华东师大版数学七年级(初一)上下册试卷(附参考答案)
上海 华东师范大学第一附属初级中学七年级数学上册第一单元《有理数》测试卷(含答案解析)
一、选择题1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0 2.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定 3.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1 B .2 C .0 D .-24.已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2 5.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样 6.下列有理数的大小比较正确的是( )A .1123<B .1123->-C .1123->-D .1123-->-+ 7.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7| 8.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多109.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12 B .2或-12 C .-2或12D .-2或-12 10.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个11.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数 12.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题13.23(2)0x y -++=,则x y 为______.14.绝对值小于2018的所有整数之和为________.15.在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____. 16.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)17.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.18.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________. 19.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________. 20.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 三、解答题21.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.22.计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].23.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 kg (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ; (3)若脐橙按4.5元/kg 出售,且小明需为买家支付运费(平均0.5元/kg ),则小明本周一共赚了多少元?24.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 25.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 26.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.3.C解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】 4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 4.C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 5.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.6.B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A 、1123>,故本选项大小比较错误,不符合题意; B 、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意; C 、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意; D 、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B .【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.7.D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意,故选D.8.D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D .9.A解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.10.C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.11.C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.12.C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.二、填空题13.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键. 14.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.15.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.16.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.18.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.19.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.20.2【分析】利用相反数倒数的性质确定出a+bcd的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 三、解答题21.9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】 解: 1.20.7010.30.20.30.50.18-++--+++=-(秒) 140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.22.(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.23.(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.24.(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 25.(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.26.(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”,∴m 的取值范围为:43m -≤≤-,故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -,∵点O 为点A 与点B 的平衡点,∴点B 表示的数为:5t -,∵点B 在线段CD 上,当点B 与点C 相遇时,2t =,当点B 与点D 相遇时,6t =,∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”.【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.。
华东师大版七年级数学上册 第一、二、三章综合检测题(含解析)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯华东师大版七年级数学上册 第一、二、三章综合检测题(考试时间:120分钟 满分:120分)第Ⅰ卷一、选择题(每小题3分,共24分)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.(嘉兴中考)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为( )A .0.35×108B .3.5×107C .3.5×106D .35×105 3.下列各式中,不是同类项的是( )A.12x 2y 和13x 2yB .-ab 和baC .-37abcx 2和-73x 2abc D.25x 2y 和52xy 24.下列各对数中,相等的一对数是( ) A .(-2)3与-23 B .-22与(-2)2 C .-(-3)与-|-3|D.223与232⎪⎭⎫⎝⎛ 5.下列说法中,正确的是( ) A.m 2n4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式6.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数是( ) A .abc B .a +10b +100c C .100a +10b +c D .a +b +c7.有理数a ,b 在数轴上的位置如图所示,则下列各式中错误的是( )A .b<aB .|b|>|a|C .a +b>0D .ab<08.下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,通过观察,用你所发现的规律确定22 018的个位数字是( )A .2B .4C .6D .8第Ⅱ卷二、填空题(每小题3分,共24分)9.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离是 . 10.若规定a*b =5a +2b -1,则(-4)*6的值为 .11.把多项式3xy 2-12x 2y 2-1-x 3按x 的降幂排列为 .12.若a ,b 互为相反数,c ,d 互为倒数,|m|=2,则a +b4m+m 2-3cd = . 13.若M =4x 2-5x +11,N =3x 2-5x +10,则M 与N 的大小关系是 . 14.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m +n =-2,mn =-4,则2(mn -3m)-3(2n -mn)的值为 .15.将四个有理数3,4,-6,10(每个数必用且只用一次)进行加减乘除四则运算,使其结果等于24,请你写出一个符合条件的算式 .16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照下面的规律,摆第(n)图,需用火柴棒的根数为 .三、解答题(要求写出必要的解题过程:共8题,17题-18题各10分,19题-23题每题8分,24题12分,共72分)17.计算:(1)(-2)2-|-7|+3-2×⎪⎭⎫ ⎝⎛-21; (2)-12×⎣⎡⎦⎤-32×⎝⎛⎭⎫-232-2.18.用简便方法计算:(1)15×⎝⎛⎭⎫-34-(-15)×32+15×14; (2)⎝⎛⎭⎫-1112+56-79×(-36)+(-5)×(-1)3.19.先化简,再求值:(3x 2-xy +y)-2(5xy -4x 2+y),其中x =-2,y =13.20.画一条数轴,并在数轴上表示:3.5和它的相反数,-12和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.21.在计算(-5)-(-5)×110÷110×(-5)时,小明的解法如下:解:原式=-5-⎝⎛⎭⎫-12÷⎝⎛⎭⎫-12 (第一步)=-5-1 (第二步)=-4 (第三步)回答:(1)小明的解法是错误的,主要错在第 步,错因是 ;(2)请在下面给出正确的解答过程.22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,(1)(2)本周的总生产量是多少辆?(3)若每辆自行车的生产成本为150元,出厂价为每辆280元,求本周自行车的利润.23.已知关于x的多项式(a+b)x5+(b-2)x3-2(a-1)x2-2ax-3中不含x3和x2项,试求当x=-1时,这个多项式的值.24.某中学七年级(4)班的3位教师决定带领本班a名学生在十一期间去北京旅游,A旅行社的收费标准为教师全价,学生半价;B旅行社不分教师、学生,一律八折优惠,这两家旅行社的基本价一样,都是每人500元.(1)用整式表示这3位教师和a名学生分别选择这两家旅行社所需的总费用;(2)如果这个班有55名学生,他们选择哪一家旅行社较为合算?参考答案一、选择题(每小题3分,共24分)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( B ) A .-1 B .0 C .1 D .22.(嘉兴中考)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为( C )A .0.35×108B .3.5×107C .3.5×106D .35×105 3.下列各式中,不是同类项的是( D )A.12x 2y 和13x 2yB .-ab 和baC .-37abcx 2和-73x 2abc D.25x 2y 和52xy 24.下列各对数中,相等的一对数是( A ) A .(-2)3与-23 B .-22与(-2)2 C .-(-3)与-|-3|D.223与⎝⎛⎭⎫2325.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式6.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数是( B ) A .abc B .a +10b +100c C .100a +10b +c D .a +b +c7.有理数a ,b 在数轴上的位置如图所示,则下列各式中错误的是( C )A .b<aB .|b|>|a|C .a +b>0D .ab<08.下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,通过观察,用你所发现的规律确定22 018的个位数字是(B)A .2B .4C .6D .8第Ⅱ卷二、填空题(每小题3分,共24分)9.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离是 8 .10.若规定a*b =5a +2b -1,则(-4)*6的值为 -9 .11.把多项式3xy 2-12x 2y 2-1-x 3按x 的降幂排列为 -x 3-12x 2y 2+3xy 2-1 .12.若a ,b 互为相反数,c ,d 互为倒数,|m|=2,则a +b4m+m 2-3cd = 1 . 13.若M =4x 2-5x +11,N =3x 2-5x +10,则M 与N 的大小关系是 M>N . 14.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m +n =-2,mn =-4,则2(mn -3m)-3(2n -mn)的值为 -8 .15.将四个有理数3,4,-6,10(每个数必用且只用一次)进行加减乘除四则运算,使其结果等于24,请你写出一个符合条件的算式 3×(4-6+10) .16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照下面的规律,摆第(n)图,需用火柴棒的根数为 6n +2 .三、解答题(要求写出必要的解题过程:共8题,17题-18题各10分,19题-23题每题8分,24题12分,共72分)17.计算:(1)(-2)2-|-7|+3-2×⎝⎛⎭⎫-12; 解:原式=4-7+3+1=1.(2)-12×⎣⎡⎦⎤-32×⎝⎛⎭⎫-232-2.解:原式=-12×⎝⎛⎭⎫-9×49-2=-12×(-6)=3.18.用简便方法计算:(1)15×⎝⎛⎭⎫-34-(-15)×32+15×14; 解:原式=15×⎝⎛⎭⎫-34+15×32+15×14=15×⎝⎛⎭⎫-34+32+14=15.(2)⎝⎛⎭⎫-1112+56-79×(-36)+(-5)×(-1)3. 解:原式=33-30+28+5=36.19.先化简,再求值:(3x 2-xy +y)-2(5xy -4x 2+y),其中x =-2,y =13.解:原式=3x 2-xy +y -10xy +8x 2-2y = 3x 2+8x 2-xy -10xy +y -2y = 11x 2-11xy -y.当x =-2,y =13时,原式=44+223-13=51.20.画一条数轴,并在数轴上表示:3.5和它的相反数,-12和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.解:3.5的相反数是-3.5;-12的倒数是-2;绝对值等于3的数为±3;最大的负整数是-1,它的平方是1.如图所示:-3.5<-3<-2<-1<-12<1<3<3.5.21.在计算(-5)-(-5)×110÷110×(-5)时,小明的解法如下:解:原式=-5-⎝⎛⎭⎫-12÷⎝⎛⎭⎫-12 (第一步)=-5-1 (第二步)=-4 (第三步)回答:(1)小明的解法是错误的,主要错在第 一 步,错因是 同级运算没有按照从左到右的顺序依次进行运算 ;(2)请在下面给出正确的解答过程.解:(-5)-(-5)×110÷110×(-5) =-5-(-5)×110×10×(-5) =-5-25 =-30.22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,星期 一 二 三 四 五 六 日 增减/辆-1+3-2+4+7-5-10(1)(2)本周的总生产量是多少辆?(3)若每辆自行车的生产成本为150元,出厂价为每辆280元,求本周自行车的利润. 解:(1)星期五,100+7=107辆;(2)100×7+(-1)+(+3)+(-2)+(+4)+(+7)+(-5)+(-10)=696辆; (3)696×(280-150)=90 480元.23.已知关于x 的多项式(a +b)x 5+(b -2)x 3-2(a -1)x 2-2ax -3中不含x 3和x 2项,试求当x =-1时,这个多项式的值.解:由题意可知b -2=0,a -1=0,解得b =2,a =1.当a=1,b=2时,原多项式化简为3x5-2x-3,把x=-1代入,原式=3x5-2x-3=3×(-1)5-2×(-1)-3=-3+2-3=-4.24.某中学七年级(4)班的3位教师决定带领本班a名学生在十一期间去北京旅游,A旅行社的收费标准为教师全价,学生半价;B旅行社不分教师、学生,一律八折优惠,这两家旅行社的基本价一样,都是每人500元.(1)用整式表示这3位教师和a名学生分别选择这两家旅行社所需的总费用;(2)如果这个班有55名学生,他们选择哪一家旅行社较为合算?解:(1)选择A旅行社所需的总费用为3×500+250a=(250a+1 500)元,选择B旅行社所需的总费用为(3+a)×500×0.8=(400a+1 200)元.(2)当a=55时,选择A旅行社所需的总费用为250×55+1 500=15 250(元);选择B旅行社所需的总费用为400×55+1 200=23 200(元),因为15 250<23 200,所以选择A旅行社较为合算.一天,毕达哥拉斯应邀到朋友家做客。
华东师大版 七年级 数学(答案)
._ ¡¢!5%% £¤¥. ¦§1
!"& !!!0#""1*# ! (%
(
!!"#$ !# % &
'!( &!) *!"+
"!""!# " '#'" !!' '!#" &!$
"-
$!,!&'!"#$!&'!
*!/#!
0!'78$'(%-* '1 . /2 . (/1 , 2 3 /%
$'1-(".(%-/2."-(/1
$"23.4%%.123
$.'(%%
(78$ 2 -*' ' +( ' . ' , 4 ( ((
$ 2 - 4 $( ' 4( (
/78$5( ' .(0+//.3674$5 22 .'674
+7+-3.5.-.73. /8''''('/. ' "3
'0
!!!"#$ % & '"#!!$%!$&! ( ) ' '$& "(*+,!-./0123#
,*pq1*'$'(!%,")! % )&!%$ !)$'&$ &
rq1'%&!!)"&6,"%&!$&%)$'%,'&!*+%-!
