中考数学:几何图形辅助线的画法与技巧

合集下载

数学辅助线做法技巧初中

数学辅助线做法技巧初中

数学辅助线做法技巧初中
数学辅助线是初中数学教学中常用的一种画图方法,可以帮助学生更好地理解和掌握各种数学概念和计算方法。

以下是数学辅助线做法技巧的一些要点:
1. 准确选择辅助线:在做题前,需要仔细分析题目要求和给定条件,准确选择适合的辅助线。

一般来说,辅助线的作用是使问题简化、明了,因此应当选择能够达到这一目的的辅助线。

2. 画图精细:辅助线的画法需要精细,尽量避免出现误差和混淆。

画线时建议使用铅笔轻轻勾画,检查无误后再用黑色笔进行加粗。

3. 辅助线的使用顺序:通常情况下,先画出重要的线条,如角平分线、垂线等,然后再考虑是否需要添加其他的辅助线。

4. 计算过程中注意标注:在使用辅助线进行计算时,需要注意清晰标注各个线段的长度、角度大小等信息,以方便后续的计算和验证。

5. 练习熟练度:数学辅助线是需要经验和技巧的,需要多进行练习和掌握。

可以通过做题、模拟考试等方式提高熟练度。

总之,数学辅助线是初中数学教学中重要的画图方法,能够帮助学生更好地理解和掌握各种概念和计算方法。

在使用辅助线时,需要准确选择、精细画图、注意标注、按顺序使用,同时也需要进行反复训练和提高熟练度。

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。

以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。

例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。

2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。

例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。

3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。

例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。

4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。

例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。

总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。

需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。

初中数学140分以上必须掌握的几何辅助线技巧!2024-7-15

初中数学140分以上必须掌握的几何辅助线技巧!2024-7-15

初中数学140分以上必须掌握的几何辅助线技巧!2024-7-15初中数学140分以上必须掌握的几何辅助线技巧!2024-7-15初中数学中的几何辅助线技巧对于学生的几何学习和解题能力提升起着重要的作用。

