最终形成纵向模式共振,从激光器输出激光束。

1.2 高功率固体激光器的制造难题高功率固体激光器的制造过程中存在很多科学和技术难题,包括以下几个方面:(1) 激光能量密度问题高功率固体激光器的输出能量非常强,达到了几千瓦,这个过程中需要处理的问题是如何应对高能量密度引起的各种问题,比如材料的熔化、气化降低其抗性、反射镜的损耗等。

对此,科学家采用的方法是不断开发新的材料和新的工艺、精确计算和管理,以降低激光能量密度对设备和人员的危害。

(2) 温度问题高功率固体激光器的温度控制是非常重要的,因为激光器需要在非常高的温度下运行,这将导致材料的热膨胀和抗性降低。

在解决这些问题的同时,科学家还需要保证激光器的性能和安全性,并避免损坏激光器的陀螺效应。

(3) 技术落后问题制造固体激光器所需要的技术实力非常高,由于制造难度大,对工艺流程、材料、设备精度等方面的要求也很高,而目前中国在这方面的研究和发展尚属较落后。

因此,在不断改进技术流程、提高材料质量等方面的努力中,在中国固体激光器的制造领域有很大的空间。

量子点发光材料综述

量子点发光材料综述

量子点1.量子点简介1.1量子点的概述量子点(quantum dot, QD)是一种细化的纳米材料。

纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。

更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。

由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。

量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。

这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。

1.2量子点的特性由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。

1.2.1 量子尺寸效应纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。

这种现象就是典型的量子尺寸效应。

研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。

1.2.2 表面效应纳米颗粒的比表面积为,也就是说量子点比表面积随着颗粒半径的减小而增大。

量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。

当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。

1.2.3 量子隧道效应量子隧道效应是基本的量子现象之一。

简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。

当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。

因此这种现象又称为宏观量子隧道效应[6][7]。

1.2.4 介电限域效应上世纪七十年代Keldysh等人首先发现了介电限域效应[8]。

量子点技术

量子点技术
目 录
01
简介 原理
02
03
应用
Quantum Dot LED
What is Quantum Dot ?
What is Quantum Dot ?
What is in Quantum Dot ?
• Nanocrystals • 2-10 nm diameter • Semiconductors
QLED发光原理
量子点具有发光特性,量子点薄膜 (QDEF)中的量子点在蓝色LED背光照射
下生成红光和绿光,并同其余透过薄膜的蓝光一起混合得到白光,从而提升 整个背光系统的发光效果。 量子点QLED显示技术与众不同的特性,每当受到光或电的刺激,量子点便 会发出有色光线,光线的颜色由量子点的组成材料和大小形状决定,量子点
右)和较长的工作寿命。
结构特点
因体积小,让内部电子在各方向上的运动受到限制,所以量子限域效应特别 显著,也让它能发出特定颜色的荧光。其发出的光线颜色由量子点的组成材 料和大小、形状所决定。由于发光波长范围极窄,颜色非常纯粹,所以画面 更加明亮。
当受到电或者光(诸如LED产生的光)的刺激后,量子点中的电子吸收了光 子的能量,从稳定的低能级跃迁到不稳定的高能级,而在稳定恢复时将能量 以特定波长的光子放出。
纯色OLED需要彩色过滤器才能产生,而QLED天生就能产生各种不同纯色,因此能效更高, 制造成本更低。在同等画质下,QLED的节能性有望达到OLED的2倍,发光率将提升30% 至40%。
量子点的应用一:量子点电视
1.由于量子点的鲜明特征是,既可使用单色光激发出多种不同颜色,也可以使用多种颜 色的光激发产生特定颜色的纯色荧光。 2.QLED显示技术能够增强LED白色光强度,并且一旦用蓝色LED点亮会激发出全频谱光的 能力,它能以更有效的方法去点亮LCD显示的像素。