2024年华东师大版初一上学期数学试卷与参考答案
2024年华东师大版数学初一上学期自测试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、下列数中,最小的质数是:A、2B、3C、4D、52、一个长方形的长是8厘米,宽是5厘米,它的周长是:A、13厘米B、26厘米C、30厘米D、40厘米3、一个长方形的长是10厘米,宽是长的一半,那么这个长方形的周长是多少厘米?选项:A. 20厘米B. 30厘米C. 40厘米D. 50厘米4、小明从家出发,向东走了5米,然后转向南走了8米,接着又向东走了10米。
小明此时离家的距离是多少米?选项:A. 13米B. 15米C. 16米D. 17米5、下列数中,是平方数的是()A、9.5B、16C、7.25D、3.146、一个长方形的长是10厘米,宽是6厘米,那么它的面积是()A、50平方厘米B、60平方厘米C、100平方厘米D、120平方厘米7、下列数中,是偶数的是()A、0.5B、3C、7D、-68、如果一个长方体的长、宽、高分别是a、b、c(a、b、c均不为0),那么它的体积V是()A、a+bB、ab+cC、abcD、a²b9、(选择题)小明去书店买书,看到一本数学参考书,书价是x元。
书店正在打折,打八折后,小明实际支付了0.8x元。
问小明实际支付了多少钱?A. x元B. 0.8x元C. 0.2x元D. 1.2x元 10、(选择题)一个长方形的长是宽的3倍。
如果长方形的周长是24厘米,那么这个长方形的宽是多少厘米?A. 2厘米B. 3厘米C. 4厘米D. 6厘米二、填空题(本大题有5小题,每小题3分,共15分)1、(2+3)×4的运算结果是______ 。
2、一个长方形的长是8厘米,宽是5厘米,它的周长是 ______ 厘米。
3、已知函数f(x) = 3x + 2,若f(a) = 11,则a的值为 ______ 。
4、在直角坐标系中,点P(2, -3)关于x轴的对称点为 ______ 。
华师版七年级数学上册期末测试卷附答案
华师版七年级数学上册期末测试卷一、选择题(每题3分,共30分) 1.-715的相反数是( )A .-715B .-157C.715D.1572.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,这个数用科学记数法表示为( ) A .2.8×104B .28×107C .0.28×109D .2.8×1083.下列各组单项式中,是同类项的是( )A .2a 与a 2B .5a 2b 与-12ba 2C .-3xy 2与13x 2yD .0.3mn 2与-0.3xy 24.下列说法中正确的是( )A.-2xy 3的系数是-2B .角的两边画得越长角的度数越大C .直线AB 和直线BA 是同一条直线D .多项式x 3+x 2的次数是55.已知线段AB =10 cm ,P A +PB =20 cm ,下列说法中正确的是( )A .点P 不能在直线AB 上 B .点P 只能在直线AB 上C .点P 只能在线段AB 的延长线上D .点P 不能在线段AB 上6.如图,已知数轴上三点A ,B ,C 表示的数分别是a ,b ,c .若ac <0,a +b >0,则原点O的位置应该在( )(第6题)A .点A 与点B 之间,更靠近A 点 B .点A 与点B 之间,更靠近B 点C .点B 与点C 之间,更靠近B 点D .点B 与点C 之间,更靠近C 点7.用一副三角尺不可能拼出的角的度数是( )A .15°B .40°C .135°D .150°8.已知a ,b 为有理数,下列式子:①|ab |>ab ;②a b <0;③⎪⎪⎪⎪a b =-a b;④a 3+b 3=0.其中一定能够表示a ,b 异号的有( ) A .1个B .2个C .3个D .4个9.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()(第9题)A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°10.观察如图图形,它们是按一定规律排列的,根据图形我们可以发现:第1个图中十字星与五角星的个数和为7,第2个图中十字星与五角星的个数和为10,第3个图中十字星与五角星的个数和为13,按照这样的规律,第9个图中,十字星与五角星的个数和为()(第10题)A.28 B.29 C.31 D.32二、填空题(每题3分,共15分)11.用四舍五入法对0.299 6取近似值精确到百分位为________.12.小莉在办板报时,需要画一条直的隔线,由于尺子不够长,于是她和一名同学找来一根线绳,给线绳涂上彩色粉笔末,两人拉紧线绳各按住一头,把线绳从中间拉起再松手便完成了,请写出她们这样做根据的数学事实是______________________.13.如图,点C是线段AB上一点,点D是线段BC的中点,AC=3 cm,BC=4 cm,则AD =________cm.(第13题)(第14题)14.如图,△ABC 中,∠A 与∠B 互余,一直尺(对边平行)的一边经过点C ,另一边分别与一直角边和斜边相交,则∠1+∠2=________°.15.定义:若a +b =n ,则称a 与b 是关于n 的“平衡数”.比如3与-4是关于-1的“平衡数”,5与12是关于17的“平衡数”.现有a =6x 2-8kx +12与b =-2(3x 2-2x +k )(k 为常数)始终是关于m 的“平衡数”,则m =________.三、解答题(16题6分,22,23题每题12分,其余每题9分,共75分) 16.计算:(1)-27×(-5)+16÷(-8)-|-4×5|; (2)-16+42-(-1)×⎝⎛⎭⎫13-12÷16-54.17.先化简,再求值:2ab 2-[3a 2b -2(3a 2b -ab 2-1)],其中a ,b 满足(a +1)2+|b -2|=0.18.如图是由几个大小完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请你画出该几何体的主视图和左视图.(第18题)19.近年来,电动小汽车在某市广泛使用,市治安巡警某分队常常在一条东西走向的道路上巡逻.一天下午,该巡警分队驾驶电动小汽车从位于这条道路上的某派出所出发巡逻,如果规定向东为正,向西为负,行驶里程(单位:千米)如下:-5,-2,+8,-3,+6,-4,+5,+3.(1)这辆电动小汽车完成上述巡逻后在该派出所的哪一侧?距离该派出所多少千米?(2)已知这种电动小汽车平均每千米耗电0.15度,则这天下午电动小汽车共耗电多少度?20.如图,射线AH交折线ACGFEN于点B,D,E,已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.试说明:∠2=∠3.(第20题)21.如图是一个正方体的表面展开图,请回答下列问题: (1)与面B ,C 相对的面分别是________;(2)若A =a 3+15a 2b +3,B =-12a 2b +a 3,C =a 3-1,D =-15(a 2b +15),且相对的两个面所表示的代数式的和都相等,求E ,F 分别代表的代数式.(第21题)22.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图,当OB ,OC 重合时,求∠EOF 的度数. (2)如图,当OB ,OC 重合时,求∠AOE -∠BOF 的值.(3)当∠COD 从如图的位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE -∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(第22题)23.已知AB ∥CD ,∠ABE 的平分线与∠CDE 的平分线相交于点F .(1)如图①,请说明:①∠ABE +∠CDE +∠E =360°;②∠ABF +∠CDF =∠BFD . (2)如图②,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,请你写出∠M 与∠E 之间的关系,并说明理由.(3)如图②,当∠ABM =1n ∠ABF ,∠CDM =1n ∠CDF ,且∠E =m °时,请你直接写出∠M 的度数(用含m ,n 的式子表示).(第23题)答案一、1.C 2.D 3.B 4.C 5.D6.A 点拨:因为ac <0,所以a <0,c >0. 又因为a +b >0,所以b >0且|a |<|b |,所以原点O 的位置应该在点A 与点B 之间,更靠近A 点. 7.B8.B 点拨:当⎪⎪⎪⎪⎪⎪a b =-a b 时,a b ≤0,a 可能等于0,b ≠0,a ,b 不一定异号;当a 3+b 3=0时,a 3=-b 3,即a 3=(-b )3,所以a =-b ,有可能a =b =0,a ,b 不一定异号.所以一定能够表示a ,b 异号的有①②. 9.A 点拨:如图,(第9题) 因为AP ∥BC , 所以∠2=∠1=50°.所以∠3=∠4-∠2=80°-50°=30°, 即此时的航行方向为北偏东30°.10.C 点拨:因为第1个图中,十字星与五角星的个数和为6+1=7,第2个图中,十字星与五角星的个数和为8+2=10, 第3个图中,十字星与五角星的个数和为10+3=13,…,所以第9个图中,十字星与五角星的个数和为2×(2+9)+9=31.故选C . 二、11.0.30 12.两点确定一条直线 13.5(第14题)14.90 点拨:如图,因为∠A 与∠B 互余,所以∠A +∠B =90°, 所以∠ACB =∠1+∠3=90°. 因为a ∥b ,所以∠2=∠3, 所以∠1+∠2=90°.15.11 点拨:由题意得a +b =6x 2-8kx +12-2(3x 2-2x +k )=6x 2-8kx +12-6x 2+4x -2k =(4-8k )x +12-2k =m ,所以4-8k =0,解得k =12,即m =12-2×12=11.三、16.解:(1)原式=135+(-2)-20=113.(2)原式=-16+16-1×16×6-54=-1-54=-94.17.解:原式=2ab 2-3a 2b +6a 2b -2ab 2-2=3a 2b -2.由(a +1)2+|b -2|=0,得a =-1,b =2, 则原式=3×(-1)2×2-2=6-2=4. 18.解:如图所示.(第18题)19.解:(1)-5-2+8-3+6-4+5+3=8(千米).答:这辆电动小汽车完成上述巡逻后在该派出所的东侧,距离该派出所8千米.(2)(|-5|+|-2|+|+8|+|-3|+|+6|+|-4|+|+5|+|+3|)×0.15=(5+2+8+3+6+4+5+3)×0.15=36×0.15=5.4(度). 答:这天下午电动小汽车共耗电5.4度.20.解:因为∠A =∠1,所以AC ∥GF ,所以∠C =∠G .又因为∠C =∠F ,所以∠F =∠G , 所以CG ∥EF ,所以∠CBD =∠FEH .因为BM 平分∠CBD ,EN 平分∠FEH ,所以∠2=12∠CBD ,∠3=12∠FEH ,所以∠2=∠3. 21.解:(1)F ,E(2)由题意得,A +D =B +F =C +E ,即a 3+15a 2b +3+⎣⎢⎡⎦⎥⎤-15(a 2b +15)=-12a 2b +a 3+F ,a 3+15a 2b +3+⎣⎢⎡⎦⎥⎤-15(a 2b +15)=a 3-1+E , 所以F =12a 2b ,E =1.22.解:(1)因为OE 平分∠AOC ,OF 平分∠BOD ,所以∠EOC =12∠AOC =55°,∠COF =12∠BOD =20°, 所以∠EOF =∠EOC +∠COF =75°.(2)因为OE 平分∠AOC ,OF 平分∠BOD ,∠AOC =110°,∠BOD =40°, 所以∠AOE =55°,∠BOF =20°, 所以∠AOE -∠BOF =35°.(3)不发生变化,由题意可得∠AOC =110°+3°t ,∠BOD =40°+3°t . 因为OE 平分∠AOC ,OF 平分∠BOD ,所以∠AOE =12(110°+3°t ),∠BOF =12(40°+3°t ), 所以∠AOE -∠BOF =12(110°+3°t )-12(40°+3°t )=35°, 所以在旋转过程中∠AOE -∠BOF 的值不会因t 的变化而变化. 23.解:(1)①如图,过点E 作EN ∥AB ,则∠ABE +∠BEN =180°.因为AB ∥CD ,AB ∥NE ,所以NE ∥CD , 所以∠CDE +∠NED =180°,所以∠ABE +∠CDE +∠BEN +∠NED =∠ABE +∠CDE +∠BED =360°. ②如图,过点F 作FG ∥AB ,则∠ABF =∠BFG .因为AB ∥CD ,FG ∥AB ,所以FG ∥CD ,所以∠CDF =∠GFD , 所以∠ABF +∠CDF =∠BFG +∠GFD =∠BFD . (2)∠E +6∠M =360°.理由:设∠ABM =x °,∠CDM =y °,则∠ABF =3x °,∠CDF =3y °,因为BF ,DF 分别平分∠ABE ,∠CDE ,所以∠ABE =2∠ABF =6x °,∠CDE =2∠CDF =6y °.由(1)知∠ABE +∠E +∠CDE =360°, 所以6x °+6y °+∠E =360°,又因为∠M +∠EBM +∠E +∠EDM =360°,所以6x °+6y °+∠E =∠M +(6x °-x °)+(6y °-y °)+∠E , 所以∠M =x °+y °,所以∠E +6∠M =360°. (3)∠M =360°-m °2n(第23题)七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元 2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a 2b +3ab 2-2b 3+a 3按a 的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m 2,则用科学记数法表示FAST 的反射面总面积约为____________m 2.(精确到万位)13.若|x +2|+(y -3)4=0,则x y =________. 14.如果规定符号“*”的意义是a *b =aba +b,则[2*(-3)]*(-1)的值为________. 15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a 的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝ ⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:售出套数7 6 7 8 2售价(元) +5 +1 0 -2 -5则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
2023—2024学年最新华东师大新版七年级上学期数学期末考试试卷(附参考答案)
