实变函数论与泛函分析(曹广福)1到5章课后答案

合集下载

实变函数与泛函分析基础(第三版)----第五章_复习指导.docx

实变函数与泛函分析基础(第三版)----第五章_复习指导.docx

主要内容本章的中心内容是建立一种新的积分——勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上i般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下儿个方面:(1)勒贝格积分是一种绝对收敛积分,即兀兀)在E上可积当且仅当|/(兀)|在E上可积(/(x)在E上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设/(力在E上可积,则对任意£>0,存在》〉0,使当e u E且加£<5时,恒有(3)勒贝格积分的唯一性.即£|/(x)|ck = 0的充要条件是/(x) = 0 a.e. T E・由此可知,若f(x)与巩兀)几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近•设/(兀)是可积函数,对任意£>0,存在[°,切上的连续函数從无),使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理5.4. 1),勒贝格控制收敛定理(定理5. 4. 2),和法都定理(定理5.4. 3)在现代数学中都有广泛的应用.同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.|H|、关于勒贝格积分同黎曼积分之间的关系.我们知道,若[°,切上的有界函数/(兀)黎曼可积,则必勒贝格可积口二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可 积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化 为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要/(x, y)在R 〃xRq 上可积即 可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒 贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、 设/(x)是可测集E^R n上的非负简单函数,则f /(x)cLr -定存在。

实变函数论与泛函分析(曹广福)1到5章课后答案

实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf 0=≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(i n f su p =≥∈x mA nm N b χ ,即)(i nf lim x nA nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

二,实变函数与泛函分析课后习题答案book版1

二,实变函数与泛函分析课后习题答案book版1

(−∞, ∞), z为E中的不可测集.
对于任意x

z,
f (x)
=
√ 3; x
z, f (x) = √2,则对任意
有理数r, E[ f
=
r]
=
∅是可测的.而E[ f
>
√ 2]
=
z为不可测的.因此 f 是不可测的.
习题 1.1.2 设{ fn}为E上的可测函数列,证明它的收敛点集和发散点集都是可测 的.
>
0,由鲁津定理,存在闭集F

Eδ,使得
(i)m(Fδ

F)
<
ϵ
=
mE , 即mF
4
>
mE ;
2
(1.7)
(ii) f (x)在F连续,于是∃M > 0, s.t. | f (x)| ≤ M(x ∈ F).
(1.8)
由于 f (x)在F上一致收敛到 f (x),故 fn在F上也一致收敛于 f (F ⊆ Eδ),所以存在自 然数N,当n > N时,有
证明: 利用前一题的结论将 fn(x)取成同一个函数,采用相同的方法即可. 不妨设E为有界集合,即mE < ∞,且 f (x)为实值.因为
∪∞
∪∞
E = {x ∈ E : sup | f (x)| ≤ k} = Ek[sup | f (x)| ≤ k],
k=1
k=1
(1.23)
由于关于变量k
Ek[sup | f (x)| ≤ k] ⊂ Ek+1[sup | f (x)| ≤ k + 1]
n
m(E − E0) = m(E − E2) + m(E2 − E0) < ϵ.

实变函数与泛函分析基础》习题解答

实变函数与泛函分析基础》习题解答
n=0
习题 1.4
1. 证:记[0,1]上的无理数所成之集为 I,[0,1]上的有理数全体为 Q.若 I
可数,则 I ∪ Q = [0,1] 可数,这与[0,1]不可数矛盾. 2. 证: A ∈ 2[0,1] ,则 χ A (x) ∈ F.于是 2[0,1] 与 F 的一个子集对等,故
F ≥ 2[0,1] = 2C .另方面, f ∈ F ,{(x, f (x) x ∈[0, 1]}∈ 2R2 .于是 F 对等于
一个子集对等,从而至多可数.
2. 设单调增函数 f 的间断点集为 D, x0 ∈ D : x0 →( f (x0 − 0), f (x0 + 0))
此对应是 D 到直线上某些互不相交的开区间所成之集的一个对等,由习题 1 知,
D 至多可数.
3. An 为 A 的 n 个元素所成子集的全体.由定理 1.3.7 知 An 可数,从而由定
∪ x ∈ A ∩ Bα ⇔ x ∈ ( A ∩ Bα ) . α∈Γ
2.
①因
U U Aα U Bα ⊂ ( Aα ) U ( Bα ) , 所 以
α∈Γ
α∈Γ
U U U U U ( Aα U Bα ) ⊂ ( Aα ) U ( Bα ) . 另 一 方 面 Aα ⊂ ( Aα U Bα ) ,
α∈Γ
8. x ∈ E[ f ≥ a] ⇔ lim fn (x) = f (x) ≥ a, x ∈ E ⇔ ∀ k, ∃ N , 当
n ≥ N 时有
∩ ∪ ∩ fn
(x)
>
a

1 k

x∈
∞ k =1
∞ N =1

E[
n=N
fn
>

《泛函分析》习题解答(不完全版)

《泛函分析》习题解答(不完全版)