化合物半导体器件有哪些

化合物半导体器件有哪些

化合物半导体器件有哪些在当今世界高科技领域中,化合物半导体器件作为一种重要的电子器件类型,被广泛应用于各种领域,如电子、光电子、通信和能源等。

化合物半导体器件具有许多优异的性能特点,如高速、高频、高功率密度和低噪声等,因此备受关注。

本文将介绍几种常见的化合物半导体器件。

1. 量子点器件量子点器件是一种基于半导体纳米结构的器件,利用量子点的量子效应进行电子传输和操控的器件。

量子点器件主要包括量子点发光二极管(QLED)、量子点激光器(QL)、以及量子点太阳能电池等。

由于量子点的量子效应和尺寸效应,这类器件具有高色纯度、高量子效率和调控性能好的特点。

2. 磷化镓器件磷化镓器件是一类基于磷化镓(GaP)材料制备的半导体器件,主要包括GaP发光二极管、GaP太阳能电池等。

磷化镓材料具有宽直接能隙和高载流子迁移率等优异特性,因此在光电器件领域有着广泛的应用。

3. 合金半导体器件合金半导体器件是指利用两种或多种半导体材料的合金形成的器件,如氮化镓(GaN)/磷化铟(InP)合金器件等。

合金半导体器件综合了各种半导体材料的优点,具有优良的性能表现,广泛应用于高频、高功率、高温等领域。

4. 氮化硅器件氮化硅器件是一种基于氮化硅(SiN)材料制备的半导体器件,主要包括氮化硅发光二极管、氮化硅光伏电池等。

氮化硅材料具有优异的热稳定性和光学性能,适用于高温环境和光电器件中。

综上所述,化合物半导体器件涵盖了众多种类,包括量子点器件、磷化镓器件、合金半导体器件和氮化硅器件等。

这些器件在不同领域都有着重要的应用,为高科技产业的发展做出了积极的贡献。

量子点和量子点激光器

量子点和量子点激光器

量子点的制造方法:量子点的制备可采用分子束外延技术在各种 自然表面上直接生长的方法。如在小偏角表面(vicinal surface) 超台阶面( super steps) 、高指数表面等或者在一些由人工做出 的图形衬底上生长。如V 形槽、在掩膜表面上选择局部生长、自 组织生长法等。下面介绍几种具体的制备方法
(1) 对于三维体系,在固体物理中,已求得其态 密度与能量的关系是抛物线形,如图(a) 所示。
(2)当体系为在某个方向(如z向)受限的二维体系(量子阱) 时,受限方向(z向)的平移对称性被破坏,kz不再是好量 子数,该方向发生能级分裂。一个本征态的能量可以写 为E=Ei + Exy(kx,ky),其中Ei是z方向的量子化的能级 值。 在量子阱中,电子能量
若要严格定义量子点,则必须由量子力学(quantum mechanics)出发。 我们知道电子具有粒子性与波动性,电 子的物质波特性取决于其费米波长(Fermi wavelength)
λF = 2π / kF
• 在一般块材中,电子的波长远小于块材尺寸,因此量子局限 效应不显着。
• 如果将某一个维度的尺寸缩到小于一个波长,此时电子只能 在另外两个维度所构成的二维空间中自由运动,这样的系统 我们称为量子阱(quantum well);
对于零维的量子点而言,体系在x、y、z三个方向受限, 载流子的能量在三个方向上都是量子化的,不存在能量的 连续分布。所以,量子点的态密度与能量的关系表示为δ 函数的形式,即
ρ3D(E) = ∑ δ ( E - Ei)
i
其中Ei是体系的能量可取值,可表示为
量子点的能态图形为类氢光谱状的分离线, 如图(d)所示。
• 量子点是目前理论上与实验上的热门研究题 目,世界各国无不积极投入研究,主要领先 的有美国、日本、欧盟及俄罗斯等,台湾也 正在急起直追中。