下面是几个学生在几何学习中必须掌握的几何辅助线技巧。

1.画平行线或垂直线:如果需要在图中画平行线或垂直线,可以通过画出等边三角形、等腰三角形、射影三角形等辅助图形来实现。

这样可以帮助我们快速准确地画出平行线或垂直线,进而解决相关问题。

2.画等分线:在一些情况下,我们需要将直线或角度等分为若干等分段。

此时,可以利用相似三角形、等腰三角形等来辅助,画出所需的等分线。

3.绘制三角形的内接圆和外接圆:对于给定的三角形,通过画出三角形的边中垂线、中位线等来确定三角形的内接圆或外接圆。

这样可以帮助我们了解三角形的性质,进而解决相关问题。

4.利用相似三角形解决问题:当我们需要求解一个三角形的边长或角度时,可以利用相似三角形的性质,通过比例关系来求解。

这样可以简化问题的解法,提高解题效率。

5.利用棱台的剖面图:对于给定的棱台,我们可以利用棱台的剖面图,通过画出有关截面图形的辅助线,来解决相关问题。

这样可以帮助我们更好地理解和分析棱台的性质。

6.利用圆锥的剖面图:对于给定的圆锥,我们可以通过画出圆锥的剖面图,辅助我们解决相关问题。

例如,通过画出圆锥的截面图,可以确定截面的形状和性质,进而解决有关圆锥的问题。

7.辅助线的选取:在解决几何问题时,辅助线的选取非常重要。

合理的选择辅助线能够帮助我们简化问题,找到解题的关键。

一般来说,我们可以通过观察图形特点,以及结合已有的几何知识来选择合适的辅助线。

总的来说,几何辅助线技巧是初中数学中非常重要的一部分,能够帮助学生更好地理解和解决几何问题。

通过掌握这些技巧,学生能够提高几何解题的能力和效率,取得更好的学习成绩。

所以,学生在学习几何的过程中,应该重点掌握这些几何辅助线技巧,灵活运用于解题中。

初中数学几何辅助线作法小结

初中数学几何辅助线作法小结

D C BAED F CB A几何辅助线作法小结三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(一)、倍长中线(线段)造全等1:已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.C3:如图,△ABC 中,BD =DC =AC ,E 是DC 的中点,求证:AD 平分∠BAE .E D CB A中考应用以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.(二)、截长补短1.如图,ABC ∆中,AB =2AC ,AD 平分BAC ∠,且AD =BD ,求证:CD ⊥ACCDBABACBA2:如图,AC ∥BD ,EA ,EB 分别平分∠CAB ,∠DBA ,CD 过点E ,求证;AB =AC +BD3:如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

中考数学:辅助线基本画法

中考数学:辅助线基本画法

中考数学:辅助线基本画法中考网为大家提供中考数学:辅助线基本画法,更多中考数学复习资料请关注我们网站的更新!中考数学:辅助线基本画法基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。

辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。

(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。

初中几何辅助线技巧

初中几何辅助线技巧

初中几何辅助线技巧
一、画圆
1、通过一点和半径弧线
(1)以其中一个点O为圆心,使用一个圆规将点O的坐标锁定,之后以笔触拉出半径的弧线来作圆。

(2)通过拉出2条切线,使圆的圆心两边都有正确的半径。

2、通过三点画圆
(1)首先准备三个点A、B、C,遵循“连AB及BC的中点与圆的圆心重合”的原则,先将A、B、C三点连线,找出AB和BC两条线段的中点,这两个中点就是圆的圆心O了。

(2)圆心O锁定后,再分别用圆规拉出离圆心O有正确半径的弧线。

二、画直线
1、用规则
(1)使用直尺保持直线的整洁程度,把两个点的坐标连起来,使用反射法实现直线两端的平行。

(2)用圆规拉出两点的中点,再以这个中点连接两点的坐标,画成一条直线。

(3)使用两点式的方法,输入两个点的横纵坐标,然后根据y=kx+b的方程式,连接两个点的坐标,得到一条直线。

2、使用辅助线
(1)画等边三角形,两个点通过等边三角形垂线来画出一条直线。

(2)画正方形,两个点通过正方形的对角线画出一条直线。

(3)圆内外六种角,两个点通过圆内外六种角画出一条直线。

三、画角
1、用圆规
(1)将圆规放置在锐角处,拉出一条线,此线段的角度就是锐角的角度了。

(2)如果需要画出钝角。

中考数学:几何图形辅助线的画法与技巧

中考数学:几何图形辅助线的画法与技巧

中考数学:几何图形辅助线的画法与技巧中考数学几何图形辅助线的画法与技巧有哪些?和大家一起来学习一下吧,希望大家平时多练习!中考数学:几何图形辅助线的画法与技巧1、三角形问题添加辅助线方法(1)有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

(2)含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

(3)结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

(4)结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2、平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线;(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。

3、梯形中常用辅助线的添法梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。

辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰;(2)梯形外平移一腰;(3)梯形内平移两腰;(4)延长两腰;(5)过梯形上底的两端点向下底作高;(6)平移对角线;(7)连接梯形一顶点及一腰的中点;(8)过一腰的中点作另一腰的平行线;(9)作中位线。