第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N mE ∞==,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NN f x x a b E f x E ∈⎧=⎨⎩显然对于[,]x a b ∈恒有|()|f x N ≤. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡,x F ∈.则()g x 限制在[,]a b 即为所求, 因为:[,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+. 即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =, 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质. 3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b EmE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g ,因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =. 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N 表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N , (不妨设1(,,,)i λλλ=, 1(,,,)i μμμ=且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N 的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==, 且11(,)3k k S f K ∞=⊇.但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])k C a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =, ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=,其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =,利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''=== (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间. (2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v ,反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =. (*)首先定义一个映射:nf →为: 对于任意的12(,,,)n x x x n∈,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v .则对于任意的,x y E ∈(1122n n y y y y =+++v v v )有1122||||(,,,)n n x y f x y x y x y -=---111||||||||||||n n n x y x y ≤-⋅++-⋅v v2222111()()||||||||n n n x y x y ≤-++-⋅++v v .由此容易知道f 是n R 上的连续函数. 记1B ∂是n R 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑. 则对于任意的11(,,)n x x B ∈∂, 有1(,,)0n f x x >.(事实上, 若有1(,,)0n f x x =则111(,,)||||0n n n f x x x x =++=v v ,因此110n n x x ++=v v , 但12,,,n v v v 线性无关, 故必有120n x x x ====, 此与11(,,)n x x B ∈∂相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v , 不失一般性, 可设0x ≠因此,12,,,n x x x 不全为零, 注意到111222111,,,n nnn kkk k k k x x x y B xxx ===⎛⎫ ⎪ ⎪=∈∂ ⎪ ⎪⎝⎭∑∑∑,故111222211111222111()1,,,,nn nnnkkkk k k n nnn kkk k k k x x x f y xxxx x x f K xxx ======+++=⎛⎫ ⎪⎪=≥ ⎪ ⎪⎝⎭∑∑∑∑∑∑v v v或2112211||||nn n kk x x x x xK==+++≥∑v v v .由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =, 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =).记(0)()(0)(0)1122k n n xx x x =+++v v v , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系为0xy x y X ⇔-∈. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =, 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1中的Cauchy 数列, 因此收敛, 即存在某个数A ∈使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-00||||||||n n n Ay x y y y x ⎛⎫≤-+-⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+- ⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭ 22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x yx y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x yx y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++()()()()f s f s f s nf s =+++=;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n nz z ϕπ-=(1,2,n =)构成2()a L D 的正交基.(2) 若2()a f L D ∈的Taylor 展开式是0()kk k f z a z∞==∑, 则21kk a k ∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则0,1k kk a b f g kπ∞==+∑.证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=1.n a nπ- (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =, 注意到级数10kn k k a z z π-=∑在D ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰0lim ()()n D f z z dA εεϕ→=⎰100lim kn k D k na z z dA εεπ∞-→==∑⎰10limk n k D k na z z dA εεπ∞-→==∑⎰10lim(cos sin )(cos(1)sin(1))k n k D k na r k i k n i n dAεεθθπθθ∞+-→==+⋅⋅---∑⎰2110lim(cos sin )(cos(1)sin(1))k n k k na d r k i k n i n rdrπεεθθθπθθ∞-+-→==+⋅⋅---∑⎰⎰1210lim(cos sin )(cos(1)sin(1))k n k k na r rdr k i k n i n d επεθθπθθθ∞-+-→==+⋅⋅---∑⎰⎰12110lim2n n na r dr εεππ---→=⎰210(1)lim 22nn n a nεεππ-→-= 1.n a nπ-=因此(*)式得证.(1) 首先证明{}111()n n n n n z z ϕπ∞∞-==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是正交集.事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义11112(),()(cos sin )(cos sin )m n m n Dm n n m Dz z z z dAmni i r dAϕϕππθθθθππ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n m Dmnr m i m n i n dAθθπθθ+-=-+-⋅⋅---⎰2120(cos(1)sin(1))(cos(1)sin(1))n m mnd r m i m n i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰122(cos(1)(1)sin )(cos(1)sin(1))n m mnrrdr m i m n i n d πθθπθθθ+-=-+-⋅---⎰⎰121,,20,.mm m n mm n ππ⎧==⎪=⎨⎪≠⎩因此{}1()n n z ϕ∞=是正交集. 因为2()a L D 是完备的空间, 故只需再证{}1()n n z ϕ∞=是完备的即可得知其也是正交基. 设有2()a f L D ∈且{}1()()n n f z z ϕ∞=⊥. 因为()f z 是解析函数, 因此可以展开为幂级数:()k k k f z a z ∞==∑.根据(*)式,可以得到,对于每一个1,2,n =,0(),()n f z z ϕ=1.n a nπ-=由此即得10n a -=, (1,2,n =). 所以()0f z ≡. 即{}1()n n z ϕ∞=是完备的, 因此是2()a L D 中的正交基.(2) 既然{}1()n n z ϕ∞=是基,由Parseval 等式可以得到221(),()||||n n f z z f ϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:2122211110(),().1n n n n n n n n f z z a aa nn n ϕπππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论. (3) 对于0()kk k f z a z∞==∑和0()kk k g z b z∞==∑, 有10()()1kk k f z a z k πϕ∞+==+∑和10()()1kk k g z b z k πϕ∞+==+∑,利用内积的连续性和(*)式,10,(),()1kk k f g a z g z k πϕ∞+==+∑10(),()1kk k a z g z k πϕ∞+==+∑10(),()1kk k a g z z k πϕ∞+==+∑11kk k a b k k ππ∞=⎛⎫= ⎪++⎝⎭∑0.1k kk a b k π∞==+∑18.设H 是内积空间,{}n e 是H 中的正交集, 求证:1(,)(,)||||||||nnn x e y e x y ∞=≤⋅∑, (,x y H ∀∈).证: 对于任意的正整数k , 由Cauchy 不等式和Bessel 不等式可以得到22111(,)(,)(,)(,)kkkn n n n n n n x e y e x e y e ===≤⋅∑∑∑2211(,)(,)n n n n x e y e ∞∞==≤⋅∑∑||||||||x y ≤⋅,由k 的任意性, 知正项级数1(,)(,)nnn x e y e ∞=∑收敛, 因此级数1(,)(,)nnn x e y e ∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}112()sin n n n t nt ϕπ∞∞==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是2([0,])L π中的正交集. 事实上,[]022(),()sin sin 2cos()cos()2m n t t mtntdtm n t m n t dtππϕϕπππ==-+--⎰⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基.设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为()f t :(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则()f t ∈2([,])L ππ-. 注意到对于1,2,n =, 利用{}1()()n n f t t ϕ∞=⊥,,()sin n f f t ntdt ππϕ-=⋅⎰()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =,利用()f t 是奇函数, 可得,()cos 0n f f t ntdt ππψ-=⋅=⎰.因此{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到()f t ⊥1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭. 又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭是2([,])L ππ-中的正交基, 因此()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, 2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]m a x |()|()A B x a b f x Mb a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此, 1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==, 且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm -<11(,)x y n mρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.(i) 证明A 是([,])C a b 中的列紧集;(ii) 问当A 还是([,])C a b 中的闭集时, A 是不是紧集?证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A ⊆ ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A 在([,])C a b 中有界且等度连续即可.(a) A 在([,])C a b 中有界, 即A 作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A ∈, 有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba xb a y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤- ()KM b a ≤-.因此A 是([,])C a b 中有界集, 且A 的一个界为()KM b a -.(b) A 在([,])C a b 中等度连续. 对于()F x A ∈,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-. 由此易知A 具有等度连续性.(ii) 当A 还是([,])C a b 中的闭集时, A 未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k lk l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}11()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰ 显然, A 是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A 中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰()|()|xxxxf t dt f t dt =≤⎰⎰[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰||M x x ≤-. 由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.。