40吉比特/s的量子点垂直腔面发射激光器

40吉比特/s的量子点垂直腔面发射激光器

欧共体I - I V族太 阳 电池项 目使用 的 I

种新颖金属有机物源

种新的含 G 金属有机物源材料对新一代多结太阳电池并降低其生产成本发挥重要作 e
用。
主持 欧洲 聚光 光伏 (P )电池 系统 商业化 项 目的研 究 人 员相信 :在 多结 电池 中生长 G CV e 外延层将是工艺开发中的一个关键步骤 。历时 5 年、投资 17 万欧元 (50 10 13 万美元 )的开 发项 目 ——A0 LN P L0 ,是迄今欧共体第 7 个研究框架项 目 ( P )中最大的光伏研究项 目。 F7 该 项 目 l 个成员 ( 有 6 国)团体,包括生产 MC D OV 反应器 的 A xr n it o 公司。主要 目标是研制开 发 成本 为 2欧元 /p的 C V电力 生产 系统 。 CV系 统 电池 主 要供应 商 将 生长一 种 带隙 为 lV w P 该 P e 的新材 料 ,并 以外延 的 G 金代 替 多结 电池 中的 IGN s 以提高其 量 子效 率 。 e合 na A 层 到 目前为止 , 结 电池 IGP IGA / e结 构 中只有外 延 生长 顶层 和 中间层 , 一层则 多 na /n as G 另 是用 向 G e衬底进 行 原子扩 散 的方法 形成的 ,这种 加工 方法 会 对第 三层 带 来不利 影 响 ,因为 它使 G e中掺杂 剂 的分布 “ 准确 ” 不 ,从而使 G e和第 一核 化层 之 间 的界面 上表 面复 合速 度太 高,影 响了 电池 的性 能 。为 此 ,最近 开 发 出一种 新颖 的金 属有 机物 材料 —— 异 丁烯 锗并 以此 制 出第 一个 四结 (n a /na sG IOP IOA / e合金 /e 6 )太 阳 电池 。G 延 也有助 于 开发 在低 成本 s e外 i 衬底上生长Ⅱ— IV族太阳电池;到 目前为止,研究人员基本解决了晶格失配 问题——用等离 子增强 C D V 技术在 s 衬底上生长一层 SG 合金,然后在 MC D i ie OV 反应器中生长Ⅲ一 V族层。

激光器 量子亏损

激光器 量子亏损

激光器量子亏损
在激光物理学中,“量子亏损”(Quantum Deficit)这一术语并不常见,但与激光器工作原理相关的概念中,有一个与之类似的概念是“量子限制效应”或“量子效率”。

在某些上下文中,如果提到“亏损”,可能是指激光工作过程中未能有效转换为光子输出的那部分能量,这部分能量通常以热量等形式损失掉。

在半导体激光器如量子点激光器(Quantum Dot Laser)和量子级联激光器(Quantum Cascade Laser, QCL)中,电子在不同的能级之间跃迁产生光子,理想情况下,每一步跃迁都应该是一个完整的光子发射过程。

然而,在实际操作中,由于非辐射复合、载流子泄漏以及其他非理想的物理过程,电子跃迁产生的光子可能无法全部从激光器中输出,从而造成了一种“量子亏损”。

例如,在量子点激光器中,空间位移损伤或电离辐射损伤可能会降低量子点的有效性和稳定性,导致量子效率下降,即出现某种程度上的“亏损”。

而在量子级联激光器的研究中,科学家们致力于提高器件的效率,减少阈值电流和功耗,这意味着减少那些不贡献于光子发射而损失的能量,从而改善了所谓的“量子效率”或避免了不必要的“量子亏损”。

总之,“量子亏损”虽然不是一个标准的科学用语,但它可以被理解为描述激光器内部能量转换过程中的不完全性或损耗现象。

量子点

量子点

• 2、水相直接合成法:
• 在水相中直接合成量子点具有操作简便、重复性高、成本低、表面电 荷和表面性质可控,容易引入功能性基团,生物相容性好等优点,已 经成为当前研究的热点,其优良的性能有望成为一种有发展潜力的生 物荧光探针。目前,水相直接合成水溶性量子点技术主要以水溶性巯 基试剂作稳定剂。
• 近年来又发展了用其它类型试剂做稳定剂制备水溶性量子点的方法, Sondi等用氨基葡聚糖(aminodextran,Amdex)作稳定剂,在室温下合 成了CdSe量子点。
• 4、在同等画质下,QLED的节能性有望达到OLED屏的2倍,发光率将提升30% 至40%。同时QLED可以达到与无机半导体材料一样的稳定性、可靠性。
主要特性:
• 1、这种技术中用到的量子点(Quantum Dots)是 一些肉眼无法看到的、极其微小的半导体纳米晶 体,晶体中的颗粒直径不足10纳米。
• (4)量子点具有较大的斯托克斯位移(指荧光光谱较相应的吸收光谱红移)。量 子点不同于有机染料的另一光学性质就是宽大的斯托克斯位移,这样可以避 免发射光谱与激发光谱的重叠,有利于荧光光谱信号的检测。
• (5)生物相容性好。量子点经过各种化学修饰之后,可以进行特异性连接,其 细胞毒性低,对生物体危害小,可进行生物活体标记和检测。
• (6)量子点的荧光寿命长。有机荧光染料的荧光寿命一般仅为几纳秒(这与很多 生物样本的自发荧光衰减的时间相当)。而量子点的荧光寿命可持续数十纳 秒(20ns一50ns),这使得当光激发后,大多数的自发荧光已经衰变,而量子 点荧光仍然存在,此时即可得到无背景干扰的荧光信号。
• 总而言之,量子点具有激发光谱宽且连续分布,而发射光谱窄而对称,颜色 可调,光化学稳定性高,荧光寿命长等优越的荧光特性,是一种理想的荧光 探针。