最新华东师大新版七年级上学期数学期末考试试卷考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2、港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程总投资1269亿元,将1269亿用科学记数法表示,结果并精确到百亿约为()A.13×1010B.1.2×1011C.1.3×1011D.0.12×1012 3、如图是由5个大小相同的正方体组成的立体图形,其俯视图是()A.B.C.D.4、下列去括号正确的是()A.a﹣(b+c)=a﹣b+c B.a﹣(b﹣c)=a+b﹣cC.a﹣(b﹣c)=a﹣b﹣c D.a﹣(b+c)=a﹣b﹣c5、如图,下列各组条件中,能得到AB∥CD的是()A.∠1=∠3 B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°6、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OBC.射线OC D.射线OD7、a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣aC.﹣b<a<﹣a<b D.a<﹣b<﹣a<b8、如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.115°B.110°C.120°D.130°9、下列哪个图形是正方体的展开图()A.B.C.D.10、钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°11、当x=2时,整式ax3+bx﹣1的值等于﹣100,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.100B.﹣100C.98D.﹣9812、如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.4B.5C.6D.7二、填空题(每小题3分,满分18分13、比较大小:﹣﹣14、在数轴上点A表示数1,点B与点A相距3个单位,点B表示数是.15、若2a3b n+3与4a m﹣1b4的和是单项式,则﹣m+n=.16、若关于x、y的二次多项式﹣3x2+y3+nx2﹣4y+3的值与x的取值无关,则n=.17、如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.18、由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形个(用含n的代数式表示).最新华东师大新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计66分,解答题要有必要的文字说明)19、计算:.20、先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.21、有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b0,a+b0,c﹣a0;(2)化简:|c﹣b|+3|a+b|﹣|c﹣a|.22、某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+30、﹣25、﹣30、+28、﹣29、﹣16、﹣15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?23、如图,AD∥EF,∠1+∠2=180°.(1)求证:DG∥AB;(2)若DG是∠ADC的角平分线,∠ADB=120°,求∠B的度数.24、如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.25、对于一个四位自然数N,如果N满足各数位上的数字不全相同且均不为0,它的千位数字减去个位数字之差等于百位数字减去十位数字之差,那么称这个数N为“差同数”.对于一个“差同数”N,将它的千位和个位构成的两位数减去百位和十位构成的两位数所得差记为s,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t,规定:.例:N=7513,因为7﹣3=5﹣1,故:7513是一个“差同数”.所以:s=73﹣51=22,t=71﹣53=18,则:.(1)请判断4378是否是“差同数”.如果是,请求出F(N)的值;(2)若自然数P,Q都是“差同数”,其中P=1000x+10y+616,Q=100m+n+3042(1≤x≤9,0≤y≤8,1≤m≤9,0≤n≤7,x,y,m,n都是整数),规定:,当3F(P)﹣F(Q)能被11整除时,求k的最小值.26、如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图2,若过G点作GE∥AB交AD于E,连接CE,CE恰好平分∠BCD,∠1﹣∠2=20°求∠AGE的度数;(3)如图3,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.最新华东师大新版七年级上学期数学期末考试试卷(参考答案)13、>14、﹣2或415、﹣3 16、3 17、40°18、(3n﹣1)三、解答题19、.20、-821、解:(1)>、<、>(2)﹣2a﹣4b22、(1)减少了57吨(2)257吨(3)这7天要付(58a+115b)元装卸费23、解:(1)6 (2)5cm (3)BE的长是4或10cm24、解:(1)证明(略)(2)30°25、解:(1)(2)k的最小值为26、(1)证明(略)(2)65°(3)或5。
华东师大版七年级数学上册单元测试题全套(含答案)
华东师大版七年级数学上册单元测试题全套第1章章末检测卷一、选择题(每题3分,共30分)1.给出一列数:2,3,5,8,13,,34,里应填( )A.20 B.21 C.22 D.242.某学校的教学楼从每层楼到它的上一层楼都要经过20级台阶,则小明从一楼到五楼要经过的台阶数是( )A.100 B.80 C.50 D.1203.将一个长方形框架拉成一个平行四边形后,长方形与平行四边形相比( )A.周长相等,面积相等 B.周长相等,面积不等C.周长不等,面积不等 D.周长不等,面积相等4.如图所示的信息,以下结论正确的是( )A.六年级学生最少 B.八年级男生人数是女生人数的2倍C.七年级女生人数比男生多 D.七年级学生和九年级学生一样多(第4题)5.如图,是一座房子的平面图,这幅图是由( )组成的.(第5题)A.三角形、长方形 B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形 D.正方形、长方形、梯形6.正常人的体温一般在37 ℃左右,在一天中的不同时刻体温有所不同,如图反映的是某天24小时内小明的体温变化情况,下列说法不正确的是( )(第6题)A.清晨6时体温最低B.下午6时体温最高C.这一天中小明的体温T(℃)的变化范围是36.5≤T≤37.5D.从6时到24时,小明的体温一直是升高的7.小强拿了一张正方形的纸如图①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,打开这张纸后的形状应是( )(第7题)8.已知a、b是两个自然数,若a+b=10,则a×b的值最大为( )A.4 B.10 C.20 D.259.一根细长的绳子,沿中间对折,再沿对折后的中间对折,这样连续沿中间对折3次,用剪刀沿3次对折后的中间将绳子全部剪断,此时细绳被剪成( )段.A.7 B.8 C.9 D.1010.如图,圆圈内分别标有0,1,2,3,4,…,11这12个数.电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈.现在,一只电子跳蚤从标有数“0”的圆圈开始,按逆时针方向跳了2 016次后,落在一个圆圈中,该圆圈所标的数是( )(第10题)A.0 B.3 C.2 D.1二、填空题(每题3分,共30分)11.如图,按下列规律,空格内的数应是________.(第11题)12.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④把水烧开7分钟;⑤用烧开的水煮面条和菜3分钟.小敏要将面条煮好,最少需要________分钟.13.某中学为每个学生编号,设定末尾1表示男生,末尾2表示女生,如果用1506352表示“2015年入学的6班35号女同学”,那么2016年入学的7班21号男同学的编号是__.14.如图,这个图形周长是________.(第14题)15.小明测得他一周的体温并登记在下表中(单位:℃):星期一二三四五六日周平均体温体温36.7 37.0 37.3 36.9 37.1 36.6 36.916.聪聪在公路上散步,从第1根电线杆处走到第12根电线杆处共用了22分钟,照这样的速度,当他走了40分钟时,他走到了第________根电线杆处(每相邻两根电线杆之间的距离相等).17.为了节省水资源,水利局鼓励节约用水,采用分段计费的方式计算水费:每月用水不超过10吨时,按每吨3元计算;每月用水超过10吨时,其中10吨仍按原标准收费,超过的部分按每吨5元计算.小李家9月份用水13吨,则应付水费________元.18.观察如图所示的图形:(第18题)它们是按一定规律排列的,依照此规律,第9个图形中共有________个★.19.要把面值为10元的人民币换成零钱,现有足够的面值为2元、1元的人民币,那么共有________种不同的换法.20.有一数值转换器,原理如图,若开始输入x的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,…,则第2 016次输出的结果是________.(第20题)三、解答题(21~25题每题8分,26,27题每题10分,共60分)21.一次电视演唱大赛,有5名评委参加评分,选手李芳的得分情况是:如果去掉一个最高分和一个最低分,平均分为9.58分;如果只去掉一个最高分,平均分为9.46分;如果只去掉一个最低分,平均分为9.66分;如果只保留最高分和最低分,去掉其他评委的打分,那么选手李芳的平均分是多少?22.观察下面的变形规律:11×2=1-12;12×3=12-13;13×4=13-14;…. 解答下面的问题: (1)若n 为正整数,请你猜想1n (n +1)=________;(2)计算:11×2+12×3+13×4+…+12 014×2 015.23.七年级有3名同学参加年级举行的乒乓球赛,每两名同学之间赛一场,一共需要比赛多少场?5名同学呢?24.琼斯夫人带着她的两个儿子在大街上路过一台泡泡糖出售机,大儿子说:“妈妈,我要泡泡糖.”小儿子说:“妈妈,我也要,我要和哥哥一样颜色的.”那台投币泡泡糖出售机几乎空了,里面只有2粒白色的,2粒红色的.于是琼斯夫人先投了1角的硬币(每粒泡泡糖1角钱),得到了1粒.请问:她最多还要投几次币就能满足儿子的要求.答案一、1.B 2.B3.B 点拨:将长方形框架拉成平行四边形后,各边的长度不变,所以周长不变,但高变小了,所以面积也变小了.4.B 点拨:从图中我们不难得到如下信息:年级女生人数男生人数总数六年级18 13 31七年级14 16 30八年级10 20 30九年级14 18 325.C6.D 点拨:观察题图可知,清晨6时体温最低;18时体温最高;这一天中小明的体温T(℃)的变化范围是36.5≤T≤37.5;从6时到18时,小明的体温是升高的,故D错误.7.D 点拨:解决此题最好的方法就是按照要求进行操作,根据操作的结果再选择答案.在学习数学时,折一折、剪一剪也是探求结果的重要方法.8.D 点拨:既然a、b都为自然数,可知a×b共有以下几种情况:0×10=0;1×9=9;2×8=16;3×7=21;4×6=24;5×5=25.因而选D.在求解过程中,首先要明确a,b为两个自然数,当和一定,且a与b相等时,其积最大.9.C10.A 点拨:电子跳蚤按逆时针方向跳动,2 016÷12=168,所以电子跳蚤跳2 016次后落在初始位置.二、11.69 12.12 13.1 607 211 14.36 15.36.716.21 点拨:从第1根电线杆到第12根电线杆,中间有12-1=11(个)间隔,走一个间隔需要22÷11=2(分钟),而当他走了40分钟时,走了40÷2=20(个)间隔,所以走到了第20+1=21(根)电线杆处.17.4518.20 点拨:每个图形中最下面两行的五角星都是4个,上面的五角星是对称的,并且每一个分支上的五角星个数都比序号数少1,所以第n个图形中五角星的个数为4+2(n-1)=2n+2,当n=9时,结果是20.19.6 点拨:如下表:2元人民币1元人民币0 101 82 63 44 25 020.2 1,第五次输出的结果为4,第六次输出的结果为2,…,从中得到除第一次外,后面是4,2,1的循环变化,(2 016-1)÷3=671……2,所以第2 016次输出的结果是2.三、21.解:最高分为:9.66×4-9.58×3=9.90(分);最低分为9.46×4-9.58×3=9.10(分),所以只保留最高分和最低分,去掉其他评委的打分,选手李芳的平均分是9.90+9.102=9.50(分).22.解:(1)1n -1n +1(2)原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫12 014-12 015=1-12 015=2 0142 015.23.解:因为每两名同学之间赛一场,所以用画图的方法在两点间连一条线,连线的条数即为比赛的场数.如图①、图②所示.(第23题)所以3名同学需比赛3场;5名同学需比赛10场.24.解:假设第一次投币得到的泡泡糖为红色(或白色)的,而第二次投币则可能得到白色(或红色)的泡泡糖,因而不能满足儿子的要求,当第三次投币时,无论得到的泡泡糖的颜色是红色还是白色都能满足要求,因此她最多还要投两次币就能满足儿子的要求.第2章章末检测卷一.选择题(共10小题,每题3分)1.如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( ) A .0mB .0.5mC .﹣0.8mD .﹣0.5m2.下面各数是负数的是( ) A .0B .﹣2013C .|﹣2013|D .3.将一刻度尺如图放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <134.在2,﹣2,8,6这四个数中,互为相反数的是( ) A .﹣2与2B .2与8C .﹣2与6D .6与85.|﹣2013|等于()A.﹣2013 B.2013 C.1 D.06.已知a为实数,则下列四个数中一定为非负实数的是()A. a B.﹣a C. |﹣a| D.﹣|﹣a|7.若|m﹣1|+|n﹣3|=0,则(m﹣n)3的值为()A. 6 B.﹣6 C. 8 D.﹣88.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()A.B.﹣C. 6 D.﹣69.在0,2,﹣2,这四个数中,最大的数是()A. 2 B. 0 C.﹣2 D.10.式子|x﹣1|+2取最小值时,x等于()A. 0 B. 1 C. 2 D. 3二.填空题(共6小题,每题3分)11.若|a+1|+(b+1)2=0,则a2011+b2012= _________ .12.若|p+3|=0,则p= _________ .13.写出一个x的值,使|x﹣1|=x﹣1成立,你写出的x的值是_________ .14.﹣(﹣2012)= _________ .15.如图,数轴上的点A向左移动2个单位长度得到点B,则点B表示的数是_______ .16.某天最低气温是﹣5℃,最高气温比最低气温高8℃,则这天的最高气温是__ ℃.三.解答题(共10小题)17.(6分)某天长跑运动员小明在一条南北方向的公路上练习跑步(设向南为正方向).他从A地出发,每隔10分钟记录下自己的跑步情况:﹣1018米,1026米,﹣976米,1028米,﹣1024米,946米.1小时后他停下来休息,此时他在A地的什么方向,距A地多远?小明共跑了多少米?18.(6分)小华骑车从家出发,先向东骑行2km到A村,继续向东骑行3km到达B村,接着又向西骑行9km到达C村,最后回到家.试解答下列问题:(1)以家为原点,以向东方向为正方向,在下面给定的数轴上标上单位长度,并表示出家以及A、B、C三个村庄的位置;(2)C村离A村有多远?(3)小华一共行驶了多少千米?19.(6分)有理数a,b,c在数轴上的位置如图,且|a|=|b|,化简|c﹣a|+|c﹣b|+|a+b|.20.已知a、b、c在数轴上的位置如图,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|21.(6分)(1)已知|a﹣2|+|b+6|=0,则a+b= _________ .(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.22.(6分)已知|2﹣b|与|a﹣b+4|互为相反数,求ab﹣2007的值.23.(8分)如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?24.(8分)对数轴上的点P进行如下操作:先把点P表示的数乘以3,再把所得数对应的点向左平移1个单位,得到点P的对应点P′.(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B 的对应点分别为A′,B′.如图,若点A表示的数是1,则点A′表示的数是_________ ;若点B′表示的数是﹣4,则点A表示的数是_________ ;(2)若数轴上的点M经过上述操作后,位置不变,则点M表示的数是_________ .并在数轴上画出点M的位置.25.(10分)邮局职工小王需要把当天的报纸送到小丽、小华和小明的家,他从邮局出发,向东走了3千米到小丽的家,继续走了1.5千米到了小华的家,然后向西走了9.5千米到了小明家,最后回到邮局.(1)以邮局为原点,规定向东方向为正,用1个单位长度表示1千米,你能在数轴上表示出小丽、小华、小明家的位置吗?(2)小明家距小丽家多远?(3)该职工小王一共走了多远?26.(10分)王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?答案一、1. D 分析:因为水位升高0.8m时水位变化记作+0.8m,所以水位下降0.5m时水位变化记作﹣0.5m.故选D.2. B3.C 分析:依题意得:x﹣(﹣3.6)=15,x=11.4.故选C.4.A5.B 6.C7.D 分析:根据题意得,m﹣1=0,n﹣3=0,解得m=1,n=3,所以,(m﹣n)3=(1﹣3)3=﹣8.故选D.8.C 分析:因为|x﹣3|与|2y﹣3|互为相反数,所以|x﹣3|+|2y﹣3|=0,所以x﹣3=0,2y﹣3=0,解得x=3,y=,所以xy+x﹣y=3×+3﹣=4.5+3﹣1.5=6.故选C.9.A 分析:因为﹣2<0<<2,所以最大的数是2.故选A.10.B分析:因为|x﹣1|≥0,所以当|x﹣1|=0时,|x﹣1|+2取最小值,所以x﹣1=0,解得x=1.故选B.二、11.0分析:因为|a+1|+(b+1)2=0,所以a+1=0,a=﹣1,b+1=0,b=﹣1,所以a2011+b2011=(﹣1)2011+(﹣1)2012=﹣1+1=0,12.﹣3 13. 2 14. 2012 15. -1 16.3三、17.解:(﹣1018)+1026+(﹣976)+1028+(﹣1024)+946=﹣18(米);|﹣1018|+|1026|+|﹣976|+|1028|+|﹣1024|+|946|=6018(米).答:此时他在A地的向北方向,距A地18米;小明共跑了6018米.18.