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。

若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。

实变函数论课后答案第五章1

实变函数论课后答案第五章1

第无章第一节习题1•试就[0, 1上的D i r i chBe数D(x)和Riema nn函数R(x)计算D(x)dx 和R(x)dx[0,1] [0,1]解:回忆D(x) =『x「Q即D(X)=^Q(X) ( Q为R1上全体有理数0 x E R Q之集合)回忆:E(X)可测二E为可测集和P129定理2:若E是R n中测度有限的可测集,f (x)是E上的非负有界函数,则f(x)dx二f(x)dx:= f (x)E E为E上的可测函数显然,Q可数,贝y m*Q =0,Q可测,Q(x)可测,有界,从而Lebesgue可积由P134Th4(2)知二Q(x)dx 亠I :Q(x)dx 二1dx 亠i 0dxQ(x)dx[0,1] [0,1] 'Q [0,1] 'Q c[0,1] 'Q [0,1] "Q c=1 m([0,1「Q) 0 m([0,1] 一Q c) =1 0 0 1 = 0回忆Riemann函数R(x): R:[0,1] T R11n— x =一口和门无大于1的公因子n mR(x)二 1 x = 00 x 壬[0,1]_Q在数学分析中我们知道,R(x)在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann可积,R(x) = 0 a.e于[0,1]上,故R(x)可测(P104定理3),且R(x)dx 二 R(x)dx R(x)dx[0,1][0,1] QQ而0_ R(x)dx _ 1dx=mQ=0(Q 可数,故m *Q=0)故QQR(x)dx 二 R(x)dx= 0dx=0[0,1][0,1] q[0,1] -Q2.证明定理1(iii)中的第一式证明:要证的是:若mE — f(x),g(x)都是E 上的非负有界函数,则f(x)dx_ f(x)dx 亠 I g(x)dx-EE-E下面证明之:-;.0,有下积分的定义,有E 的两个划分D 1和D 2使) f(x)dx ,S D 2(g). g(x)dx--_E2_E2此处s D 1( f), S D 2(g)分别是f 关于D 1和g 关于D 2的小和数,合并D 1,D 2 而成E 的一个更细密的划分 D ,则当S D (f g )为f(x),g(x)关于D 的小 和数时(f(x) g(x))dx_S D (f g)-S D f S o g-Sqf S D 2gg(x)dx f (x)dx 亠i g(x)dx - ;(用到下确界的性上 2_E _E质和P125引理1)由;的任意性,令工一0,而得 (f (x) g(x))dx 1 f(x)dx 亠 1 g(x)dx--E-E3.补作定理5中.f(x)dx 「::的情形的详细证明E证 明 : 令 E m 二 E 「X lllxlF ml , 当 .f(x)dx 「:: 时E:二 f (x)dx = lim f (x)dxEm ''E m-f(x)dx--E-M 0 ,存在m0= m0(M ) N ,当m 一m°时,f(x)dx=lim [f(x)]kdxJ k -JtsC J'E m[f(x)]k dx 二[limf n(x)]kdx 二lim[f n(x)]kdxu u n厂 • n 厂E mE m 「Em …= lim [ f n(x)]kdx 乞 limf n(x)dx ^lim f n(x)dx―匸n _&En r.E mE mE(利用[f n(x)]kdx 有限时的结论,Th5中已详证)E m由 M 的任意性知 lim f n(x)dx 二::=f (x)dxn ^sc **十 E4.证明:若f(x)是E 上的非负函数,f(x)dx = O ,则f(x)=Oa.eE证明:令E n1二[x|n ::: f(x)辽 n 1],n =1,2,, F m=[x|f (x)空-bo -be则 E[x| f(x) 0^(E n ) 一•(F n )n Tn叫f 可测,故 E n ,F m ,E[x| f (x) 0]( n =1,2川l ;m =12111)都是可测集,由 P135Th 4(2)和 f(x)dx = 0,f(x)非负知E0 二 f (x)dx _f (x)dx _ f (x)dx _ n dx 二 nmE n_ 0EE[x;f(x) 0]E n E n故 mE n =0,( n =1,2,|l();同理 mF m =0,(m =1,2,|l()-bo-bo故 mE[x | f (x) 0] _ ' mE n' mF m= 0n 二 m d故从 f (x)非负,E[x| f(x)=0] = E - E[x| f(x) 0],知 fx) 0 ae 于 E . 证毕.5.证明:当mE 「::时,E 上的非负函数的积分.f(x)dx 「二的充要条E件是-bokk、2 mE[x| f (x) _2 ]:2M ::: E m 则存在k 使M 证毕.证明:令E k = E x f( x k2 ]* 10 ,, E n 二E[x|2n乞f(x) :::2n1], k =0,1,2,HlE[x|f(x)- — UEnECE j =0当iQ , f 非负,故从mE^+^知 n =0 0 乞f(x)dx ::::,而 f(x)dx 二f(x)dx ::f (x)dxE[x|f(x)::?]EE[x|0^f(x) ::?]E[x|f (x) 1]f (x)dx :: :: =f (x)dx ::::EE[x|f(x)」]注意由单调收敛定理和f (X) _ 0可测知-bon(x) f (x)dx = lim f(x)dx = lim' f(x)dx 「 f (x)dxEEi" J 1E" i i卫 Ei7 E i乜E ii 0<Z J 2“dx =E 2小口巳=2瓦 2nmEn 兰2E 2nmFn=^ 2nE[x| f(xp^2n]i =0E ・ n^0 nT n =0 nJ所以,若 v 2kmE[x| f (x) _2k]—::,k=0则f(x)dx ::: •::,故充分性成立.E::::1若 k n为证必要性,注意F kE 「mF k 八mE i ,令珂 卄一,则 宦◎ 0 右k c n-J-y*"-J-y*"—l-y"°^^0^^0' 2nmE[x| f(x) _2n]八 2n mF n 八 2叽 mE k;二 2n:mE k ;二 2n{mE kn=0 n=0 n =0k=n n =0k=nn =0k=0■bo 二' mE k(2k1—1) =為 2k1mE k—' mE kk -0 k -0k -0-bo-bo=2、2kmE k -m[E[x; f (x)-1]]乞 2、f(x)dxk =°k=0 Ekf(x)dx= [ f(x)dx =E[x|f(x) 1],「E nf(x)dx 二nEn im屮(x)f(x)dx T m: QEi(x)f(x)dxLeviTh=limn _j I 则有 . f(x)dx ::::E[x;f(x) _1]-bo -bo二二 2nTmE k二二 2nmE k八 mE 「2n八 mEk =0 n =0::kk =0 n =0 k =0k 12 Tn =0 k =02-1-bdk十 =2 2kmE k-m (UE k )心E Ef (x)dx = 2 f (x)dx _ 2 f (x)dx :::E[x|f (x) 1] E(mE ” 壯j mE[x | f (x)亠1]:::::)证毕.注意以上用到正项二重级数的二重求和的可交换性, 这可看 成是Fubini 定理的应用,也可看成是Lebsgue 基本定理的应用,或Levi 定-be -bek —; a 八・ 7 a nm - b ,同理,b - a ,贝Sa = b , l 二 a nmn =0 m=0[一1,"2九为简单函数,f(x)「im 「n X),则x _ n n ::f(x)可测6.如果f(x),g(x)都是E 上的非负可测函数,并且对于任意常数a 都有mE[x| f (x) _ a] = mE[x | g(x) _ a]则.f (x)dx = J g(x)dx=2UEkmank -F m-e-be k%d叫m )=k im : o、' a nm d 叫m) n 二0k=lim ' k _ .'n z :0■be址"be "bea nm d 」(m) ='a nm d 叫m)a nmn=0 mz0nz0■是R 1上的一个测度(离散的)-m Nj[[m]] =1J(A) =#[A - N] , N 为自然数集, 需看成a nxa n (x) J当x 三N■ ■ ■■当 ,也可这样设送Z a nm-bo -bd二 a,M •二 a nm 二 b ,贝「k,k ―― a nmn吕 m :!P k ―― a nm m z! n二P ::< v y a nmm z! n T-b ,令 p > --:, k ::二二 anm- b ,令n =1 m T-bo -bo■- ■-a nm m=0 n =0nmn =0 m =0an(X )={^■— ■— a nmm 0n =0■— ■— a nm ■— ■— a nm m =0n -0 n =0m =0证明:若存在b ■ 0使E[x | f (x) _ b] - •二,贝卩f (Mdx = g )x dx 「::结论成EE故-b a , a,b R 1, E[x| f(x) _b]:::::,贝SE[x| f(x) _a] — E[x| f(x) _b]二 E[x|a 乞 f(x) ::: b]mE[x | a _ f (x) :: b] = mE[x | f (x) _ a] - mE[x | f (x) _ b]=mE[x; g (x) _ a] -mE[x; g(x) _ b] = mE[x; a 乞 g(x) ::: b]_k k 1-m N ,及 k =0,12|l(,2m -1,令 Em,厂 E[x|2m "(x):::芦]及Em ,m2^E[x| f(x^m]贝Um2mE 二 |jE m,k , E m,k 互不相交k =0同样 E m,k =E[x| 存 g(x) /], Em,m2m二 E[x|g(x) m],E m,k 互不相交负简单函数,且*m (X )L 「m (X )_均为单调不减关于m ,'- m (X )》f(X ), ' m (x) > g(x)注意到kk+1kk +1m(E m,k )二 mE[x| 班乞 f (x)::〒]=mE[x |却乞 g(x)::〒]=m(E m,Qm2mkm2mk故「m (x)dxmm^m’k ) 而 m(E m,k) =「m (x)dxEk =0 2k =02E故由 Levi 定理知 f (x)dx = lim ■ m (x)dx = lim m(x)dx 二 g(x)dxEEEE7.设mE- ::, f (x)是E 上的有界非负可测函数,0 — (x):::M ,m2mE= U Em ,k ,令' m (x)mm2 u八卫 k =0 2mm2 kfmE m,k(X ),屮 m (X )=送 才 ~(x),则屮 m (x )2 m(x)都是非0 二g0n) ::: g1n)viAg k:) = M, n=1,2,川使max'y i(n)-y(nJL)|i =1,2,|||,k n』=l n—0(n—,),E i(n^E[x|y i(n] < f(x) ::: y i⑺],i n• E i(n),i = 1,2,11( ,k n; n =1,231()证明:k nf(x)dx=lim' f( i n)m^(n)E n口4证明:显然,由f可测于E知,E i(n)是可测集(-仁i ^k n,n・N )且k nE E i(n)i 4,又在E(n)上小f(x)<閑表明y(^inV(x^x SUP f(x^y(n)记S D nKi k n=L sup f(x)mE(n)(大和数),S D:inf f(x)mE j(n)(小i 4 x. E(n)i4 x已和数)则从f(x)有界可测知f(x)在E上可积(P129Th2,故一二:::S D< f(x)dx = f(x)dx 二f(x)dxzS D「:::,又从T E i(n)知E _E Ek:k:<Z f(¥)mE(:)玄迟sup f(x)mE i(n)=S D:< -hsc i =1 i 1 x-E(n)k n"f(x)dx-送f(¥)mE(n)兰S D:E 7k n | f x dx - x E Ykf ( mE(n岂S D:-S D:•八i 二ny i -y i n i mE i n( < l/' mE n'iJmE >1 i=(从l n > 0知)8 .设mE :::k n故f(x)dx = lim'E …心f (x)是E上的非负可测函数,f (x)dx ::::,f( i n)mE(n)e n 二E[x;f (x) - n] 证明:lim: men =0证明:由本节习题5知f(x)dx::: :: , mE < -HeE■be 则v 2k mE[x| f (x) _2k] :::•::,故k 4lim 2k mE[x| f(x) _2k] =0n L :(1)反证设I i nm 叶 e ,贝卩;。