完整)初中数学几何辅助线技巧

完整)初中数学几何辅助线技巧

完整)初中数学几何辅助线技巧
几何常见辅助线口诀
三角形
在三角形中,可以使用角平分线来构造垂线,也可以将图形对折以后进行对称,从而得到更多的关系。

同时,角平分线还可以和平行线一起使用,来构造等腰三角形。

另外,在线段问题中,垂直平分线常常被用来将线段连接起来,而线段和差的问题可以通过延长或缩短线段来解决。

四边形
在处理平行四边形时,可以使用对称中心和等分点来进行计算。

对于梯形问题,可以将其转换为三角形或平行四边形,然后利用已有的知识来解决。

如果出现腰中点,可以连接中位线来解决问题。

如果以上方法都无法奏效,可以尝试使用全等来解决问题。

在证明相似时,可以使用比例和平行线的关系来辅助证明。

圆形
在圆形问题中,可以利用半径和弦长来计算弦心距。

如果出现切线,可以使用勾股定理来计算其长度。

要想证明一条线段是切线,需要利用半径垂线进行辨别。

在处理弧的问题时,需要记住垂径定理和圆周角的性质。

如果要作出内接或外接圆,需要将各边的中垂线或角平分线连起来。

如果遇到相交圆,需要注意作出公共弦。

最后,如果要证明等角关系,可以使用角平分线来构造辅助线。

由角平分线想到的辅助线
在使用角平分线时,可以通过截取构造全等来解决问题。

也可以在角分线上的点向两边作垂线,来构造全等三角形。

同时,三线合一也可以用来构造等腰三角形。

最后,在处理角平分线和平行线问题时,可以使用线段的加减和移动来解决问题。

几何证明题辅助线经典方法

几何证明题辅助线经典方法

几何证明题辅助线经典方法
引言
几何证明题是数学中常见的题型,也是学生们认识几何图形、发现几何规律的重要手段。

辅助线是解决几何证明题时常用的方法之一,本文将介绍几种经典的辅助线方法。

方法一:画垂直平分线
对于某些几何图形中的线段,我们可以通过画垂直平分线来辅助证明。

垂直平分线将线段分成两等分,从而在几何证明过程中起到重要的辅助作用。

方法二:画过顶点的高
在证明三角形相等或等腰三角形时,辅助线中的高是常见的方法之一。

通过画一条从顶点到对边的垂线,我们可以将几何图形转化为更容易处理的形式,从而证明所需结论。

方法三:画过顶点的中位线
在证明平行四边形或矩形时,辅助线中的中位线是一种常见的
方法。

通过画一条从顶点到对边中点的线段,我们可以将问题简化,并且利用矩形或平行四边形的性质得到所需结论。

方法四:画三角形的内切圆
在证明三角形的某些性质时,画三角形的内切圆是一种常见的
辅助线方法。

内切圆与三角形的各边均相切,通过利用内切圆的性质,我们可以得到有关三角形的一些重要结论。

方法五:画过顶点的角平分线
在证明两角相等或证明某些三角形相似时,画过顶点的角平分
线是一种常见的辅助线方法。

通过将角细分为两等分,我们可以得
到有关角度的一些重要关系,从而得到所需结论。

结论
辅助线方法在解决几何证明题时起到了重要的作用。

以上介绍
的几种经典辅助线方法仅是其中的一部分,通过熟练掌握这些方法,并结合具体问题,我们可以更好地解决几何证明题,提高数学水平。

初中几何中常用的辅助线方法的资料

初中几何中常用的辅助线方法的资料

初中几何是学生学习几何知识的基础阶段,掌握正确的辅助线技巧对于解决几何问题至关重要。

下面是一份关于初中几何中常用的辅助线方法的资料,希望能帮助到您。

一、基本概念辅助线:在解决几何问题时,为了更好地展现图形的性质或构建所需的条件,临时添加的线段称为辅助线。

辅助线不改变原图形的基本结构,但能帮助我们发现解题的关键线索。

二、常用辅助线方法1. 过顶点作垂线●应用场景:证明直角、等腰三角形的性质,求解高、距离等问题。

●示例:证明一个三角形是直角三角形时,可以尝试从一个顶点向对边作垂线,利用勾股定理。

2. 连接中点●应用场景:证明线段倍长、中位线性质、平行四边形和梯形的构造。

●示例:证明两条线段相等时,连接它们的中点,利用中位线定理。

3. 平行线构造●应用场景:形成相似三角形、构造平行四边形、证明角度关系。

●示例:为证明两个角相等,可以在其中一个角的一边上作一条平行于另一角所在直线的辅助线,从而构成一对内错角或同位角。