量子阱激光器

量子阱激光器

量子阱激光器的特点
同常规的激光器相比,量子阱激光器具有以下特点: 1.在量子阱中,态密度呈阶梯状分布,量子阱中首先是E1c和E1v之 间电子和空穴参与的复合,所产生的光子能量h v=E1c-E1v> E g,即光子能量大于材料的禁带宽度。相应地,其发射波长凡小于 几所对应的波长九,即出现了波长蓝移。 2.在量子阱激光器中,辐射复合主要发生在E1c和E1v之间。这是两 个能级之间的电子和空穴参与的复合,不同于导带底附近的电子和 价带顶附近的空穴参与的辐射复合,因而量子阱激光器光谱的线宽 明显地变窄了。 3.在量子阱激光器中,由于势阱宽度Lx通常小于电子和空穴的扩散 长度Le和 L n,电子和空穴还未来得及扩散就被势垒限制在势阱之 中,产生很高的注入效率,易于实现粒子数反转,其增益大大提高, 甚至可高达两个数量级。 4.量子阱使激光器的温度稳定条件大为改善,A l G a I n A s量子阱激 光器的特征温度马可达150K,甚至更高。因而,这在光纤通信等应 用中至关重要。
量子阱激光器 简介及工作原理
量子阱激光器概述
一般半导体激光器有源层厚度约为0.1~0.3μm,当有源层 厚度减薄到玻尔半径或德布罗意波长数量级时,就出现量 子尺寸效应,这时载流子被限制在有源层构成的势阱内, 该势阱称为量子阱,这导致了自由载流子特性发生重大变 化。量子阱是窄带隙超薄层被夹在两个宽带隙势垒薄层之 间。由一个势阱构成的量子阱结构为单量子阱,简称为 SQW(Single Quantum Well);由多个势阱构成的量子阱 结构为多量子阱,简称为MQW(Multiple Quantum Well)。 量子阱激光器比起其他半导体激光器具有更低的阈值,更 高的量子效率,极好的温度特性和极窄的线宽。量子阱激 光器的研制始于1978年,已制出了从可见光到中红外的各 种量子阱激光器。

表面等离激元

表面等离激元

1.表面等离激元(SPP)的定义、性质及激发方式。

表面等离激元(SPPs)定义为自由电子与电磁场相互作用产生的沿金属表面传播的电子疏密波。

性质1. 在垂直于界面的方向场强呈指数衰减2.能够突破衍射极限;3.具有很强的局域场增强效应;4.只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。

激发方式:1.棱镜耦合Kretschamann与Otto结构2.光栅(金属表面缺陷)耦合k//=k0sinq±Nkg= kspp 3.波导模耦合4.强聚焦光束(SNOM)2.理解并掌握金属电介质SPP色散关系的物理意义。

3.选择一种SPP的应用简述原理。

4.光子晶体的基本概念、定义、特性、带隙成因及其与电子材料的区别。

光子晶体是指具有光子带隙(PhotonicBand-Gap,简称为PBG)特性的人造周期性电介质结构。

由于介电常数存在空间上的周期性,进而引起空间折射率的周期变化。

当介电系数的变化足够大且变化周期与光波长相当时,光波的色散关系会出现带状结构,介电常数周期性排列的方向并不等同于带隙出现的方向,在一维光子晶体和二维光子晶体中,也有可能出现全方位的三维带隙结构。