(新)曹广福版实变函数与泛函分析第四章答案

(新)曹广福版实变函数与泛函分析第四章答案

第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测子集A ,有0)(=⎰dx x f A ,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1k x f x E x f x E k ≥=≠∞= ,而N k ∈∀,}1)(|{kx f x E ≥}1)(|{}1)(|{kx f x E k x f x E -≤≥= .由已知,=+=-≤≥≥⎰⎰⎰kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.又因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥⎰⎰kx f x mE k dx k dx x f kx f x E kx f x E , 0}1)(|{1)1()(0}1)(|{}1)(|{≤-≤-=-≤=≥≥⎰⎰k x f x mE k dx k dx x f kx f x E kx f x E所以,0}1)(|{}1)(|{=-≤=≥k x f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE k x f x mE k x f x mE ,从而00}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k k x f x mE k x f x E m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的非负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从而,=⎰dx x f E )(dx x g E⎰)(.证明:我们证f ,g 是同一个简单函数序列∞=1){m m ψ的极限函数.N m ∈∀及12,,1,0-=m m k ,令}21)(2|{,mm k m k x f k x E E +≤≤=,并且 })(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m ,21== ,定义简单函数∑==mk m m k E m m x kx 20)(2)(,χψ. 下面证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈∀0,若+∞=)(0x f ,则N m ∈∀,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥∀时,}21)(2|{})(0|{1210m m m k k x f k x E m x f x E x m +<≤=<≤∈-= .故,存在)120(-≤≤mm k k , }21)(2|{0m m k x f k x E x +<≤∈.即,m m k x f k 21)(20+<≤,m m k E m m k x k x mk m 2)(2)(20,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-mm m m m m k k k x f x x f x x f ψψ,从而, )()(lim 00x f x m n =∞→ψ.同理,N m ∈∀,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,mm k m k x g k x E E +<≤=,12,,1,0-=mm k .})(|{*,m x g x E E k m ≥=.同上一样可证明:)()(lim 0x g x m n =∞→ψ,E x ∈.因为R a '∈∀,有})(|{})(|{a x g x mE a x f x mE ≥=≥.故R a '∈∀,})(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,)120(-≤≤∀mm k k ,有k m m m m m k m mE k x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=m m m m m m mE m x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=.即,N m ∈∀,=)(x m ψ)(x m ϕ.因此)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.3.若⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x x x f 31)(,计算⎰1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=⎰⎰1)()(]1,0[E dx x f dx x f⎰]1,0[)(dx x f ⎰⎰⎰+==111E EE dx xdx xdx x=+==⎰⎰⎰1111E E E dx xdx xdx x2]2[11101]1,0[====⎰⎰x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每一点至少属于n 个集中的q个集,证明:21,,E E 中至少有一个测度不小于nq.证明:令∑==ni E x x f i1)()(χ,其中iEχ为i E 上的特征函数]1,0[∈∀x ,有q x x f ni E i≥=∑=1)()(χ,所以q qdx dx x f =≥⎰⎰]1,0]1,0[)(.∑∑⎰∑∑⎰⎰⎰========≤ni ni i E ni E ni E mE dx x dx x dx x f q i i 11111,0]1,0[]1,0[)()()(χχ.如果每个n qmE i <,则∑∑===⋅=>n i n i i q n q n n q mE 11.这与∑=≤ni i mE q 1矛盾.从而,)1(n i i ≤≤∃使得nqmE i ≥. 5.设f ,g 都是E 上的可积函数,试证明:22g f+也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈∀,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤⎰⎰⎰EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m mS E E=,}||||{∞<=x x S m .从而∞=⎰1})}({{l l E dx x F m是单调递增有上界⎰Edx x F )(的数列,故:⎰⎰⎰≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因为⎰∞=mE m dx x f 1})({单调递增有上界,所以⎰∞→mE l dx x f )(lim存在,并且⎰⎰⎰+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(,即⎰∞→∞→mE ll m dx x f )}({lim lim+∞<≤⎰dx x f E)(.所以)(x f 在E 可积.(2)再证:22g f+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从而||f +||g 在E 上可积. 又因为||||22g f g f+≤+,由(1)。

实变与泛函第一章答案

实变与泛函第一章答案




1 , k 1,2, . k
证明:因为 xn 是基本列,根据 Cauchy 收敛准则 xn 收敛。假定 xn a ,则 xn 子 列 xnk a 。 则对 , 当 k K 时, 有 xnk a 。 取 K ,