4. 过顶点作平行线●应用场景:构造全等三角形、证明角平分线性质。

●示例:证明两角相等时,可以从一个角的顶点出发作一条平行于另一个角一边的线,这样可以构造出一组等角的三角形。

5. 延长线段●应用场景:寻找共线点、证明交比不变、构造平行线。

●示例:当需要证明四点共线时,延长某些线段,利用交叉线段的比值相等来证明。

6. 作角平分线或垂直平分线●应用场景:证明等腰三角形、等边三角形性质,解决与圆相关的几何问题。

●示例:证明一个点在三角形某边的垂直平分线上,可以过该点作这条边的垂线,利用垂直平分线的性质。

三、技巧总结1.观察图形特征:首先分析图形的已知条件和所求目标,根据图形的特殊形状或已知条件选择合适的辅助线方法。

2.尝试多种方案:有时候,一种辅助线方法可能不足以解决问题,需要尝试几种不同的方法。

3.灵活运用定理:熟练掌握各种几何定理,并能灵活应用到辅助线的构造中。

4.练习与总结:多做练习,每次解题后总结辅助线的使用经验,逐步提高解题效率。

102条作几何辅助线的规律,以后再也不怕了!

102条作几何辅助线的规律,以后再也不怕了!

102条作几何辅助线的规律,以后再也不怕了!几何中,同学们最头疼的就是做辅助线了,所以,今天数姐整理了做辅助线的102条规律,从此,再也不怕了!规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个.规律7.如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17.三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.规律18.三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.规律19.从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22.有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23.在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

初中初中几何辅助线做法总结满分必备

初中初中几何辅助线做法总结满分必备

【初中】初中最全几何辅助线做法总结,满分必备!几何中,同学们最头疼的就是做辅助线了,所以,今天整理了做辅助线的102条规律,从此,再也不怕了!线、角、相交线、平行线规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个.规律7. 如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.三角形部分规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或及求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线及一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

初中数学几何图形辅助线做法秘籍(中考必备)

初中数学几何图形辅助线做法秘籍(中考必备)

初中数学几何图形辅助线做法秘籍(中考必备)前言辅助线是解决几何问题的一种常用手段,是没有条件时创造条件解决问题的方法,辅助线就像桥梁,是本来分散的已知条件集中而清晰,从而达到解题的目的,这就是辅助线的意义!(一)初中几何基本图形每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”。

这样可防止乱添线,添辅助线也有规律可循。

(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

初中数学几何证明题画辅助线的技巧

初中数学几何证明题画辅助线的技巧

初中数学几何证明题画辅助线的技巧第一篇:初中数学几何证明题画辅助线的技巧初中数学几何证明题画辅助线的技巧在初中数学几何学习中,如何添加辅助线是许多同学感到头疼的问题,许多同学常因辅助线的添加方法不当,造成解题困难。