特性:1.抑制自发辐射,带隙中态密度为零,自发辐射几率也就为零,这也就抑制了自发辐射。

2.光子局域化,当光子晶体原有的对称性遭到破坏时,即有了缺陷,在光子晶体中禁带中就可能出现频宽极窄的缺陷态或局域态,与缺陷态频率符合的光子会被局限在缺陷位置,而不能向空间传播。

带隙成因:电磁波在周期性电介质材料中传播时,由于受到调制而形成光子能带结构,频率落在带隙内的电磁波不能通过介质而被全部反射,即形成光子带隙。

电子材料:电子在周期场中传播时,由于会受到周期势场的布拉格散射,会形成能带结构,带与带之间可能存在带隙。

电子波的能量如果落在带隙中,传播是禁止的。

电子材料是通过周期性的晶体结构从而产生周期性势垒,按照薛定谔方程形成带隙。

电磁波是通过周期性的介电常数,按照麦克斯韦方程形成光子带隙。

量子点激光器

量子点激光器

• 量子点的用途相当广泛,例如:可用于蓝光 量子点的用途相当广泛,例如: 雷射、光感测元件、单电子电晶体(single 雷射、光感测元件、单电子电晶体 electron transistor, SET)、记忆储存、触 、记忆储存、 媒以及量子计算(quantum computing)等, 媒以及量子计算 等 在医疗上更利用各种发光波长不同的量子点 制成萤光标签,成为生物检测用的「 制成萤光标签,成为生物检测用的「纳米条 码」。 • 量子点是目前理论上与实验上的热门研究题 世界各国无不积极投入研究, 目,世界各国无不积极投入研究,主要领先 的有美国、日本、欧盟及俄罗斯等, 的有美国、日本、欧盟及俄罗斯等,台湾也 正在急起直追中。 正在急起直追中。
在GaAs基材上以自组成法生 长 InAs量子点的STM影像(取自Ref.2)
3.微影蚀刻法 微影蚀刻法 (lithography and etching): : 以光束或电 子束直接在 基材上蚀刻 制作出所要 之图案, 之图案,由 于相当费时 因而无法大 量生产。 量生产。
基材蚀刻窄圆柱式量子点<br> 之SEM影像,水 影像, 以GaAs基材蚀刻窄圆柱式量子点 基材蚀刻窄圆柱式量子点 影像 平线条约0.5微米 平线条约 微米
1997年 Maximov等将量子点置入 2. 1997年,Maximov等将量子点置入 GaAs/AlGaAs量子阱中 量子阱中, GaAs/AlGaAs量子阱中,使量子点中载流子的 逸出势垒高度增加, 逸出势垒高度增加,大大降低了载流子的逸 出几率,减小了漏电流, 出几率,减小了漏电流,使激光器的特征温 在工作温度80K 330K之间高达385K, 80K之间高达385K 度T0在工作温度80K-330K之间高达385K,远远 高于量子阱激光器的特征温度,但提高T 高于量子阱激光器的特征温度,但提高T0的同 时却带来了阈值电流密度的大幅提升。 时却带来了阈值电流密度的大幅提升。1999 Shernyakov报道了世界上第一只在室温 年Shernyakov报道了世界上第一只在室温 低于40℃ 下同时具有高特征温度T (160K) 40℃) (低于40℃)下同时具有高特征温度T0 (160K) 和低阈值电流密度J 和低阈值电流密度Jth=65A/cm2 ,三层量子点 阵列的GaAs基量子点激光器,工作波长为 阵列的GaAs基量子点激光器, GaAs基量子点激光器 1.3μm。而目前工作在同波段的InP InP基量子阱 1.3μm。而目前工作在同波段的InP基量子阱 激光器,最高的特征温度T0 60T0为 激光器,最高的特征温度T0为60-70K ,最低 的阈值电流密度J 300的阈值电流密度Jth为300-400A/cm2。

量子点

量子点

量子点(quantum dot),是准零维(quasi-zero-dimensional)的纳米材料,由少量的原子所构成。

粗略地说,量子点三个维度的尺寸都在100纳米(nm)以下,外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子局限效应(quantum confinement effect)特别显著。

由于量子局限效应会导致类似原子的不连续电子能阶结构,因此量子点又被称为“人造原子”(artificial atom)。

科学家已经发明许多不同的方法来制造量子点,并预期这种纳米材料在二十一世纪的纳米电子学(nanoelectronics)上有极大的应用潜力。

量子点-概述量子点量子点,电子运动在三维空间都受到了限制,因此有时被称为“人造原子”、“超晶格”、“超原子”或“量子点原子”,是20世纪90年代提出来的一个新概念。