解:(1)如图;(2)C村离A村为:2+4=6(km)答:C村离A村有6km.(3)小华一共走了:2+3+9+4=18(km).19.解:由数轴,得b>c>0,a<0,又|a|=|b|,∴c﹣a>0,c﹣b<0,a+b=0.|c﹣a|+|c﹣b|+|a+b|=c﹣a+b﹣c=b﹣a.20.解:因为a、c在原点的左侧,a<﹣1,所以a<0,c<0,所以2a<0,a+c<0,因为0<b<1,所以1﹣b>0,因为a<﹣1,所以﹣a﹣b>0所以原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.21.解:(1)因为|a﹣2|+|b+6|=0,所以a﹣2=0,b+6=0,所以a=2,b=﹣6,所以a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.22.解:由题意,得|2﹣b|+|a﹣b+4|=0;则有,解得;因此ab﹣2007=﹣2011.23.解:(1)将点B向左平移3个单位后,三个点所表示的数B最小,是﹣2﹣3=﹣5;(4分)(2)有两种移动方法:①A不动,B右移6个单位;②B不动,A右移6个单位;(8分)(3)有三种移动方法:①A不动,把B左移2个单位,C左移7个单位;②B不动,把A右移2个单位,C左移5个单位③C不动,把A右移7个单位,B右移5个单位(12分)24.解:(1)点A'表示的数是:1×3﹣1=2;设点B表示的数为x,则3x﹣1=﹣4,解得x=﹣1,则若点B'表示的数是:﹣4,则点A表示的数是﹣1;(2)设点M表示的数为y,则3y﹣1=y,解得y=,即点M表示的数是:,在数轴上画出点M的位置如图..25.解:(1)如图.(2)3﹣(﹣5)=8(千米); (3)3+1.5+9.5+5=15(千米). 26. 解:如图.(1)书店距花店35米; (2)公交车站牌在书店的东边10米处;(3)王老师所走的总路程:110+|﹣75|+|﹣50|+25=260(米), 260÷26=10(分钟), 10+4×10=50(分钟).答:王老师从书店购书一直到公交车站一共用了50分钟.第3章章末检测卷一、选择题(每小题3分,共30分) 1.计算3a 2-a 2的结果是( ) A .4a 2B .3a2C .2a 2D .32.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A .(4m +7n )元 B .28mn 元 C .(7m +4n )元 D .11mn 元 3.在代数式12x +12y ,5a ,12x 2-3x +52,1,b ,abc ,-4y ,c -d cd 中有( )A .5个单项式,3个多项式B .4个单项式,2个多项式C .6个单项式,2个多项式D .7个单项式,2个多项式 4.下列各组式子中不是同类项的是( )A .2x 2y 与-35yx 2B .-ab 2c 与3×102ab 2cC.13m 2n 与15n 2m D .4xyz 与-12yxz 5.下列说法中正确的是( ) A .-xy 25的系数是-5 B .单项式x 的系数为1,次数为0C .xy +x -1是二次三项式D .-22xyz 2的次数是6 6.下列各式计算正确的是( ) A .3x +x =3x 2B .-2a +5b =3abC .4m 2n +2mn 2=6mn D .3ab 2-5b 2a =-2ab 27.已知-4x a y +x 2y b =-3x 2y ,则a +b 的值为( ) A .1 B .2 C .3 D .48.一个多项式减去x 2-2y 2等于x 2+y 2,则这个多项式是( ) A .2x 2-y 2B .-2x 2+y2C .x 2-2y 2D .-x 2+2y 29.已知a 2+3a =1,那么代数式2a 2+6a -1的值是( ) A .0 B .1 C .2 D .310.如图,下面是按照一定规律画出的“树形图”,经观察可以发现,图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个 二、填空题(每小题3分,共18分)11.式子2x -1,0,s =12ab ,x <y ,a -b x ,7ab ,5t 中是代数式的是________________________.12.多项式a 3-3ab 2+3a 2b -b 3是______次______项式,按字母b 降幂排列得__________. 13.一个关于字母x 的二次三项式的二次项系数和常数项都是1,一次项系数是-34,则这个二次三项式为____________.14.下面是一个简单的数值运算程序,当首先输入a =-2时,计算出正数为止,那么输出的结果是________.15.若2x -3y -1=0,则5-4x +6y 的值为________.16.观察下列单项式:3a 2,5a 5,7a 10,9a 17,11a 26,…它们是按一定规律排列的,那么这列式子的第n 个单项式是____________.三、解答题(共72分) 17.(12分)化简:(1)4(x 2+xy -6)-3(2x 2-xy ); (2)a 2-ab +2ab -b 2-2(a 2+b 2).18.(8分)化简求值:12a -2⎝ ⎛⎭⎪⎫a -13b 2-⎝ ⎛⎭⎪⎫32a -13b 2,其中a =-2,b =23.19.(10分)如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为r 米,广场的长为a 米,宽为b 米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留π).20.(10分)若代数式4x 2-mx -3y +4-(8nx 2-x +2y -3)的值与字母x 的取值无关,求代数式-m 2+2mn -n 2-2(mn -3m 2)+3(2n 2-mn )的值.21.(10分)某超市进了一批优质水果,出售时在进价(进货的价格)的基础上加上一定的利润,其数量x 与售价y 的关系如下表:数量x (kg)12 3 4 5 … 售价y (元) 4+0.58+1.012+1.516+2.020+2.5…(2)王阿姨想买这种水果6kg ,她应付款多少元?22.(10分)我国出租车收费标准因地而异.甲市为:起步价6元,3千米后每千米收费1.5元,乙市为:起步价10元,3千米后每千米收费1.2元.(1)试问在甲、乙两市乘坐出租车s (s >3)千米的价差是多少元?(2)如果在甲、乙两市乘坐出租车的路程都为10千米,那么哪个市的收费标准高些?高多少?23.(12分)如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm. (1)4节链条长________cm ; (2)n 节链条长____________cm ;(3)如果一辆22型自行车的链条由50节这样的链条组成,那么这辆自行车上链条总长度是多少?参考答案与解析1.C 2.A 3.B 4.C 5.C 6.D 7.C 8.A 9.B 10.C 11.2x -1,0,a -b x ,7ab ,5t12.三 四 -b 3-3ab 2+3a 2b +a 313.x 2-34x +1 14.2 15.3 16.(2n +1)an 2+117.解:(1)原式=-2x 2+7xy -24;(6分) (2)原式=-a 2+ab -3b 2.(12分)18.解:原式=-3a +b 2,(5分)把a =-2,b =23代入,得原式=649.(8分)19.解:(1)广场空地的面积为(ab -πr 2)平方米;(5分)(2)当a =500,b =200,r =20时,代入(1)得到的式子,得500×200-π×202=100000-400π(平方米).(9分)答:广场空地的面积为(100000-400π)平方米.(10分)20.解:4x 2-mx -3y +4-(8nx 2-x +2y -3)=4x 2-mx -3y +4-8nx 2+x -2y +3=(4-8n )x2+(1-m )x -5y +7.(4分)由题意可知4-8n =0,1-m =0,所以m =1,n =12.(6分)所以原式=-m 2+2mn -n 2-2mn +6m 2+6n 2-3mn =5m 2+5n 2-3mn =194.(10分)21.解:(1)售价y 与商品数量x 之间的关系式为y =(4+0.5)x =4.5x ;(5分) (2)当x =6时,y =4.5×6=27(元). 答:她应付款27元.(10分)22.解:(1)在甲市乘坐出租车s (s >3)千米收费为:6+1.5(s -3)=1.5s +1.5(元);在乙市乘坐出租车s (s >3)千米收费为:10+1.2(s -3)=1.2s +6.4(元),(3分)故在甲、乙两市乘坐出租车s (s >3)千米的价差是1.5s +1.5-(1.2s +6.4)=0.3s -4.9(元);(5分)(2)当s =10时,0.3s -4.9=3-4.9=-1.9(元).所以乙市的收费标准高些,高1.9元.(10分)23.解:(1)7.6(4分) 解析:因为根据图形可得出: 2节链条的长度为:(2.5×2-0.8)cm , 3节链条的长度为:(2.5×3-0.8×2)cm, 4节链条的长度为:2.5×4-0.8×3=7.6(cm), 故答案为7.6;(2)(1.7n +0.8)(8分) 解析:由(1)可得n 节链条长为:2.5n -0.8(n -1)=1.7n +0.8(cm),故答案为(1.7n +0.8);(3)因为自行车上的链条为环形,在展直的基础上还要缩短0.8cm ,故这辆自行车链条的总长为1.7×50=85(厘米).(12分)第4章 章末检测卷一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( ) A .圆柱体 B .球体 C .圆D .圆锥体2.在如图的图形中,属于棱柱的有( )A .2个B .3个C .4个D .5个3.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )4.下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图( )5.如图,OC 平分∠AOB ,OD 平分∠AOC ,∠AOD =35°,则∠AOB 为( ) A .80°B .100°C .120°D .140°6.一个立体图形的三视图如图,请你根据图中给出的数据求出这个立体图形的表面积为( )A .6πB .8πC .10πD .12π7.若∠α和∠β互为余角,∠α和∠γ互为补角,∠β与∠γ的和等于周角的13,则∠α,∠β,∠γ这三个角分别是( )A .75°,15°,105°B .60°,30°,120°C .50°,40°,130°D .70°,20°,110°8.两根木条,一根长20cm ,一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A .2cmB .4cmC .2cm 或22cmD .4cm 或44cm9.如图,某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转14圆周,则结果指针的指向是( )A.南偏东50°方向 B.北偏西40°方向C.南偏东40°方向 D.东南方向10.图中是左面正方体的展开图的是( )二、填空题(每小题3分,共18分)11.如图,小明到小颖家有四条路,小明想尽快到小颖家,他应该走第________条路,其中的道理是____________________.第11题图第15题图12.3.76°=______°______′______″.13.已知∠A与∠B互余,若∠A=20°15′,则∠B的度数为________.14.从多边形的一个顶点出发,连接这个点和其他顶点,把多边形分割成16个三角形,则这个多边形的边数是________.15.如图是一个正方体的展开图,在a,b,c处填上一个适当的数,使得正方体相对的面上的两数互为相反数,则cab的值为________.16.如图是由几块相同的小正方体搭成的立体图形的三视图,则这个立体图形中小正方体共有________块.三、解答题(共72分)17.(12分)计算:(1)153°19′42″-26°40′28″;(2)90°3″-57°21′44″;(3)33°15′16″×5;(4)175°16′30″-47°30′÷6.18.(8分)5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是____________(立方单位),表面积是____________(平方单位); (2)分别画出这个几何体的主视图和左视图.19.(10分)一艘客轮沿东北方向OC 行驶,在海上O 处发现灯塔A 在北偏西30°方向上,灯塔B 在南偏东60°的方向上.(1)在图中画出射线OA ,OB ,OC ;(2)求∠AOC 与∠BOC 的度数,你发现了什么?20.(10分)如图,AD =12DB ,E 是BC 的中点,BE =15AC =2cm ,求线段DE 的长.21.(10分)如图,OE 为∠COA 的平分线,∠AOE =60°,∠AOB =∠COD =16°. (1)求∠BOC 的度数;(2)比较∠AOC 与∠BOD 的大小.22.(10分)小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方体的表面积.23.(12分)如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=________cm.②求线段CD的长度;(2)用含t的代数式表示运动过程中AB的长;(3)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.答案1.A 2.C 3.D 4.C 5.D 6.B 7.A 8.C 9.C 10.D 11.②两点之间,线段最短12.345 36 13.69°45′ 14.18 15.-71516.917.解:(1)原式=126°39′14″;(3分) (2)原式=32°38′19″;(6分) (3)原式=166°16′20″;(9分) (4)原式=167°21′30″.(12分) 18.解:(1)5 22(4分) (2)如图.(8分)19.解:(1)如图所示;(5分)(2)∠AOC =∠BOC =75°,(8分)发现OC 为∠AOB 的平分线.(10分)20.解:因为BE =15AC =2cm ,所以AC =10cm.(2分)因为E 是BC 的中点,所以BE =EC =2cm ,BC =2BE =2×2=4(cm),(4分)则AB =AC -BC =10-4=6(cm).(6分)又因为AD =12DB ,所以AB =AD +DB =AD +2AD =3AD =6cm ,(8分)所以AD =2cm ,DB =4cm ,所以DE =DB +BE =4+2=6(cm).(10分)21.解:(1)因为OE 平分∠AOC ,所以∠COA =2∠AOE =120°,(2分)所以∠BOC =∠AOC -∠AOB =120°-16°=104°;(5分)(2)因为∠BOD =∠BOC +∠COD =104°+16°=120°,所以∠AOC =∠BOD .(10分) 22.解:(1)多余一个正方形,如图所示:(5分)(2)表面积为52×2+8×5×4=50+160=210(cm)2.(10分) 23.解:(1)①4(2分)②因为AD =10cm ,AB =4cm ,所以BD =10-4=6(cm).因为C 是线段BD 的中点,所以CD =12BD=12×6=3(cm);(4分)(2)因为B 是线段AD 上一动点,沿A →D →A 以2cm/s 的速度往返运动,所以当0≤t ≤5时,AB=2t cm ;(6分)当5<t ≤10时,AB =10-(2t -10)=(20-2t )cm ;(8分)(3)不变.(10分)因为AB 的中点为E ,C 是线段BD 的中点,所以EC =12(AB +BD )=12AD =12×10=5(cm).(12分)第5章 章末检测卷一、选择题(每小题3分,共30分)1.下列各图,∠1与∠2是对顶角的是( )2.如图,直线AB ,CD 被直线EF 所截,若AB ∥CD ,∠1=100°,则∠2的大小是( ) A .10° B.50° C.80° D.100°第2题图 第3题图3.如图,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,已知OE ⊥AB ,∠BOD =45°,则∠COE 的度数是( )A .125° B.135° C.145° D.155°4.下列选项中,过点P 画AB 的垂线CD ,三角板放法正确的是( )5.如图,下列说法错误的是( )A .∠2和∠3是同旁内角B .∠A 和∠3是内错角C .∠1和∠3是内错角D .∠C 和∠3是同位角第5题图 第6题图6.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( ) A .122° B.151° C.116° D.97°7.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( )A.1个 B.2个 C.3个 D.4个第7题图第8题图8.如图,直线a,b,c,d,c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2等于( )A.60° B.50° C.40° D.30°9.