以下是常见的辅助线作法编成了一些“顺口溜” 歌诀。

人人都说几何难,难就难在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

辅助线,是虚线,画图注意勿改变。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

第二篇:初中数学几何证明题作辅助线的技巧人说几何很困难,难点就在辅助线。

初中数学几何证明题辅助线怎么画?辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

初中数学几何做辅助线方法技巧

初中数学几何做辅助线方法技巧

初中数学几何做辅助线方法技巧初中数学里面,几何这个部分是比较重要的,因为对我们日后的学习和生活有一定的帮助。

在学习几何的过程中,我们常常需要用到做辅助线的方法来帮助我们更好的理解和解决问题。

下面是关于初中数学几何做辅助线方法技巧的介绍。

1. 画出平行线在处理一些证明题或求几何中的相关数据时,使用画一条平行线的方法,这条线起到辅助线的作用。

具体来说,我们可以根据题目已知的条件,画出一条平行于两条线的直接过这两条线的平行线。

这样做可以帮助我们更好的理解题目所需要求解的问题。

2. 画出垂线在几何中,垂线是非常重要的一种线。

垂线可以将一条线分成两段,并且在某些时候可以帮助我们求解一些困难的问题。

具体的做法是在需要求解的点上,画出一条线段与目标线段垂直相交。

3. 构造相似三角形有时候在处理一些题目时,不好直接得出一个结论或者一些数据,使用相似三角形来帮助我们更好的理解和求解问题。

相似三角形有一个共同的特点就是它们的对应角度相等,边长成比。

具体的做法是在画图的时候,根据题目条件构造一个相似三角形,利用等比例关系求解相关数据或者结论。

4. 利用勾股定理在解析几何中,勾股定理是一个非常重要的公式,它在很多问题中都有很大的帮助。

利用勾股定理可以求出直角三角形的三个边长。

同时在画图的时候,也可以利用勾股定理来帮助画出直角三角形。

5. 使用比例关系在某些问题中,我们可能需要根据已知条件来求出一些距离或长度之类的数据。

在这种情况下,我们可以通过比例关系来帮助我们快速求解。

具体的做法是在画图的时候,根据已知条件构造出一定的比例关系,在求出需要的数据。

6. 构造平行四边形和等边三角形利用平行四边形和等边三角形来帮助我们求解问题也是一个非常不错的方法。

具体的做法是在求解相关问题时,根据已知条件或者所求的条件,在画出平行四边形或者等边三角形,利用它们的性质来求解所需要求解的问题。

几何学是一个非常重要的数学分支,它在我们的生活中起着非常重要的作用。

初中数学几何巧画辅助线的技巧,附例题演示,建议收藏!

初中数学几何巧画辅助线的技巧,附例题演示,建议收藏!

初中数学几何巧画辅助线的技巧,附例题演示,建议收藏!'河北中考' 必胜!在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松又快速!辅助线画不对,可能就是解题绕弯又出错!如何快速添加利于解题的辅助线?诀窍都在下面了!几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径联。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

例题演示一由角平分线想到的辅助线1、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自己证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