量子点是在把导带电子、价带空穴及激子在三个空间方向上束缚住的半导体纳米结构。

这种约束可以归结于静电势(由外部的电极,掺杂,应变,杂质产生),两种不同半导体材料的界面(例如:在自组量子点中),半导体的表面(例如:半导体纳米晶体),或者以上三者的结合。

量子点具有分离的量子化的能谱。

所对应的波函数在空间上位于量子点中,但延伸于数个晶格周期中。

一个量子点具有少量的(1-100个)整数个的电子、空穴或空穴电子对,即其所带的电量是元电荷的整数倍。

小的量子点,例如胶状半导体纳米晶,可以小到只有2到10个纳米,这相当于10到50个原子的直径的尺寸,在一个量子点体积中可以包含100到100,000个这样的原子。

自组装量子点的典型尺寸在10到50纳米之间。

通过光刻成型的门电极或者刻蚀半导体异质结中的二维电子气形成的量子点横向尺寸可以超过100纳米。

将10纳米尺寸的三百万个量子点首尾相接排列起来可以达到人类拇指的宽度。

量子点,又可称为纳米晶,是一种由II-VI族或III-V族元素组成的纳米颗粒。

量子点在光电器件中的作用

量子点在光电器件中的作用

量子点在光电器件中的作用量子点是一种纳米级别的半导体材料,具有特殊的光学和电学性质,被广泛应用于光电器件中。

量子点的引入不仅可以提高器件的性能,还可以拓展器件的应用领域。

本文将从量子点在光电器件中的作用角度进行探讨,介绍量子点在太阳能电池、LED显示屏和激光器件等方面的应用。

一、量子点在太阳能电池中的作用太阳能电池是将太阳光能转化为电能的器件,是清洁能源的重要组成部分。

量子点作为太阳能电池的光敏材料,具有较高的吸收系数和较窄的带隙,可以有效地提高光电转换效率。

量子点的尺寸可以通过调控来实现对吸收光谱的调节,使太阳能电池在不同波长范围内都能高效吸收光能,从而提高光电转换效率。

此外,量子点还可以有效地减小太阳能电池中的热损耗,提高器件的稳定性和寿命。

量子点的高载流子迁移率和较低的表面缺陷密度,有利于减小电荷复合损耗,提高光生载流子的分离效率,从而进一步提高太阳能电池的性能。

二、量子点在LED显示屏中的作用LED显示屏是一种新型的平面显示器件,具有亮度高、色彩饱和度高、功耗低等优点。

量子点作为LED显示屏的发光材料,可以实现更广泛的色域和更高的色彩纯度。

通过调控量子点的尺寸和成分,可以实现对发光颜色的精确调节,使LED显示屏呈现出更加真实和生动的色彩。

此外,量子点还可以提高LED显示屏的光电转换效率,降低能耗。

量子点具有较高的荧光量子效率和较窄的发射光谱,可以实现更高的光电转换效率,减少能量的损耗。

量子点还具有较长的寿命和较好的稳定性,有助于提高LED显示屏的可靠性和使用寿命。

三、量子点在激光器件中的作用激光器件是一种能够产生高亮度、高单色性和高方向性激光光束的器件,广泛应用于通信、医疗、材料加工等领域。

量子点作为激光器件的增益介质,具有较高的激子增益和较窄的增益谱线,可以实现更窄的激光谱线宽度和更高的激光效率。

量子点还可以实现激光器件的波长调谐和脉冲调制。

通过调控量子点的尺寸和形貌,可以实现对激光器件的发射波长的调节,实现波长可调激光器件的制备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子点激光器
量子点是由少量原子所构成的体积很小的固体材料,量子点的尺寸一般在100纳米以下,外观恰似一极小的点状物,其三个维度的尺寸都在100纳米(nm)以下。