如图,把长方形ABCD沿直线EF折叠,若∠1=20°,则∠2等于( )A.80° B.70° C.40° D.20°第9题图第10题图10.如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.如果∠ABC =135°,∠BCD=65°,则∠CDE的度数应为( )A.135° B.115° C.110° D.105°二、填空题(每小题3分,共18分)11.如图,从书店到公路最近的是________号路线,数学道理是____________.第11题图第12题图12.如图,已知点O在直线AB上,OC⊥OD,若∠1=37°,∠2=________.13.a,b,c为同一平面内的三条直线,已知a⊥b,a∥c,则直线b与c的位置关系为.14.如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=65°,则∠1的度数等于________.第14题图第15题图第16题图15.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A =________.16.如图,a∥b∥c,∠1=105°,∠2=140°,则∠α=________.三、解答题(共72分)17.(8分)如图,直线AB,CD相交于点O,OE平分∠BOD,OE⊥OF,∠DOF=70°,求∠AOC的度数.18.(10分)如图,在三角形ABC中,DE∥AC,DF∥AB.试问:∠A+∠B+∠C=180°这个结论成立吗?若成立,试写出推理过程;若不成立,请说明理由.19.(10分)如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.完善下面的解答过程,并填写理由或数学式.解:因为∠3=∠4(已知),所以AE∥________(____________________________),所以∠EDC=∠5(____________________________).因为∠5=∠A(已知),所以∠EDC=________(________________________),所以DC∥AB(____________________________),所以∠5+∠ABC=180°(____________________________),即∠5+∠2+∠3=180°.因为∠1=∠2(已知),所以∠5+∠1+∠3=180°(________________________),即∠BCF+∠3=180°.所以BE∥________(________________________).20.(10分)如图,潜望镜的两个镜片都是与水平面成45°角放置的,光线水平射入,经镜子反射时,∠1=∠5,∠2=∠6.求证:a∥b.21.(10分)如图,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G,若∠EFG=50°,求∠1,∠2的度数.22.(10分)如图,已知l1∥l2,AB⊥l1,∠ABC=130°,求∠1的度数.23.(14分)已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)如图①,当∠A=20°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E,F两点),∠A,∠APC与∠C之间有怎样的数量关系?试说明你的结论;(3)如图③,当点P在线段EF的延长线上运动时,(2)中的结论还成立吗?如果成立,请说明理由;如果不成立,试探究它们之间新的数量关系并加以说明.答案1.C 2.C 3.B 4.C 5.B 6.B 7.B 8.B 9.B 10.C 11.①垂线段最短12.53°13.b⊥c14.25°15.54°16.65°17.解:因为OE⊥OF,所以∠EOF=90°.(2分)因为∠DOF=70°,所以∠DOE=∠EOF-∠DOF=20°.(4分)因为OE平分∠BOD,所以∠BOD=2∠DOE=40°.(6分)所以∠AOC=∠BOD=40°.(8分)18.解:∠A+∠B+∠C=180°这个结论成立.(2分)因为DE∥AC,所以∠C=∠BDE,∠CFD=∠EDF.(4分)因为DF∥AB,所以∠B=∠CDF,∠A=∠CFD,(6分)所以∠A=∠EDF.(8分)因为∠BDE+∠EDF+∠CDF=180°,所以∠A+∠B+∠C=180°.(10分)19.解:BC(1分) 内错角相等,两直线平行(2分) 两直线平行,内错角相等(3分) ∠A(4分) 等量代换(5分) 同位角相等,两直线平行(6分) 两直线平行,同旁内角互补(7分) 等量代换(8分) CF(9分) 同旁内角互补,两直线平行(10分)20.证明:由题意可知两镜片平行,因为∠1=∠5=45°,所以∠3=90°.(3分)同理可得∠4=90°,(6分)所以∠3=∠4,(8分)所以a∥b.(10分)21.解:因为AD∥BC,所以∠DEF=∠EFG.(2分)因为∠EFG=50°,所以∠DEF=50°.(4分)又因为∠DEF=∠D′EF,所以∠D′EF=50°,所以∠1=180°-50°-50°=80°.(6分)又因为AD∥BC,所以∠1+∠2=180°,(8分)所以∠2=180°-∠1=180°-80°=100°.(10分)22.解:如图,过点B向右作BD∥l1,(2分)则BD∥l2.(4分)因为BD∥l1,所以∠ABD=∠2=90°.(6分)又因为∠ABC=130°,所以∠DBC=130°-90°=40°.(8分)因为BD∥l2,所以∠1=∠DBC=40°.(10分)23.解:(1)过点P向左作PO∥AB,(1分)如图①.因为AB∥CD,所以AB∥PO∥CD.(2分)因为∠A=20°,所以∠APO=∠A=20°,∠C=∠CPO.(3分)因为∠APC=70°,所以∠C=∠CPO=∠APC-∠APO=70°-20°=50°;(4分) (2)∠A+∠C=∠APC.(5分)理由如下:过点P向左作PO∥AB,如图②.因为AB∥CD,所以AB∥PO∥CD,(7分)所以∠APO=∠A,∠C=∠CPO,所以∠APC=∠APO+∠CPO=∠A+∠C;(9分) (3)不成立,(10分)关系式是∠A-∠C=∠APC,(11分)理由如下:过点P向左作PO∥AB,如图③.因为AB∥CD,所以AB∥PO∥CD,(12分)所以∠APO=∠A,∠C=∠CPO,(13分)所以∠A-∠C=∠APO-∠CPO=∠APC,即∠A-∠C=∠APC.(14分)。
【华东师大版】七年级数学上期末试卷(带答案)(1)
一、选择题1.如图所示,OA是北偏东30°方向的一条射线,若∠AOB=90°,则OB的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°2.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°3.下列平面图形中不能围成正方体的是()A.B.C.D.4.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种5.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元6.有两支同样长的蜡烛,一支能点燃小时,另一支能点燃小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为()A.小时B.小时C.小时D.小时7.对于ax+b=0(a,b为常数),表述正确的是()A.当a≠0时,方程的解是x=b aB.当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.8.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 9.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2t 10.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .511.如果向右走5步记为+5,那么向左走3步记为( )A .+3B .-3C .+13D .-1312.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0二、填空题13.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n )个图有________个相同的小正方形.14.有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.15.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.16.(1)如果33x y -=,那么x =_________;(2)如果2m n =,那么3m =___________. 17.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.18.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.19.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.20.一个数的25是165-,则这个数是______. 三、解答题21.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.22.如图,A 、B 、C 三点在一条直线上,根据图形填空:(1)AC = + + ;(2)AB =AC ﹣ ;(3)DB+BC = ﹣AD(4)若AC =8cm ,D 是线段AC 中点,B 是线段DC 中点,求线段AB 的长.23.一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算?(2)如果这位商人想住一年,租哪家的房子划算?(3)这位商人住多长时间时,租两家的房子租金一样?24.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?25.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--26.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先求出∠COB =60°,再根据具体位置确定答案.【详解】如图,∵∠AOB =90°,∠AOC =30°,∴∠COB =60°,∴OB 的方位角是北偏西60°,故选:B ..【点睛】此题考查方位角,已知一个角求其余角,正确理解方位角的确定方法及表示方法是解题的关键.2.D解析:D【分析】考虑两种情形①当OC 在∠AOB 内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB 外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 3.C解析:C【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【详解】根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项不能围成正方体.故选C.【点睛】此题考查展开图折叠成几何体,解题关键在于掌握正方体展开图的11种形式即可. 4.C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.5.C解析:C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.6.C解析:C【解析】【分析】根据每小时两支蜡烛燃烧总长度的,再利用燃烧后其中的一支是另一支的一半,进而得出等式求出即可.【详解】设停电时间为x小时,根据题意可得:1−x=2×(1−x),解得:x=.答:停电时间为小时.故选C.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意列出方程.7.D解析:D【分析】ax+b=0(a,b为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A、当a≠0时,方程的解是x=-ba,故错误;B、当a=0,b≠0时,方程无解,故错误;C 、当a=0,b=0,方程有无数解,故错误;D 、以上都不正确.故选D .【点睛】此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.8.A解析:A【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.9.D解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.10.B解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.11.B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B.12.C解析:C【解析】从数轴可知m小于0,n大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.二、填空题13.n(n+1)【分析】通过观察可以发现每一个图形中正方形的个数等于图形序号乘以比序号大一的数根据此规律解答即可【详解】第(1)个图有2个相同的小正方形2=1×2第(2)个图有6个相同的小正方形6=2×解析:n(n+1)【分析】通过观察可以发现,每一个图形中正方形的个数等于图形序号乘以比序号大一的数,根据此规律解答即可.【详解】第(1)个图有2个相同的小正方形,2=1×2,第(2)个图有6个相同的小正方形,6=2×3,第(3)个图有12个相同的小正方形,12=3×4,第(4)个图有20个相同的小正方形,20=4×5,…,以此类推,第n个图应有n(n+1)个相同的小正方形.【点睛】本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累.14.【分析】先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比由于方木底面正方形与圆木底面圆面积相等故两比值之比即为结果【详解】正方形内作最大的圆:设圆的半径为r圆的面积与解析:28π【分析】先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比,由于方木底面正方形与圆木底面圆面积相等,故两比值之比即为结果. 【详解】正方形内作最大的圆:设圆的半径为r ,圆的面积与正方形的面积比是:2224r r r ππ=⨯圆内作最大的正方形:设圆的半径为R ,正方形的面积与圆的面积比是:222R R R ππ⨯=, 因为,方木与圆木的体积和高度都相等,说明底面积也相等,即图(1)的大正方形面积等于图(2)的大圆的面积,所以,现在的圆柱体积和长方体的体积的比值是:22:48πππ=; 答:圆柱体积和长方体的体积的比值为28π.故答案为:28π.【点睛】 本题以方木圆木的体积为背景,考查了正方形的内切圆,圆的内接正方形的面积问题,熟练的掌握以上关系是解题的关键.15.4【解析】8个班进行友谊赛也就是说每个班级要和其余7个班级比赛根据总比赛场数为7设赢了x 场则3x+(7-x)=15解得x=4故答案为:4解析:4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x +(7-x )=15,解得x =4,故答案为:4.16.-y 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到【详解】(1)∵−3x =3y ∴x =−y ;故答案为:−y ;(2)∵∴;故答案解析:-y23n 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到3m =23n . 【详解】(1)∵−3x =3y ,∴x =−y ;故答案为:−y ;(2)∵2m n =, ∴3m =23n ; 故答案为:23n 【点睛】 本题考查了等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.17.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.18.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值 解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 19.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm 即1cm 表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm 表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm ,即 1cm 表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm 表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.20.