1 1 , 故有 xnk a , 2k 2k
x xi
i
y
, yi 与之对应。设 x x ,设 0 ,使得 x x 。对 x x , x ,
y x , x , 有
f x y y lim f x f x f y 。 故 lim x x x x
xnk 1 a
1 1 ,而 xnk 1 xnk xnk 1 a xnk a ,得证。 2k k
1.4 数列 xn 收敛 xn 的每一个子列收敛到相同的极限。 证明: xn 收敛,假定 lim xn a ,根据收敛定义可知,对 , N ,当 n N 时,
0 ,使得对 k , nk 满足 xnk a xnk 不收敛到 a ,与假设矛盾,故假设不成
立。

1.5 设 E x | x是 1+


1 n
n
的上界 ,证明 E 中存在最小数。
1.12 试给出 a, b 与 a, b 的一个 1 1 对应关系。 答: (连续函数是不能改变区间的开闭性的)令 A x | x a

ba , n 1,2, , n 2
B A a ,C B b ,则 B a, b ,C a, b 。建立 C B 的 1 1 映射 g x 为

曹广福版实变函数与泛函分析第四章答案

曹广福版实变函数与泛函分析第四章答案

曹广福版实变函数与泛函分析第四章答案第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测子集A ,有0)(=?dx x f A ,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1k x f x E x f x E k ≥=≠∞= ,而N k ∈?,}1)(|{kx f x E ≥}1)(|{}1)(|{k x f x E k x f x E -≤≥= .由已知,=+=-≤≥≥kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.又因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥??kx f x mE k dx k dx x f kx f x E kx f x E , 0}1)(|{1)1()(0}1)(|{}1)(|{≤-≤-=-≤=≥≥??k x f x mE k dx k dx x f kx f x E kx f x E所以,0}1)(|{}1)(|{=-≤=≥k x f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE k x f x mE k x f x mE ,从而00}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k k x f x mE k x f x E m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的非负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从而,=?dx x f E )(dx x g E)(.证明:我们证f,g 是同一个简单函数序列∞=1){m m ψ的极限函数.N m ∈?及12,,1,0-=m m k ,令}21)(2|{,mm k m k x f k x E E +≤≤=,并且})(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m ,21== ,定义简单函数∑==mk m m k E m m x kx 20)(2)(,χψ. 下面证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈?0,若+∞=)(0x f ,则N m ∈?,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥?时, }21)(2|{})(0|{1210m m m k k x f k x E m x f x E x m +<≤=<≤∈-= .故,存在)120(-≤≤mm k k ,}21)(2|{0m m k x f k x E x +<≤∈.即,m m k x f k 21)(20+<≤,m m k E m m kx k x mk m 2)(2)(20,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-m m m m m m k k k x f x x f x x f ψψ,从而,)()(lim 00x f x m n =∞→ψ.同理,N m ∈?,定义简单函数列==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,m m k m k x g k x E E +<≤=,12,,1,0-=m m k .})(|{*,m x g x E E k m ≥=.同上一样可证明:)()(li m 0x g x m n =∞→ψ,E x ∈.因为R a '∈?,有})(|{})(|{a x g x mE a x f x mE≥=≥.故R a '∈?,})(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,)120(-≤≤?mm k k ,有k m m m m m k m mE k x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=m m m m m m mE m x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=.即,N m ∈?,=)(x m ψ)(x m ?.因此)()(lim )(lim )(x g x x x f m m m m ===∞→∞→?ψ.3.若=为有理数,当为无理数,当x x x x x f 31)(,计算?1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=1)()(]1,0[E dx x f dx x f]1,0[)(dx x f ?+==111E EE dx xdx xdx x=+==1111E E E dx xdx xdx x2]2[11101]1,0[====x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每一点至少属于n 个集中的q个集,证明:21,,E E 中至少有一个测度不小于nq.证:令∑==ni E x x f i1)()(χ,其中i E χ为i E 上的特征函数]1,0[∈?x ,有q x x f ni E i ≥=∑=1)()(χ,所以q qdx dx x f =≥??]1,0]1,0[)(.∑∑?∑∑??========≤n i ni i E n i E n i E mE dx x dx x dx x f q i i 11111,0]1,0[]1,0[)()()(χχ.如果每个n q mE i <,则∑∑===?=>n i n i i q n qn n q mE 11.这与∑=≤ni i mE q 1矛盾.从而,)1(n i i ≤≤?使得nqmE i ≥. 5.设f ,g 都是E 上的可积函数,试证明:22g f+也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈?,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E =,}||||{∞<=x x S m .从而∞=?1})}({{l l E dx x F m是单调递增有上界?Edx x F )(的数列,故:≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因为?∞=mE m dx x f 1})({单调递增有上界,所以?∞→mE l dx x f )(lim存在,并且+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(,即?∞→∞→mE ll m dx x f )}({lim lim+∞<≤?dx x f E)(.所以)(x f 在E 可积.(2)再证:22g f+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从而||f +||g 在E 上可积. 又因为||||22g f g f+≤+,由(1)。

实变函数论与泛函分析(曹广福)1到5章课后答案

实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(i n f lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数论课后答案

实变函数论课后答案

λ∈∧
λ∈∧
λ∈∧
定理 4 中的(4): ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
证 : 若 x ∈ ∪ ( Aλ ∪ Bλ ) , 则 有 λ ' ∈ ∧ , 使 λ∈∧
x

(
A λ
'

Bλ'
)

(∪
λ∈∧
Aλ ) ∪ ( ∪ λ∈∧
Bλ ) .


An ⊃ An+1 )对一切 n 都成立,则
lim
n→∞
=

n=1
An
(相应地)
lim
n→∞
=

n=1
An
.

证明:若 An ⊂ An+1 对 ∀n ∈ N 成立,则 ∩ Ai = Am .故从定理 8 知 i=m
∞∞

lim inf
n→∞
An
=
∪∩
m=1 i=m
Ai
=

m=1
Am

另一方面 ∀m, n ,令 Sm = ∪ Ai ,从 Am ⊂ Am+1 对 ∀m ∈ N 成立知 i=m
.
{ } F {A1} = {∅, S} ∪ A ∪ K A为B的子集,K = C或K = ∅ ≜ �A .
证明:
因为
{1}
,
⎧ ⎨ ⎩
1 3
⎫ ⎬ ⎭
,⋯,
⎧ ⎨ ⎩
1 2i −
1
⎫ ⎬ ⎭
,⋯