量子点内部电子在各方向上的运动都受到局限,所以量子局限效应特别显著。

量子局限效应会导致类似原子的不连续电子能阶结构,故量子点可用来作激光器的工作物质,而量子点也因此被称为“人造原子”。

在一般块材料中,电子的波长远小于块材料尺寸,因此量子局限效应不显着。

如果将某一个维度的尺寸缩到小于一个波长,此时电子只能在另外两个维度所构成的二维空间中自由运动,这样的系统我们称为量子阱;如果我们再将另一个维度的尺寸缩到小于一个波长,则电子只能在一维方向上运动,我们称为量子线;当三个维度的尺寸都缩小到一个波长以下时,就成为量子点。

图1一般块材料、量子阱、量子线及量子点能级比较关系示意图
量子点激光器是由一个激光母体材料和组装在其中的量子点以及一个激发并使量子点中粒子数反转的泵浦源所构成。

一个实际量子点激光器(砷化镓铟量子点激光器)的结构如下图所示。

图2量子点激光器示意图
对于不同维度的电子体系,许多独特的光学性质来源于它们的态密度。

态密度是指单位体积在能量E附近单位能量间隔内的电子态数。

每一个量子态可被自旋向上和向下的两个电子所占据。

半导体激光器从三维到二维、再到一维、零维,这种不断发展变化的内因在于不同维度材料的态密度不同,从而激光器的性能不断改善。

对于零维的量子点而言,体系在x、y、z三个方向受限,载流子的能量在三个方向上都是量子化的,不存在能量的连续分布。

所以,量子点的态密度与能量的关系表示为δ函数的形式,即
ρ3D(E)=∑δ(E-E i)
其中Ei是体系的能量可取值,可表示为
由此可以得出量子点的能态为分离线,如下图所示。

图3量子点能级图
量子点有源区的高能态和基态的能级间距△足够大(即满足△E>>kBT),器件的阈值电流密度对温度的依赖就会完全消失;量子点中态密度函数的尖锐化,也使得其峰值增益变窄。

同常规的激光器相比,由于有源区为量子结构,器件特性便具有下列新特点:(1)态密度线状分布,导带中第一个电子能级E1c。

高于原价带中第一个空穴能级E1,低于原价带顶Ev,因此有E1c-E1v>Eg,所产生的光子能量大于材料的禁带宽度.相应地,其发射波长出现了蓝移。

(2)量子激光器中,辐射复合主要发生在E1c和E1v之问,这是两个能级之间电子和空穴参与的复合,不同于导带底附近和价带顶附近的电子和空穴参与的辐射复合,因而量子激光器的光谱的线宽明显地变窄了。

(3)在量子激光器中,由于尺寸通常小于电子和空穴的扩散长度,电子和空穴还未来得及扩散就被势垒限制在势阱之中,产生很高的注入效率,易于实现粒子数反转,其增益大为提高,甚至可高达两个数量级.
早在80年代初,理论就已预言量子点激光器的性能与量子阶激光器或量于线激光器相比,具有更低的阂值电流密度,更高的特征温度和更高的增益等优越特性。

这主要由于在量子点材料中,载流子在三个运动方向上受到限制,载流子态密度与能量关系为δ函数因而具有许多独特的物理性质,如量子效应、量子隧穿、非线性光学等,极大地改善了材料的性能。

因此,不但在基础物理研究方面意义重大,而且在新型量子器件等方面显示出广阔的应用前景。

目前,零维材料
结构及其应用为国际上最前沿的研究领域之一,仍处于探索阶段。

90年代初,利用MBE和MOCVD技术,通过Stranski—Krastanow(S—K)模式生长In(Ga)As /GaAs自组装量子点等零维半导体材料有了突破性的进展,生长出品格较完整,尺寸较均匀,且密度和发射率较高的InAs量子点,并于1994年制备出近红外波段InGaAs/GaAs量子点激光器。

2004年在斯德哥尔摩举行的欧洲光通讯会议上东京大学和富士通报道,试制成功了工作在1.3um波长、可将温度导致的光功率变动幅度控制到原来1/6左右的量子点激光器。

在20~70度,不需调整电流对温度导致的光功率变动进行补偿就能稳定地发送10Gb/s的光信号。

由于不需要温度补偿的外部电路,因此有利于降低光发送器的体积和生产成本。

虽然量子点激光器的性能与理论预测相比仍有较大的差距,但对于其的研制近年内取得了长足进步,已经向传统半导体激光器开始了强有力的挑战,可以预测在不久的将来量子点激光器必将成为激光器家族的重要一员。

相关文档
最新文档