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法 【详解】(165)÷25=−8.故答案为−8.【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”三、解答题21.画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 22.(1)AD,DB,BC;(2)BC;(3)AC;(4)6cm.【分析】(1)根据图形直观的得到线段之间的关系;(2)根据图形直观的得到线段之间的关系;(3)根据图形直观的得到各线段之间的关系;(4)AD和CD的长度相等并且都等于AC的一半,DB的长度为CD长度的一半即为AC长度的四分之一.AB的长度等于AD加上DB,从而可求出AB的长度.【详解】(1)AC=AD+DB+BC故答案为:AD,DB,BC;(2)AB=AC﹣BC;故答案为:BC;(3)DB+BC=DC=AC﹣AD故答案为:AC;(4)∵D是AC的中点,AC=8时,AD=DC=4B是DC的中点,∴DB=2∴AB=AD+DB=4+2,=6(cm ).【点睛】本题重点是根据题干中的图形得出各线段之间的关系,在第四问中考查了线段中点的性质.线段的中点将线段分成两个长度相等的线段.23.(1)住半年时,租B 家的房子划算;(2)住一年时,租A 家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样.【分析】(1)分别根据A 、B 两家租金的缴费方式计算A 、B 两家半年的租金,然后比较即得答案;(2)分别根据A 、B 两家租金的缴费方式计算A 、B 两家一年的租金,然后比较即得答案;(3)根据A 家租金(2000+1200×租的月数)=B 家租金(1400×租的月数)设未知数列方程解答即可.【详解】解:(1)如果住半年,交给A 家的租金是1200620009200⨯+=(元),交给B 家的租金是140068400⨯=(元),因为9200>8400,所以住半年时,租B 家的房子划算.(2)如果住一年,交给A 家的租金是120012200016400⨯+=(元),交给B 家的租金是14001216800⨯=(元),因为16400<16800,所以住一年时,租A 家的房子划算.(3)设这位商人住x 个月时,租两家的房子租金一样,根据题意,得120020001400x x +=.解方程,得10x =.答:这位商人住10个月时,租两家的房子租金一样.【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A 、B 两家租金的缴费方式是解题的关键.24.大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人, 根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.25.(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯-=488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.26.15a【分析】设第一年的产量为a,以15%的速度增长,表示在m的基础上增长a的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.。
华师大七年级上数学各单元试卷及答案
第一章 走进数学世界略第二章 有理数单元测试题一.判断题:1.有理数可分为正有理数与负有理数 . () 2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数. () 3.两个有理数的差一定小于被减数. () 4.任何有理数的绝对值总是不小于它本身. ( )5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+ . ( )二.填空题:1.最小的正整数是 ,最大的负整数是 ,绝对值最小的数是 .2.绝对值等于2)4(-的数是 ,平方等于34的数是 ,立方等于28-的数是 .3.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 ,立方等于本身的数是 .4.已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是312,则b = . 5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为 . 6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数: .7.绝对值不大于10的所有负整数的和等于 ;绝对值小于2002的所有整数的积等于 .三.选择题:1.若a ≤0,则2++a a 等于 ( )A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdb a cd p 的值是 ( ). A .3 B .2 C .1 D .03.若01<<-a ,则2,1,a aa 的大小关系是 ( ). A .21a a a << B .21a a a<< C .a a a <<21 D .a a a 12<< 4.下列说法中正确的是 ( ).A. 若,0>+b a 则.0,0>>b aB. 若,0<+b a 则.0,0<<b aC. 若,a b a >+则.b b a >+D. 若b a =,则b a =或.0=+b a5.cc b b a a ++的值是 ( ) A .3± B .1±C .3±或1±D .3或16.设n 是正整数,则n )1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或2四.计算题1.[]24)3(2611--⨯--2.23.013.0)211653(1⨯⎥⎦⎤⎢⎣⎡+--÷3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-4.22320012003)21(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-五、2++b a 与4)12(-ab 互为相反数,求代数式++-+b a ab ab b a 33)(21的值.六、 a 是有理数,试比较2a a 与的大小.七.32-12=8×152-32=8×272-52=8×392-72=8×4……观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.第三章 整式的加减单元测试题(一)一、填空题:(每小题3分,共24分)1.代数式-7,x,-m,x 2y,2x y , -5ab 2c 3, 1y 中,单项式有______个,其中系数为1 的有_____.系数为-1的有_____,次数是1的有________.2.把4x 2y 3,-3x 2y 4,2x,-7y 3,5 这几个单项式按次数由高到低的顺序写出是_________.3.当5-│x+1│取得最大值时,x=_____,这时的最大值是_______.4.不改变2-xy+3x 2y-4xy 2的值,把前面两项放在前面带有“+”号的括号里, 后面两项放在前面带有“-”号的括号里,得_______.5.五个连续奇数中,中间的一个为2n+1,则这五个数的和是_________.6.某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0. 8元,以后每天收0.5元,那么一张光8.设M=3a 3-10a 2-5,N=-2a 3+5-10a,P=7-5a-2a 2,那么M+2n-3P=_________.M-3N+2P=_______.二、选择题:(每小题3分,共24分)9.下列判断中,正确的个数是( )①在等式x+8=8+x 中,x 可以是任何数;②在代数式18x +中,x 可以是任何数; ③代数式x+8的值一定大于8;④代数式x+8的相反数是x-8A.0个B.1个C.2个D.3个10.一种商品单价为a 元,先按原价提高5%,再按新价降低5%,得到单价b 元,则a 、b 的大小关系为( )A.a>bB.a=bC.a<bD.无法确定11.若x<y<z,则│x-y │+│y-z │+│z-x │的值为( )A.2x-2zB.0C.2x-2yD.2z-2x12.对于单项式-23x 2y 2z 的系数、次数说法正确的是( )A.系数为-2,次数为8B.系数为-8,次数为5C.系数为-23,次数为4D.系数为-2,次数为713.下列说法正确的有( )①-1999与2000是同类项 ②4a 2b 与-ba 2不是同类项③-5x 6与-6x 5是同类项 ④-3(a-b)2与(b-a)2可以看作同类项A.1个B.2个C.3个D.4个14.已知x 是两数,y 是一位数,那么把y 放在x 的左边所得的三位数是( )A.yxB.x+yC.10y+xD.100y+x15.如果m 是三次多项式,n 是三次多项式,则m+n 一定是( )A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的多项式16.若2ax 2-3b x+2=-4x 2-x+2对任何x 都成立,则a+b 的值为( ) A.-2 B.-1 C.0 D.1三、解答题:(共52分)17.如果单项式2a mx y 与235a nxy --是关于x 、y 的单项式,且它们是同类项. (1)求2002(722)a -的值. (2)若2a mx y 235a nxy --=0,且xy ≠0,求2003(25)m n -的值.(8分)18.先化简再求值(12分)(1)5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=11,26y-=-.(2)已知A=x2+4x-7,B=-12x2-3x+5,计算3A-2B.(3)已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值.(4)若3x2-x=1,求6x3+7x2-5x+1994的值.19.某同学做一道数学题,误将求“A-B”看成求“A+B”, 结果求出的答案是3x2-2x+5.已知A=4x2-3x-6,请正确求出A-B.(8分)20.探索规律(8分)(1)计算并观察下列每组算式:88____55____1212____,,79____46____1113____⨯=⨯=⨯=⎧⎧⎧⎨⎨⎨⨯=⨯=⨯=⎩⎩⎩(2)已知25×25=625,那么24×26=__________.(3)从以上的过程中,你发现了什么规律,你能用语言叙述这个规律吗?你能用代数式表示设这个规律吗?21. (8分)有理数a、b、c在数轴上对应点为A、B、C,其位置如图所示, 试去掉绝对值符号并合并同类项: │c│-│c+b│+│a-c│+│b+a│.22.某移动通讯公司开设了两种通讯业务:“全球通”使用者缴50元月租费, 然后每通话1分钟再付话费0.4元;“快捷通”不缴月租费,每通话1分钟,付话费0,6 元(本题的通话均指市内通话).若一个月内通话x分钟,两种方式的费用分别为y1 元和y2元.(8分)(1)用含x的代数式分别表示y1和y2,则y1=________,y2=________.第三章 整式的加减单元测试题(二)一、选择题(20分)1.下列说法中正确的是( ).A .单项式223x y -的系数是-2,次数是 2B .单项式a 的系数是0,次数也是0C .532ab c 的系数是1,次数是10D .单项式27a b -的系数是17-,次数是3 2.若单项式421m a b -+与272m m a b +-是同类项,则m 的值为( ).A .4B .2或-2C .2D .-23.计算(3a 2-2a +1)-(2a 2+3a -5)的结果是( ).A .a 2-5a +6B .7a 2-5a -4C .a 2+a -4D .a 2+a +64.当23,32a b ==时,代数式2[3(2)1]b a a --+的值为( ). A .269 B .1113 C .2123D .13 5.如果长方形周长为4a ,一边长为a +b,,则另一边长为( ).A .3a -bB .2a -2bC .a -bD .a -3b6.一个两位数,十位数字是a ,个位数字是b ,则这个两位数可表示为( ).A .abB .10a +bC .10b +aD .a +b7.观察右图给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为( ).( ).A .3n -2B .3n -1C .4n +1D .4n -38. 长方形的一边长为2a+b,另一边比它大a -b ,则周长为( )A.10a+2bB.5a+bC.7a+bD.10a -b9. 两个同类项的和是( )A.单项式B.多项式C.可能是单项式也可能是多项式D.以上都不对10、如果A 是3次多项式,B 也是3次多项式, 那么A +B 一定是( )(A )6次多项式。
华东师大版七年级上学期期末考试数学试卷含答案(共3套)
A.B.5C.-D.-52.计算|-|-的结果是()A.- B.C.-1D.17.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=∠AOB,则射线OC是∠AOB 华东师大版七年级上学期数学期末检测题时间:90分钟满分:120分一、选择题(每小题3分,共30分)1.5的倒数为()1155123311333.我市今年参加中考的人数约为42000人,将42000用科学记数法表示为()A.4.2×104B.0.42×105C.4.2×103D.42×1034.下列各式中,成立的是()A.a2+a2=2a4B.2a-a=1C.-5(a-b)=-5a+b D.a-b+c=a-(b-c)5.下列立体图形中,俯视图是正方形的是()6.数a,b在数轴上的位置如图所示,下列各式中正确的个数是()①a+b>0;②ab<0;③|a|+b<0;④a-b>0;⑤|a|=-a.A.1个B.2个C.3个D.4个,第6题图),第8题图)12的平分线;④连结两点之间的线段叫两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有()A.1个B.2个C.3个D.4个8.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n9.如图,直线a,b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°12.若- xy 3与 2x m -2y n +5 是同类项,则 n m =____. (1)(-1)2015-| - |× ×[22-(-4)2]; (2)-62÷2 ×(-1 )2+4-22×(- ).10.将一张长方形的纸对折(如图所示),得到一条折痕(图中的虚线),继续对折,每次折痕都保持平行,连 续对折三次后,可以得到 7 条折痕,那么 n 次对折可得到折痕的条数为( )A .2n -1B .2n -1C .2n +1D .2n +1二、填空题(每小题 3 分,共 24 分)11.在跳远测试中,合格的标准是 4.00 米,王凡跳出了 4.12 米,记作+0.12 米,李强跳出了 3.95 米,应记 作____.1 313.多项式 2xy 3-x 3y -1+3x 2y 2 是____次____项式,将它按 x 的降幂排列为____ .14.已知 m 2-m =6,则 1-2m 2+2m =____.15.如图,点 O 在直线 AB 上,OC 平分∠AOB ,∠MON =90°,则∠1 的余角是____,∠BOM 的补角是 ____.,第 15 题图) ,第 16 题图) ,第 18 题图)16.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是____.17.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多 10 人,两种都会 的有 7 人,设会弹古筝的有 m 人,则该班同学共有____人.(用含有 m 的代数式表示) 18.如图,已知 l 1∥l 2,若∠1 与∠2 互余,∠3=120°,则∠4=____. 三、解答题(共 66 分) 19.(10 分)计算:1 7 21 1 12 4 34 2 320.(8 分)由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方体中的数字表示该位置的小正方体的个数,请画出图中这个几何体的主视图与左视图.(5x 2-3y 2)-[(5x 2-2xy -y 2)-2(3y 2-xy)],其中 x =-2,y =- .21.(8 分)先化简,再求值:1222.(8 分)如图,直线 AB ,CD 相交于点 O ,OD 平分∠AOF ,OE ⊥CD 于点 O ,∠AOE =50°,求∠FOC 的度数.23.(10 分)两种移动电话计费方式如下:月租费本地通话费全球通 15 元/月 0.10 元/分神州行0.20 元/分(1)一个月内某用户在本地通话时间是 x 分钟,请你用含有 x 的式子分别写出两种计费方式下该用户应该支 付的费用;(2)若某用户一个月内本地通话时间是 5 个小时,你认为采用哪种计费方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,全球通收费为 30 元,请你帮助他解决一下.24.