A,
B
的任何子集
F
(

曹广福版实变函数与泛函分析第四章答案

曹广福版实变函数与泛函分析第四章答案

曹⼴福版实变函数与泛函分析第四章答案第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测⼦集A ,有0)(=?dx x f A ,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1k x f x E x f x E k ≥=≠∞= ,⽽N k ∈?,}1)(|{kx f x E ≥}1)(|{}1)(|{k x f x E k x f x E -≤≥= .由已知,=+=-≤≥≥kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.⼜因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥??kx f x mE k dx k dx x f kx f x E kx f x E , 0}1)(|{1)1()(0}1)(|{}1所以,0}1)(|{}1)(|{=-≤=≥k x f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE k x f x mE k x f x mE ,从⽽00}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k k x f x mE k x f x E m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的⾮负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从⽽,=?dx x f E )(dx x g E)(.证明:我们证f,g 是同⼀个简单函数序列∞=1){m m ψ的极限函数.N m ∈?及12,,1,0-=m m k ,令}21)(2|{,mm k m k x f k x E E +≤≤=,并且 })(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m ,21== ,定义简单函数∑==mk m m k E m m x kx 20)(2)(,χψ. 下⾯证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈?0,若+∞=)(0x f ,则N m ∈?,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥?时,210m m m k k x f k x E m x f x E x m +<≤=<≤∈-= .故,存在)120(-≤≤mm k k , }21)(2|{0m m k x f k x E x +<≤∈.即,m m k x f k 21)(20+<≤,m m k E m m kx k x mk m 2)(2)(20,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-m m m m m m k k k x f x x f x x f ψψ,从⽽, )()(lim 00x f x m n =∞→ψ.同理,N m ∈?,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,m m k m k x g k x E E +<≤=,12,,1,0-=m m k .})(|{*,m x g x E E k m ≥=.同上⼀样可证明:)()(lim 0x g x m n =∞→ψ,E x ∈.因为R a '∈?,有})(|{})(|{a x g x mE a x f x mE≥=≥.故R a '∈?, })(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从⽽,)120(-≤≤?mm k k ,有k m m m m m k m mE k x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=m m m m m m mE m x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=.即,N m ∈?,=)(x m ψ3.若=为有理数,当为⽆理数,当x x x x x f 31)(,计算?1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=1)()(]1,0[E dx x f dx x f]1,0[)(dx x f ?+==111E EE dx xdx xdx x=+==1111E E E dx xdx xdx x2]2[11101x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每⼀点⾄少属于n 个集中的q个集,证明:21,,E E 中⾄少有⼀个测度不⼩于nq.证:令∑==ni E x x f i1)()(χ,其中i E χ为i E 上的特征函数]1,0[∈?x ,有q x x f ni E i ≥=∑=1)()(χ,所以q qdx dx x f =≥??]1,0]1,0[)(.∑∑?∑∑??========≤n i ni i E n i E n i E mE dx x dx x dx x f q i i 11111,0]1,0[]1,0[)()()(χχ.如果每个n q mE i <,则∑∑===?=>n i n i i q n qn n q mE 11.这与∑=≤n)1(n i i ≤≤?使得nqmE i ≥. 5.设f ,g 都是E 上的可积函数,试证明:22g f+也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈?,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E =,}||||{∞<=x x S m .从⽽∞=?1})}({{l l E dx x F m是单调递增有上界?Edx x F )(的数列,故:≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.⼜因为?∞=mE m dx x f 1})({单调递增有上界,所以?∞→mE l dx x f )(lim存在,并且+∞<≤=∞l Edx x F dx x f dx x f m)()}({lim )(,即?∞→∞→mE ll m dx x f )}({lim lim+∞<≤?dx x f E)(.所以)(x f 在E 可积.(2)再证:22g f+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从⽽||f +||g 在E 上可积. ⼜因为||||22g f g f+≤+,由(1)。

实变函数与泛函分析课后习题答案

实变函数与泛函分析课后习题答案

实变函数与泛函分析课后习题答案。

1.设f(x) = x^2 - 2x + 1,求f(x)的最小值。

解:要求f(x)的最小值,可以通过求导来找到极小值点。

首先对f(x)求导得到f'(x) = 2x - 2。

令f'(x) = 0,可以得到2x - 2 = 0,解得x = 1。

再对f(x)求二阶导数得到f''(x) = 2,由于f''(x)大于0,所以x = 1是f(x)的极小值点。

将x = 1代入f(x)得到f(1) = 1^2 - 2(1) + 1 = 0。

所以f(x)的最小值为0。

2.设f(x) = e^x,求f(x)的泰勒级数展开式。

解:泰勒级数展开式可以表示函数在某一点附近的近似值。

对于函数f(x) = e^x,可以通过求导得到其各阶导数。

首先求f(x)的一阶导数:f'(x) = e^x。

再求f(x)的二阶导数:f''(x) = e^x。

依次求得f(x)的各阶导数为:f'(x) = e^x,f''(x) = e^x,f'''(x) =e^x。

通过观察可以发现,f(x)的各阶导数都等于e^x,所以f(x)的泰勒级数展开式为:f(x) = f(0) + f'(0)x + f''(0)(x^2/2!) + f'''(0)(x^3/3!) + 。

代入f(x) = e^x的导数值可以得到:f(x) = e^0 + e^0x + e^0(x^2/2!) + e^0(x^3/3!) + 。

化简得到:f(x) = 1 + x + x^2/2! + x^3/3! + 。

所以f(x)的泰勒级数展开式为1 + x + x^2/2! + x^3/3! + 。

3.证明函数f(x) = x^2在区间[-1, 1]上是连续的。

解:要证明函数f(x) = x^2在区间[-1, 1]上是连续的,需要证明对于任意给定的ε > 0,存在δ > 0,使得当|x - x0| < δ时,|f(x) - f(x0)| < ε。

实变函数论与泛函分析(上,下)第二版

实变函数论与泛函分析(上,下)第二版

基础知识1.1度量空间一、基本概念 1.距离定义:设R 是一个非空集合,若对R 中任意一对元素x ,y 都有给定的一个实数d (x ,y ) 与它们对应,而且d 适合如下条件: (1) d(x ,y)≥0且d (x ,y )=0 x=y(2) 三角不等式d (x ,z )≤d (x ,y )+d (y ,z )则称d (x ,y )是元素x ,y 之间的距离,并称R 按d (x ,y )成为度量空间或距离空间,记(R ,d )R 中的元素称为点。

由性质(1)(2)令z=x ,可推出距离还有对称性 即(3) d (x ,y )=d (y ,x )(4) 另外还有与(2)等价的不等式|d (x ,y )-d (y ,z )|≤d (x ,z )例1:平面任意两点)p 1(X 1,y 1) p 2(x 2,y 2)(不是距离)例2:[a ,b]上黎曼绝对可积的函数的集合R ,对其中任意两点f ,g 按距离 d (f ,g )=⎰-ba|x g x f |)()(dx 可证:R 按照d 成为一个度量空间(黎曼可积可改为连续函数)另外 R 上还可以有另外一个度量空间:d (f ,g )=],[x max b a ∈|f (x ),g (x )|记该度量空间为c[a ,b]2.极限定义1.1.2:设R 是一个度量空间X n (n=1,2,…) 及x ∈R ,加入n →∞ 时, 数列d (X n ,X )→0 则称{ X n }按距离d 收敛于x 记为∞→n lim X n =X或X n →X 此时称{X n }是R 中的收敛点列,x 称为点列{ X n }的极限 定义1.1.3:(基本点列)设{ X n }是度量空间(R ,d )中的一个点列。