初中数学常用辅助线添加技巧一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初中几何辅助线做法要点

初中几何辅助线做法要点

初中几何辅助线做法要点几何辅助线是指在解题过程中,通过引入一条或多条辅助线,来帮助我们更好地理解、分析和解决几何问题的方法。

几何辅助线的运用可以大大简化问题,使得问题的解决更加直观和简便。

下面将介绍一些常见的几何辅助线做法要点。

1.画角平分线:在解决与角度有关的问题时,常常可以运用角平分线作为辅助线。

角平分线是将一个角分成两个相等的角,可以帮助我们定位和分析几何图形。

例如,在证明两个三角形相似时,可以通过画角平分线来建立一系列相似的三角形,进而证明两个三角形相似。

2.画垂直平分线:在解决与线段有关的问题时,可以考虑使用垂直平分线。

垂直平分线可以将一条线段分成两个相等的部分,并且垂直于这条线段。

通过垂直平分线,我们可以找到两个点之间的中点,并且可以与其他几何图形相交,在解题过程中起到关键的作用。

3.画平行线或等边线:当我们需要证明两条线段平行,或者需要构造一个等边三角形时,可以考虑画平行线或等边线作为辅助线。

对于线段平行的证明,我们可以通过画一条与这两条线段相交的第三条线段,再利用三角形内角和的性质来证明线段平行。

对于等边三角形的构造,我们可以通过画一条等边线来确定等边三角形的位置和形状。

4.画高线和中线:高线和中线是与三角形有关的重要辅助线。

通过画一条从一个顶点到对立边和中点的线段,可以得到三角形中的高线和中线。

高线可以帮助我们定位和分析三角形的一些性质,比如垂直平分线段、证明三角形的相似或全等等。

中线则可以帮助我们找到三角形的重心,进而分析三角形的形状和性质。

几何辅助线在解决几何问题中起着非常重要的作用,它们可以帮助我们更好地理解和分析几何图形,简化问题,提高解题的效率和准确性。

在运用几何辅助线时,我们应当根据问题的具体要求和条件,选择适当的辅助线,并且合理运用几何知识,灵活运用辅助线的性质和特点,以达到解决问题的目的。

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)初中几何辅助线―克胜秘籍等腰三角形1.作底边上的高,形成两个全等的直角三角形,这就是改得最少的一种方法;2.并作一腰上的高;3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1.旋转轴平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.相连接两对角2.搞低平行四边形1.旋转轴平行边2.作对角线――把一个平行四边形分成两个三角形3.做高――形内形外都要注意矩形1.对角线2.作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如ab=ac+bd....这类的就是想办法作出另一条ab等长的线段,再证全等说明ac+bd=另一条ab,就好了。

还有一些关于平方的考虑勾股,a字形等。

三角形图中存有角平分线,可以向两边并作垂线(垂线段成正比)。

也可以将图对折看看,等距以后关系现。

角平分线平行线,等腰三角形去迎。

角平分线提垂线,三线合一试一试。

线段垂直平分线,常向两端把线连。

必须证线段倍与半,缩短延长可以试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

求解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果得出中点或中线,可以考虑过中点并作中位线或把中线缩短一倍去化解有关问题。

②在比例线段证明中,常作平行线。

并作平行线时往往就是留存结论中的一个比,然后通过一个中间比与结论中的另一个比联系出来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线平行6、并作梯形的中位线7、缩短两腰并使之平行四边形平行四边形发生,对称中心等分点。

梯形里面并作高线,位移一腰试一试。

平行移动对角线,补成三角形常用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学:几何图形辅助线的画法与技巧
中考数学:几何图形辅助线的画法与技巧
1、三角形问题添加辅助线方法
(1)有关三角形中线的题目,常将中线加倍。

含有中点的题目,
常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

(2)含有平分线的题目,常以角平分线为对称轴,利用角平分线
的性质和题中的条件,构造出全等三角形,从而利用全等三角形的
知识解决问题。

(3)结论是两线段相等的题目常画辅助线构成全等三角形,或利
用关于平分线段的一些定理。

(4)结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2、平行四边形中常用辅助线的添法
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目
的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行
四边形问题转化成常见的三角形、正方形等问题处理,其常用方法
有下列几种,举例简解如下:
(1)连对角线或平移对角线;
(2)过顶点作对边的垂线构造直角三角形;
(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;
(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形
相似或等积三角形;
(5)过顶点作对角线的垂线,构成线段平行或三角形全等。

3、梯形中常用辅助线的添法
梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形
问题来解决。

辅助线的添加成为问题解决的桥梁,梯形中常用到的
辅助线有:
(1)在梯形内部平移一腰;
(2)梯形外平移一腰;
(3)梯形内平移两腰;
(4)延长两腰;
(5)过梯形上底的两端点向下底作高;
(6)平移对角线;
(7)连接梯形一顶点及一腰的中点;
(8)过一腰的中点作另一腰的平行线;
(9)作中位线。

当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。

通过辅助线这座桥梁,将梯形问题化归为平行四
边形问题或三角形问题来解决,这是解决问题的关键。

4、圆中常用辅助线的添法
在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然
地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对
提高学生分析问题和解决问题的能力是大有帮助的。

(1)见弦作弦心距。

有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。

(2)见直径作圆周角。

在题目中若已知圆的直径,一般是作直径
所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。

(3)见切线作半径。

命题的条件中含有圆的切线,往往是连结过
切点的半径,利用"切线与半径垂直"这一性质来证明问题。

(4)两圆相切作公切线。

对两圆相切的问题,一般是经过切点作
两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的
角的关系。

(5)两圆相交作公共弦。

对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或
圆心角联系起来。

来源:用考网。

相关文档
最新文档