(10 分)如图,∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?25.(12分)(1)如图①,已知数轴上A,B两点分别表示-3,5,则AB=____.数轴上M,N两点分别表示数m,n,则MN=____.(2)如图②,E,F为线段AB的三等分点,P为直线AB上一动点(P不与E,F,A重合).在点P的运动过程中,PE,PF,PA有何数量关系?请写出结论并说明理由.A.B.5C.-D.-52.计算|-|-的结果是(A)A.- B.C.-1D.17.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=∠AOB,则射线OC是∠AOB参考答案一、选择题(每小题3分,共30分)1.5的倒数为(A)1155123311333.我市今年参加中考的人数约为42000人,将42000用科学记数法表示为(A)A.4.2×104B.0.42×105C.4.2×103D.42×1034.下列各式中,成立的是(D)A.a2+a2=2a4B.2a-a=1C.-5(a-b)=-5a+b D.a-b+c=a-(b-c)5.下列立体图形中,俯视图是正方形的是(A)6.数a,b在数轴上的位置如图所示,下列各式中正确的个数是(C)①a+b>0;②ab<0;③|a|+b<0;④a-b>0;⑤|a|=-a.A.1个B.2个C.3个D.4个,第6题图),第8题图)12的平分线;④连结两点之间的线段叫两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有(C)A.1个B.2个C.3个D.4个8.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是(C)A.m-n B.m+nC.2m-n D.2m+n9.如图,直线a,b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为(A)A.110°B.115°C.120°D.130°12.若-xy3与2x m-2y n+5是同类项,则n m=__-8__.(1)(-1)2015-|-|××[22-(-4)2];(2)-62÷2×(-1)2+4-22×(-).10.将一张长方形的纸对折(如图所示),得到一条折痕(图中的虚线),继续对折,每次折痕都保持平行,连续对折三次后,可以得到7条折痕,那么n次对折可得到折痕的条数为(A)A.2n-1B.2n-1C.2n+1D.2n+1二、填空题(每小题3分,共24分)11.在跳远测试中,合格的标准是4.00米,王凡跳出了4.12米,记作+0.12米,李强跳出了3.95米,应记作__-0.05米__.1313.多项式2xy3-x3y-1+3x2y2是__四__次__四__项式,将它按x的降幂排列为__-x3y+3x2y2+2xy3-1__.14.已知m2-m=6,则1-2m2+2m=__-11__.15.如图,点O在直线AB上,OC平分∠AOB,∠MON=90°,则∠1的余角是__∠2和∠4__,∠BOM 的补角是__∠1和∠3__.,第15题图),第16题图),第18题图) 16.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__左视图__.17.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人,设会弹古筝的有m人,则该班同学共有__(2m+3)__人.(用含有m的代数式表示)18.如图,已知l1∥l2,若∠1与∠2互余,∠3=120°,则∠4=__150°__.三、解答题(共66分)19.(10分)计算:1721112434232解:原式=9解:原式=-30320.(8分)由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方体中的数字表示该位置的小正方体的个数,请画出图中这个几何体的主视图与左视图.解:图略(5x2-3y2)-[(5x2-2xy-y2)-2(3y2-xy)],其中x=-2,y=-.21.(8分)先化简,再求值:121解:原式=4y2,当x=-2,y=-2时,原式=122.(8分)如图,直线AB,CD相交于点O,OD平分∠AOF,OE⊥CD于点O,∠AOE=50°,求∠FOC 的度数.解:∵OE⊥CD,∠AOE=50°,∴∠AOD=90°-∠AOE=40°,又∵OD平分∠AOF,∴∠DOF=∠AOD=40°,∴∠FOC=180°-∠DOF=140°23.(10分)两种移动电话计费方式如下:月租费本地通话费全球通15元/月0.10元/分神州行0.20元/分(1)一个月内某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用;(2)若某用户一个月内本地通话时间是5个小时,你认为采用哪种计费方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,全球通收费为30元,请你帮助他解决一下.解:(1)全球通:15+0.1x,神州行:0.2x(2)全球通:15+0.1×5×60=45元,神州行:0.2×5×60=60元;45<60,采用全球通比较划算(3)(30-15)÷0.1=150(分),即通话时间为150分钟时,全球通的收费为30元24.(10分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?解:(1)AE∥FC,理由:∵∠2+∠CDB=180°,又∠1+∠2=180°,∴∠1=∠CDB,∴AE∥FC (2)AD∥BC,理由:由(1)得AE∥FC,∴∠A+∠ADC=180°,又∠A=∠C,∴∠C+∠ADC=180°,∴AD∥BC(3)BC平分∠DBE,理由:由AB∥CF,得∠EBC=∠C,由AD∥BC得∠DBC=∠ADB,∠C=∠ADF,∵DA平分∠BDF,∴∠ADF=∠ADB,∴∠EBC=∠DBC,∴BC平分∠DBE25.(12分)(1)如图①,已知数轴上A,B两点分别表示-3,5,则AB=__5-(-3)=8__.数轴上M,N两点分别表示数m,n,则MN=__n-m__.(2)如图②,E,F为线段AB的三等分点,P为直线AB上一动点(P不与E,F,A重合).在点P的运动过程中,PE,PF,PA有何数量关系?请写出结论并说明理由.解:P在A左边,PE-PA=PF-PE,即2PE-PF=PA;P在AE上,PE+PA=PF-PE,即PF-2PE =PA;P在EF上,PE+PF=AP-PE,即2PE+PF=PA;P在FB上,PE-PF=AP-PE,即2PE-PF =PA;P在B右边,PE-PF=PA-PE,即2PE-PF=PAA.2017B.-2017C.1D.-华师大版七年级上学期数学期末检测卷一、选择题(每小题4分,共40分).1.-2017的绝对值是().1201720172.当x=3时,代数式10-2x的值是().A.1B.2C.3D.43.下面不是同类项的是().A.-2与12B.-2a2b与a2bC.2m与2nD.-x2y2与12x2y24.下列式子中计算正确的是().A.5x2y-5xy2=0B.5a2-2a2=3C.4x y2-xy2=3xy2D.2a+3b=5ab5.下列各数中,比-3大的数是().A.-πB.-3.1C.-4D.-26.下列物体中,主视图是圆的是().A B C D7.中国药学家屠呦呦发明的青蒿素为保护人类健康做出了重大贡献,荣获2015年诺贝尔生理学或医学奖,奖金约为3020000元人民币.将3020000用科学记数法表示为().A.3.02⨯104B.302⨯104C.3.02⨯106D.302⨯1068.如图,锯木板前,在木板两端固定两个点,用墨盒弹一根墨线然后再锯,这样做的数学道理是().A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线D.经过已知直线外一点,有且只有一条直线与已知直线平行319.(8 分)先化简,再求值: 3 x 2 y + 2 x y + 2 x 2 y - 2 x y - 5x 2 y ,其中 x = 1 , y = -1 .(9.下面图形中,射线 OP 是表示北偏东 60°方向的是().10.一组数据:2,1 ,3 , x , 7 , -9,…,满足“从第三个数起,若前两个数依次为 a 、 b ,则紧随其后的数就是 2a - b ”,例如这组数中的第三个数“3”是由“ 2 ⨯ 2 -1”得到,那么该组数据中的 x 为().A. -2B. -1C. 1D. 2二、填空题(每小题 4 分,共 24 分).11.在有理数 - 0.5 、-5、 5 3中,属于分数的共有 个.12.把多项式 9 - 2 x 2 + x 按字母 x 降幂排列是.13.若 ∠A = 50︒ ,则 ∠A 的补角为.14.在数轴上,点 A 表示的数是 5,若点 B 与 A 点之间距离是 8,则点 B 表示的数是.15. 如图,直线 a ∥ b ,将三角尺的直角顶点放在直线 b 上,若∠1=35°,则∠2=.16.观察下列数字:第 1 层1 2第 2 层4 5 6第 3 层9 10 11 12(第 15 题图)第 4 层 16 17 18 19 20… … … …在上述数字宝塔中,第 4 层的第二个数是 17,请问 2510 为第层第 个数.三、解答题(共 86 分).17.(8 分)计算: 5×(-2)+(-8)÷(-2)18.(8 分)计算: - 32+ (7 - 9) ÷45) (): 20.(8 分)如图,已知 A 、B 、C 、D 是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.①画线段 AB ;②画直线 AC ;③过点 B 画 AD 的平行线 BE ;④过点 D 画 AC 的垂线,垂足为 F .A BDC21.(8 分)如图,点 B 是线段 AC 上一点,且 AB = 20 , BC = 8 .(1)试求出线段 AC 的长;(2)如果点 O 是线段 AC 的中点.请求线段 O B 的长.22.(10 分)根据解答过程填空(写出推理理由或根据):如图,已知∠DAF=∠F,∠B=∠D,试说明 AB ∥DC证明∵∠DAF=∠F( 已知 )∴ AD ∥ BF ()∴∠D=∠DCF()∵∠B=∠D()∴∠=∠DCF ( 等量代换 )∴AB∥DC()23.(10 分)某水泥仓库一周 7 天内进出水泥的吨数如下(“+”表示进库,“-”表示出库) +30、-25、-30、+28、-29、-16、-15、(1)经过这 7 天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这 7 天,仓库管理员结算发现库里还存 200 吨水泥,那么 7 天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨 a 元、出仓库的水泥装卸费是每吨 b 元,求这 7 天要付多少元装卸费?...........24.(12 分)下列是某初一数学兴趣小组探究三角形内角和的过程,请根据他们的探究过程,结合所学知识,解答下列问题.兴趣小组将图 △1 ABC 三个内角剪拼成图 △2,由此得 ABC 三个内角的和为 180 度.(1)请利用图 3 证明上述结论.(2)三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图 4,点 D 为 BC 延长线上一点,则∠ACD 为△ABC 的一个外角.①请探究出∠ACD 与∠A 、∠B 的关系,并直接填空:∠ACD=.②如图 5 是一个五角星,请利用上述结论求∠A+∠B +∠C +∠D +∠E 的值.25.(14 分)我们知道:对边平行且相等,四个角都是直角的四边形是长方形.你可以利用这一结论解答问题.(1)如图 1 是某直三棱柱的表面展开图.①请指出图中哪三个字母表示多面体的同一点;②如果沿 BC 、GH 将其表面展开图剪成三块,恰好拼成一个长方形,那么△BMC 应满足什么条件?(直接写出所有满足条件,不必说明理由)(2)将图 2 中边长都是 20cm 的等边三角形纸片剪拼成一个底面是等边三角形的直三棱柱模型,使它的表面积与原等边三角形的面积相等;请按要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据).参考答案一、选择题(每小题4分,共40分)1.A;2.D;3.C;4.C;5.D;6.C;7.C;8.A;9.C;10.B.二、填空题(每小题4分,共24分)11.2;12.-2x2+x+9;13.130°;14.-3或13;(每对一个得两分)15.55°;16.50、11.三、解答题17.(本题8分)解:原式=-10+4…………………………………6分(化简正确每个2分)=-6……………………………………………………………8分18.(本题8分)解:原式=-9+(-2)3⨯54………………………4分(化简正确每个2分)=-9+(-8)⨯54…………………………………………6分=-9+(-10)…………………………………………………7分=-19………………………………………………………8分19.(本题8分)解:原式=3x2y+6xy+2x2y-4xy-5x2y……4分(化简正确每个2分)=2x y………………………………………………………5分当x=1,y=-1时,原式=2⨯1⨯(-1)…………………………………7分=-2…………8分(没化简直接代入求值且答案正确得3分)20.(本题8分)每画对一条得2分(点E、点F没标注各扣1分)21.(本题8分)解:(1)∵AC=AB+BC………………………………………2分又∵AB=20,BC=8∴AC=20+8………………………………………………3分[]= 28………………………………………………4 分(2)∵ O 是 AC 的中点,∴ CO = 1AC ……………………………………………5 分2= 14……………………………………………6 分BM ∴ OB = CO - BC ………………………………………7 分= 14 - 8A1 C2D= 6 ……………………………………………8 分22.(本题 10 分)证明:∵∠DAF=∠F( 已知 )∴ AD ∥ BF (内错角相等,两直线平行 )…………2 分∴∠D=∠DCF( 两直线平行, 内错角相等 )………4 分∵∠B=∠D( 已知) ………………………………6 分∴∠ B =∠DCF( 等量代换 ) ………………………8 分∴AB∥DC (同位角相等,两直线平行 ).……………10 分23.(本题 10 分)解:(1)∵+30-25-30+28-29-16-15=-57………………………2 分∴ 经过这 7 天,仓库里的水泥减少了 57 吨 ……………………3 分(2)∵200+57=257 ………………………………………………4 分∴那么 7 天前,仓库里存有水泥 257 吨 ……………………6 分(3)依题意:进库的装卸费为: [(+ 30)+ (+ 28)]a = 58a ;… …………………………7 分出库的装卸费为: - 25 + - 30 + - 29 + -16 + -15 b = 115b … ………8 分∴ 这 7 天要付多少元装卸费 58a + 115b …10 分(直接列式求得答案且正确不扣分)24.(本题 12 分)证明 (1)过点 C 作 CM // AB ……………………………………1 分C M // AB (已作)∴ ∠A = ∠2 (两直线平行,同位角相等)…………2 分∠B = ∠1(两直线平行,内错角相等) ……………3 分∠BCA + ∠1 + ∠2 = 180 0 ………………………4 分∴ ∠BCA + ∠A + ∠B = 180 0 ………………………5 分∴(2)① ∠A+∠B, …………………………………8 分o ,②对于△BDN, ∠MNA=∠B+∠D, ……………9 分对于△CEM , ∠NMA=∠C+∠E, …………10 分对于△ANM , ∠A+∠MNA+∠NMA=180 ,……11 分∴∠A+∠B +∠D+∠C +∠E=180 o ……………………12 分25.(本题 14 分)解:(1)点 A 、M 、D 三个字母表示多面体的同一点.……………3 分(2△) BMC 应满足的条件是:a 、∠BMC=90°,且 BM=DH ,或 CM=DH ;………………5 分b 、∠MBC=90°,且 BM=DH ,或 BC=DH ; ……………7 分c 、∠BCM=90°,且 BC=DH ,或 CM=DH ; ………………9 分(3)如上图,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可.A.2和-2B.-2和C.-2和-D.-和2华师大版七年级上学期数学期末检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各组数中,互为倒数是的()1112222.下列各图中,∠1与∠2互为余角的是()3.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.-2xy2B.3x2C.2xy3D.2x34.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.90°B.100°C.105°D.120°,第4题图),第7题图),第8题图)5.