若 { X n }满足N ∃>∀,0ε 当m ,n>N 时 有d (x x n m ,)<ε 则称{ X n }为R 中的基本点列(也称为柯西列)可以证明收敛点列一定是基本列 证明:若x x0n→(n →∞)即N ∃>∀,0ε 当m ,n>N 时 有d ( x x 0n ,)<2ε d (x x m 0,)<2ε d (xx mn,)≤d (xx 0n,)+d (x x m,)<ε∴{X n }是基本列但反之,不成立 例如 R=(0,+∞)X n =n1∈R (n=1,2^…){ X n }是基本列但{ X n }不是收敛列,因为R 中没有x , d (X n ,X )→0 (n →∞)又如3,3.1,3.14,3.141……是有理数集Q 中的基本列但不是Q 中的收敛列定义1.1.4 (完备性)若度量空间R 中的基本列都是收敛列则称R 是完备的度量空间,设A 是R 中的子集,若A 按R 的度量成为一个完备的度量空间,则称A 是R 的一个完备子集。

泛函分析答案泛函分析解答

泛函分析答案泛函分析解答

第五章习题第一部分01-151. M 为线性空间X 的子集,证明span( M )是包含M 的最小线性子空间. [证明] 显然span( M )是X 的线性子空间.设N 是X 的线性子空间,且M N . 则由span( M )的定义,可直接验证span( M ) N . 所以span( M )是包含M 的最小线性子空间.2. 设B 为线性空间X 的子集,证明conv(B ) = {∑=ni i i x a 1| a i 0, ∑=ni i a 1= 1, x iB , n 为自然数}. [证明] 设A = {∑=n i i i x a 1| a i 0, ∑=ni i a 1= 1, x iB , n 为自然数}.首先容易看出A 为包含B 的凸集,设F 也是包含B 的凸集,则显然有 A F ,故A 为包含B 的最小凸集.3. 证明[a , b ]上的多项式全体P [a , b ]是无限维线性空间,而E = {1, t , t 2, ...,t n, ...}是它的一个基底.[证明] 首先可以直接证明P [a , b ]按通常的函数加法和数乘构成线性空间, 而P [a , b ]中的任一个元素皆可由E 中有限个元素的线性组合表示. 设c 0, c 1, c 2, ..., c m 是m + 1个实数,其中c m 0,m 1. 若∑=mn n n t c 0= 0,由代数学基本定理知c 0 = c 1 = c 2 = ... = c m = 0,所以E 中任意有限个元素线性无关,故P [a , b ]是无限维线性空间,而E 是它的一个基底。

4. 在2中对任意的x = (x 1, x 2) 2,定义|| x ||1 = | x 1 | + | x 2 |,|| x ||2 = (x 12 + x 22)1/2,|| x || = max{ | x 1 |, | x 2 | }.证明它们都是2中的范数,并画出各自单位球的图形.[证明] 证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X 为线性赋范空间,L 为它的线性子空间。

实变函数与泛函分析基础第五章习题答案

实变函数与泛函分析基础第五章习题答案
a

f (x, t + hn) − f (x, t) hn
=
ft′(x, t + θhn) · hn hn
= | ft′(x, t + θhn)| ≤ K,
Ó ¶ ¨ 0 < θ < 1, a ≤ x ≤ b, t0 − δ < t + θhn < t0 + δ.
¦±
d dt
b
f (x, t)dt =
n=1
n=0
n=1
−∞
n=1
² ¤ En ¯Æ E


mEn = m( En) ≤ mE < ∞,
n=1
n=1
²∞ | n | mEn < ∞. −∞
½
¾ ¡Þ ¿ ∞ | n | mEn,
−∞

−∞

−∞
| f (x) | dx =
| f | dx +
| f | dx ≤ nmEn + | n − 1 | mEn
¤× º ¼¨ »Á©Í ¼ ­ ¨ ¥ ÄÅ À Â
´¹ °± 1.
Lebesgue
ß
¾¶
´¹ ± Darboux Ç ¤¿ £
Á ´ ± Darboux ´¤¢ ¤ ß f(x) E ·ÈÎ ¨ ´ E Ü Î ¾
D : E1, E2, · · · , En, max mEi → 0
1≤i≤n
¯ S (D, f ) → f (x)dx, S (D, f ) → E f (x)dx.
¿ ¹ f (x) = 0 a.e. E. ÆÃ ´Ü° δ > 0,
f (x)ϕ(x)dx = 0,
E

泛函分析习题解答

泛函分析习题解答

泛函分析习题解答第⼀章练习题1.记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-?∈?,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么?答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =L ,定义,01,():1,1 2.n n x x f x x ?≤<=?≤≤? 则{()}([0,2])n f x C ?在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++另⼀⽅⾯, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在⼏乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈?→=?∈?因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dx但()([0,2])g x C ?.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密⼦集. 事实上, 任意取定⼀个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-.事实上, ⾸先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ?, 只要mE δ<, 就有|()|3Ef x dx ε<.因为()f x (Lebesque)可积, 故⼏乎处处有限, 即10N N m E ∞==I ,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个⾃然数N , 使得N mE δ<且|()|3NE f x dx ε<,因此有|()|f x N ≤,[,]\N x a b E ∈.引⼊⼀个新函数定义为(),[,]\():0,,Nf x x a b E f x E ∈?=?% 显然对于[,]x a b ∈恒有|()|f x N ≤%. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ?, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进⽽()()g x f x ≡%,x F ∈.则()g x 限制在[,]a b 即为所求, 因为: [,](,)|()()|a b f g f x g x dx ρ=-?([,]\)|()()|a b F Ff xg x dx ?=-?[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-?%[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx≤++-+-%%[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+?\|()|0NNF E F E f x dx dx ?++?333εεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2.设(,)X ρ是距离空间,A 是X 的⼦集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2)若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三⾓不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+.即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满⾜Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =L , 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法⼀:记为⽅便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈?==?∈?显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是?.进⽽有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b E mE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ?∈=?∈=?∈=?∈==-=-=-==我们⽤反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密⼦集123{,,,,,}i g g g g L L , 因此⾄少有⼀个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.⽽由三⾓不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=证法⼆:既然E 是正测度集,存在0R >使得((0,))0m S R E ?>. 不难验证, 存在⼀列正数1{}i i R ∞=满⾜:120i R R R R <<<<<且1([(0,)\(0,)])0i i m E S R S R +?>.对于每⼀个12(,,,,)i λλλλ=L L ,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈?,1,2,i =L . 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N表⽰具有上述性质的λ的全体. 则()A L E ∞.既然对于不同的,λµ∈{0,1}N, (不妨设1(,,,)i λλλ=L L , 1(,,,)i µµµ=L L 且对于某个i ,0i λ=1i µ=)f λ与f µ不同的部分⾄少是正测度集1[(0,)\(0,)]i i E S R S R +?,容易看出A 的势与{0,1}N的势都是连续统的势?.进⽽有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λµλµλµρλµ++?∈=?∈?=?∈?=≥=-≥-=-= 我们⽤反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密⼦集123{,,,,,}i g g g g L L , 因此⾄少有⼀个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f µ.⽽由三⾓不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λµλµρρρ=≤+≤+这是⼀个⽭盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记[,]1,,():0,.a t a x t x t x b χ≤≤?=?<≤?显然[,]K L a b ∞, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, ⽽K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有⼀个可数的稠密⼦集合{()|1,2,}k A f x k ==L , 且11(,)3kk S f K ∞=?U . 但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以⾄少有K 中的两个不同的12[,][,],a t a t χχ属于同⼀个开球01(,)3k S f , 由此得到⽭盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此⽭盾表明[,]L a b ∞不可能是可分的.4.设([,])kC a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义C a b ?是Banach 空间.证:(1) 这⾥只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每⼀个0,1,,i k =L , ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x ?→??→,,0,1,,n i n →∞=L , 其中“??→??→”表⽰是⼀致收敛. 如果我们记0()()f x f x =,利⽤数学分析中函数序列⼀致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''===L (*)例如, 因为1()()n f x f x ??→??→', 故 1()()xxn aaf t dt f t dt ??→??→'?, 即1()()()xf x f a f t dt ??→??→-?, ⼜0()()n f x f x ?→??→及0()()nf a f a ??→??→, 故 001()()()xaf x f a f t dt -=?.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间.(2)证略.7.证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ?是完备的. 记E 中的⼀组基为:12,,,n v v v L .因此对于任意的x E ∈, 存在唯⼀⼀组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 反之亦然.(i) 我们断⾔存在⼀个与x ⽆关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =L .(*)⾸先定义⼀个映射:nf ?→?为: 对于任意的12(,,,)n x x x L n ∈?,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v L L .则对于任意的,x y E ∈(1122n n y y y y =+++v v v L )有≤由此容易知道f 是n R 上的连续函数. 记1B ?是nR 中的单位球⾯, 即21121{(,,,)|1}nn k k B x x x x =?==∑L . 则对于任意的11(,,)n x x B ∈?L , 有1(,,)0n f x x >L .(事实上, 若有1(,,)0n f x x =L 则111(,,)||||0n n n f x x x x =++=v v L L ,因此110n n x x ++=v v L , 但12,,,n v v v L 线性⽆关, 故必有120n x x x ====L , 此与11(,,)n x x B ∈?L 相⽭盾. )注意到1B ?是n R 中的有界闭集(紧⼦集), 连续函数f 必可在其上达到正的最⼩值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯⼀的⼀组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 不失⼀般性, 可设0x ≠因此, 12,,,n x x x L 不全为零, 注意到1y B ?? ?=∈?L , 故12()1,n f y f K +++=?? ?=≥v L L或1122||||n n x x x x =+++≥v v v L 由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这⾥()()()()1122k k k k n n x x x x =+++v v v L ,即()()||||0k l x x -→, 当,k l →∞.利⽤(*)式便可以得到对于每⼀个1,2,,i n =L , 成⽴()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =L ).记(0)()(0)(0)1122k n n xx x x =+++v v v L , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ?是完备的.9.设X 为线性赋范空间, 0X 是X 的线性闭⼦空间. 在X 中定义等价关系:为0x y x y X ?-∈:. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是⼀个线性赋范空间.证:(⼀) 0/X X 按照所定义的线性运算是线性空间 (证明略).(⼆) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每⼀个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是⼀个确定的数, 因此00||||:/X X ?→R 是映射.(i) (⾮负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每⼀个⾃然数1,2,k =L , 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到⼀个序列0{}k y X ?且||||0k y x →-.因为0X 是闭⼦空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=?+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=?,(iii) (三⾓不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进⽽, ,u v 的取法是相互独⽴的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可⽤下⾯的证明⽅法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10.设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利⽤三⾓不等式, 成⽴111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)kk nn S x==∑在范数意义下收敛, 其极限⾃然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再⼀次利⽤三⾓不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞11.设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ?是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x→, 由三⾓不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ?是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1?中的Cauchy 数列, 因此收敛, 即存在某个数A ∈?使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分⼤时, 总有||||0n x >, 不失⼀般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进⽽ ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-,由此易知{}n y T ?是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y→. 最后我们断⾔: ||||0n x Ay →.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-000||||||||n n n Ay x y y y x ??≤-+-00||||1||||n n n A x y y y x ??=-+-0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满⾜内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ?, 如果范数满⾜平⾏四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =?==?=C C .同理可证(,)0x x ≥R 且(,)00x x x =?=R . (ii)⾸先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表⽰为如下形式: (,) (,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()2222 1||||||||||||||||4x z y z x z y z ??=+++--+-?? 22142222x y x yx y x yz z ??+-+-=++++-22142222x y x y x y x y z z ??+-+---++--, 再由平⾏四边形法则222222x y x y x y x yz z +-+-++++-22222x y x y z ??+-=++ ? ??; 222222x y x y x y x yz z +-+--++--22222x y x y z ??+-=-+ ? ??. 因此(,)(,)x z y z +R R 221222x y x yz z++=+-- ? ???2,2x y z +??= R.进⽽, 令0y =可以得到(,)x z R 2,2x z ??= R,这⾥利⽤了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +??= R. 对照上述⼆式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)⾄于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利⽤上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) ⾸先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满⾜如下的函数⽅程:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x Y )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设ΛΛn A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀Y Y证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11Y ,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B I ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===Y Y则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==Y Y Y Y Y Y Y Y Y事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈Y Y ,其中,当10=i 时,∅=-=i i i A 110Y ,从而, i ni i n i B A 11===Y Y6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=Y(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=I证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n Y }1)(|{1na x f x E n +≥∞=Y反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1Y ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=Y7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=I I证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥I }1)(|{k a x f x E x m n m N n +≤∈≥∈I Y = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞=I ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞=I ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈I Y ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=I8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即ΛΛ≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=Y反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({Y ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=Y10.证明:3R 中坐标为有理数的点是不可数的。

证明: 设Q 为有理数集,由定理6:Q 是不可数的。

现在证:z y x z y x Q Q Q ,,|),,{(=⨯⨯}都是有理数可数Q x ∈∀,因为Q Q ⨯)}({Qx Q x ⨯=∈Y 是可数个有理数集的并,故可数,又因为)}({Q Q Q Qx Q Q x ⨯⨯=⨯⨯∈Y 并且Q Q Q Q x Q x ⨯⨯⨯∈∀~}{,,所以Q Q x ⨯⨯}{可数故Q Q Q ⨯⨯可数14.证明:可数集的有限子集的全体仍是可数证明: 设Q 为可数集,不妨记为:},,,,,{321ΛΛn r r r r Q =N n ∈∀,令}},,,,{|{321n n r r r r a a A Λ⊂=则 n A 为有限集(n 2n =A ),则 n A =∈Nn A Y 为正交可数集,即0n C ≤A又因为}{A Q x x Q ⊂∈|}{~,所以A Q C ≤=0 ,故0C A =A 是Q 上一切有限子集的全体。

15.设是两两不相交的集所组成的集列,证明:∅==∞→∞→n n n n E E lim lim证明: 因为{Λ,,21E E }两两不相交,所以,∅=∈∀∞=m nm E N n Y ,,故∅=∅=∈=∞=∞=∞=∞→11)(lim n m nm n n n E E Y I Y另一方面,若∅≠=∞=∞=∞→)(lim 1m nm n n n E E Y I ,我们取n n E x ∞→∈lim 0则k n N k k ≥∃∈∀,,使得k n E x ∈.特别的,当 N k ∈=1时,n E x n ∈≥∃有,11,当11+=n k 时:211221,E x n n k n N n ∈>+=≥∈∃,有()21n n < 从而,21n n E E x I ∈这与∅=21n n E E I 矛盾,故∅=∞→n n E lim从而∅==∞→∞→n n n n E E lim lim16.若集A 中每个元素由相互独立的可列个指标所决定,即A=}{21Λx x a ,而每个指标i x 在一个势为C 的集中变化,则集A 的势为C 。

相关文档
最新文档