计算8+6÷(-2)的结果是()A.-7B.-5C.5D.76.今年元旦,某风景区的最低气温为-5℃,最高气温为10℃,则这个风景区今年元旦的最高气温比最低气温高()A.-15℃B.15℃C.5℃D.-5℃7.如图所示,该几何体的俯视图是()8.如图,点A,B,C顺次在直线上l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12B.BC=4C.AM=5D.CN=29.在某月的日历上用矩形圈到a,b,c,d四个数(如图),如果d=18,那么a+b+c=()A.38B.40C.48D.58,第9题图),第10题图) 10.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个12.计算:-3.5+|- |-(-2)=___.(1)-1.5+1.4-(-3.6)-1.4+(-5.2);(2)-14-[2-(-3)2]÷( )3.二、填空题(每小题 3 分,共 24 分)11.若+10 万元表示盈余 10 万元,那么亏损 3 万元表示为____.5213.已知∠A 与∠B 互余,若∠A =20°15′,则∠B 的度数为____. 14.化简:(2xy +3x 2y)-3(2x 2y -xy 2)=__ _.15.一个多边形有 8 条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到____个三角形. 16.如图,∠AOC =150°,则射线 OA 的方向是____ .,第 16 题图),第 17 题图) ,第 18 题图)17.将一副学生用三角板按如图所示方式放置,若 AE ∥BC ,则∠AFD 的度数是____.18.(2016· 河南模拟)如图是钢琴键盘的一部分,若从 4 开始,依次弹出 4,5,6,7,1,4,5,6,7,1,…,按照上述规律弹到第 2016 个音符是___.三、解答题(共 66 分) 19.(6 分)计算:1 220.(6 分)一只小虫从某点 P 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,-3,+10,-8,-6,+12,-10.(1)通过计算说明小虫是否回到起点 P ;(2)如果小虫爬行的速度为 0.5 厘米/秒,那么小虫共爬行了多长时间.(1)当 a =- ,b =4 时,求 A -2B 的值;21.(6 分)如图已知 AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°.请完善说明过程,并在括号内填上相应依据.22.(8 分)先化简再求值:(1)5(3a 2b -ab 2)-4(-ab 2+3a 2b),其中 a =-1,b =2;(2)x +2(3y 2-2x)-4(2x -y 2),其中|x -2|+(y +1)2=0.23.(8 分)如图所示,l 1,l 2,l 3 交于点 O ,∠1=∠2,∠3∶∠1=8∶1,求∠4 的度数.24.(10 分)已知多项式 A =2a 2+ab -2a -1,B =a 2+ab -1.12(2)若多项式 C 满足:C =A -2B -C ,试用 a ,b 的代数式表示 C.25.(10分)如图,请按照要求回答问题:(1)数轴上的点C表示的数是____;线段AB的中点D表示的数是____;(2)线段AB的中点D与线段BC的中点E的距离DE等于多少?(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,判断BC 能否平分∠MBN,并说明理由.26.(12分)AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ABC=n°,∠ADC=80°.(1)若点B在点A的左侧,求∠BED的度数;(用含n的代数式表示)(2)将(1)中线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.A.2和-2B.-2和C.-2和-D.-和2参考答案一、选择题(每小题3分,共30分)1.下列各组数中,互为倒数是的(C)1112222.(2016·长沙)下列各图中,∠1与∠2互为余角的是(B)3.(2015·厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是(D)A.-2xy2B.3x2C.2xy3D.2x34.把两块三角板按如图所示那样拼在一起,则∠ABC等于(D)A.90°B.100°C.105°D.120°,第4题图),第7题图),第8题图)5.计算8+6÷(-2)的结果是(C)A.-7B.-5C.5D.76.(2016春·长兴县月考)今年元旦,某风景区的最低气温为-5℃,最高气温为10℃,则这个风景区今年元旦的最高气温比最低气温高(B)A.-15℃B.15℃C.5℃D.-5℃7.(2016·和县一模)如图所示,该几何体的俯视图是(B)8.如图,点A,B,C顺次在直线上l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件(A)A.AB=12B.BC=4C.AM=5D.CN=29.在某月的日历上用矩形圈到a,b,c,d四个数(如图),如果d=18,那么a+b+c=(A)A.38B.40C.48D.58,第9题图),第10题图) 10.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为(C)(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.若+10万元表示盈余10万元,那么亏损3万元表示为__-3万元__.12.计算:-3.5+|- |-(-2)=__1__.(1)-1.5+1.4-(-3.6)-1.4+(-5.2);(2)-14-[2-(-3)2]÷( )3. (2)原式=-1-[2-9]÷ =-1-(-7)× 8=-1+56=55 5 2 13.已知∠A 与∠B 互余,若∠A =20°15′,则∠B 的度数为__69.75°__.14.化简:(2xy +3x 2y)-3(2x 2y -xy 2)=__5xy 2-3x 2y __.15.一个多边形有 8 条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到__6__个三角形.16.如图,∠AOC =150°,则射线 OA 的方向是__北偏东 30°__.,第 16 题图),第 17 题图) ,第 18 题 图)17.将一副学生用三角板按如图所示方式放置,若 AE ∥BC ,则∠AFD 的度数是__75°__.18.(2016· 河南模拟)如图是钢琴键盘的一部分,若从 4 开始,依次弹出 4,5,6,7,1,4,5,6,7, 1,…,按照上述规律弹到第 2016 个音符是__4__.三、解答题(共 66 分)19.(6 分)计算:1 2解:(1)原式=-1.5+1.4+3.6-1.4-5.2=(-1.5-1.4-5.2)+(1.4+3.6)=-8.1+5=-3.1 1 820.(6 分)一只小虫从某点 P 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,-3,+10,-8,-6,+12,-10.(1)通过计算说明小虫是否回到起点 P ;(2)如果小虫爬行的速度为 0.5 厘米/秒,那么小虫共爬行了多长时间.解:(1)因为(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=5-3+10-8-6+12-10=0,所以 小虫能回到起点 P(2)(5+3+10+8+6+12+10)÷0.5=54÷0.5=108(秒),答:小虫共爬行了 108 秒21.(6 分)如图已知 AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°.请完善说明过程,并在括号内填上 相应依据.解:∵AD ∥BC(已知),∴∠1=∠3( 两直线平行,内错角相等 ),∵∠1=∠2,∴__∠2=∠3__( 等量代换 ),∴__BE ∥DF __( 同位角相等,两直线平行 ),∴∠3+∠4=180°( 两直线平行,同旁内角互补 ).22.(8 分)先化简再求值:(1)5(3a 2b -ab 2)-4(-ab 2+3a 2b),其中 a =-1,b =2;解:原式=15a 2b -5ab 2+4ab 2-12a 2b =3a 2b -ab 2,把 a =-1,b =2 代入得:6+4=10(2)x +2(3y 2-2x)-4(2x -y 2),其中|x -2|+(y +1)2=0.解:原式=x +6y 2-4x -8x +4y 2=-11x +10y 2,∵|x -2|+(y +1)2=0,∴x =2,y =-1,则原式=- 22+10=-1223.(8 分)如图所示,l 1,l 2,l 3 交于点 O ,∠1=∠2,∠3∶∠1=8∶1,求∠4 的度数.解:设∠1=x ,则∠2=x ,∠3=8x ,依题意有 x +x +8x =180°,解得 x =18°,则∠4=18°+18°=36°,故∠4 的度数是 36°24.(10 分)已知多项式 A =2a 2+ab -2a -1,B =a 2+ab -1.(1)当a=-,b=4时,求A-2B的值;(2)由C=A-2B-C,得到C=A-B=a2+ab-a--a2-ab+1=-ab-a+解:(2)∵线段BC的中点E表示的数是=0.75,∴DE=|-2-0.75|=2.75∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,∴∠ABE=2∠ABC=2n°,∠CDE=∠ADC=40°,∴∠BED=∠BEF+∠DEF=n°+40°(12(2)若多项式C满足:C=A-2B-C,试用a,b的代数式表示C.解:(1)∵A=2a2+ab-2a-1,B=a2+ab-1,∴A-2B=2a2+ab-2a-1-2a2-2ab+2=-ab-2a 1+1,当a=-2,b=4时,原式=2+1+1=4111112222225.(10分)如图,请按照要求回答问题:(1)数轴上的点C表示的数是__2.5__;线段AB的中点D表示的数是__-2__;(2)线段AB的中点D与线段BC的中点E的距离DE等于多少?(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,判断BC能否平分∠MBN,并说明理由.-1+2.52(3)如下图(可以标出不同角的度数)BC平分∠MBN.理由是∵∠ABM=120°,∴∠MBC=180°-120°=60°,又∠CBN=60°,∴∠MBC=∠CBN,即BC平分∠MBN26.(12分)AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ABC=n°,∠ADC=80°.(1)若点B在点A的左侧,求∠BED的度数;(用含n的代数式表示)(2)将(1)中线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.解:1)如图①,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,111122∠ADC =80°,∴∠ABE =2∠ABC =2n °,∠CDE =2∠ADC =40°,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴ ∠BEF =180°-∠ABE =180°-2n °,∠CDE =∠DEF =40°,∴∠BED =∠BEF +∠DEF =180°-2 2(2)∠BED 的度数改变,过点 E 作 EF ∥AB ,如图②,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,1 1 11 11 n °+40°=220°- n °。
华东师大版七年级数学及答案集锦
七学年上数学期末考试一一、选择题:(每小题3分,共30分) ( )1.-2的绝对值是A .-2B .2C .12D .-12( )2.如图1,已知线段AB ,以下作图不可能的是A. 在AB 上取一点C ,使AC=BCB. 在AB 的延长线上取一点C ,使BC=ABC. 在BA 的延长线上取一点C ,使BC=ABD.在BA 的延长线上取一点C ,使BC=2AB( )3. 下列计算正确的是 A. - (23)3=276- B.-(32)2=94 C. - (32)3=278 D. - (53)3= - 12527 ( )4.下列方程中,属于一元一次方程的是A.021=+xB. 3x 2+4y=2 C. x 2+3x=x 2-1 D.x 2+3x-1=8+5x ( )5.下列事件中,必然发生的事件是 (A )明天会下雨 (B )小明数学考试得99分 (C )今天是星期一,明天就是星期二 (D )明年有370天 ( )6.如图,∠AOB=180°,OD 、OE 分别是∠AOC 和∠BOC的平分线,则及线段OD 垂直的射线是A.OAB.OCC.OED.OB( )7. 用一个平面去截一个正方体,截面的形状不可能是 A 、梯形 B 、五边形 C 、六边形 D 、七边形( )8.如果2(x+3)的值及3(1-x)的值互为相反数,那么x 等于A.9B.8C.-9D.-89..某工厂现有工人x 人,若现有人数比两年前原有人数减少35%,则该工厂原有人数为 A%351+x B %351-xC (1+35%)xD (1+35%)x10.如果代数式4y 2-2y +5的值是7,那么代数式2y 2-y+1的值等于 A . 2 B . 3 C .﹣2 D .4 二、耐心填一填:(本大题8小题,每小题3分,计24分) 11、若点C 是线段AB 的中点,且AB=10cm,则AC = cm .12、姚明一定不会输给其他任何一个NBA 球员:是 事件(填必然,不可能或不确定)。
2024年华东师大版七年级数学上册阶段测试试卷910
2024年华东师大版七年级数学上册阶段测试试卷910考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、下列计算正确的是()A. -=-5B. =4C. =±5D. -=2、下列各式中,结果正确的是()A.B.C.D. =3、在,0.2,2+,,,,0.31,中,无理数有()A. 1个B. 2个C. 3个D. 4个4、下列计算正确的是()A. a3•a2=a6B. (a2)3=a6C. (2x2)3=6x6D. (﹣ab)2=﹣a2b25、如图,在四边形ABCD中,隆脧1=隆脧2隆脧A=60鈭�则隆脧ADC=()A. 65鈭�B. 60鈭�C. 110鈭�D. 120鈭�6、下列说法中,正确的是()A. 射线AB和射线BA时同一条射线B. 射线就是直线C. 延长直线EFD. 线段AO与线段OA是同一条线段评卷人得分二、填空题(共5题,共10分)7、小红用8元钱买了价格为1元和2元的铅笔若干支,有____种不同买法.8、【题文】2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为____9、如图,直线a//b且隆脧1=28鈭�隆脧2=50鈭�则隆脧ABC= ______ 度.10、把下列各数填在相应的括号内:0鈭�2332.57鈭�60.8蟺41.2121212270.1010010001(两个1之间依次多1个零).(1)自然数:()(2)有理数:()(3)无理数:()(4)整数:()11、(2014春•西城区校级期中)如图,在平面直角坐标系中,有若干个横坐标和纵坐标都是整数的点,其顺序排列规律如下:(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),,根据这个规律探究可得,第100个点的坐标为____;第2013个点的坐标为____.评卷人得分三、判断题(共7题,共14分)12、邻补角的角平分线互相垂直.____.(判断对错)13、“延长直线AB”这句话是错误的.____.(判断对错)14、几个因数相乘,负数个数为3,则积为负.____.(判断对错)15、连接两点间的直线的长度,叫做这两点间的距离.____.(判断对错)16、-a2b2与y3没有系数.____.17、任何命题都有逆命题.18、从一个角的顶点出发,把它分成两个角的直线叫做这个角的平分线.(填“正确”或“错误”)评卷人得分四、其他(共1题,共5分)19、在植树节活动中,A班有30人,B班有16人,现要从A班调一部分人去支援B班,使B班人数为A班人数的2倍,那么应从A班调出多少人?如设从A班调x人去B班,根据题意可列方程:____.评卷人得分五、解答题(共3题,共12分)20、小明对本班同学上学的交通方式进行了一次调查;他根据采集的数据,绘制了下面的统计图1和图2.请你根据图中提供的信息,解答下列问题:(1)计算本班骑自行车上学的人数;补全图1的统计图;(2)在图2中,求出“乘公共汽车”部分所对应的圆心角的度数,补全图2的统计图(要求写出各部分所占的百分比).21、【题文】如图;AC=AD,∠BAC=∠BAD,点E在AB上.(1)你能找出____对全等的三角形;(2)请写出一对全等三角形,并说明理由.22、计算:(1)|-5|+-32;(2)|1-|+||+||;(3)已知实数a,b满足+|b-1|=0,求a2012+b2013的值.参考答案一、选择题(共6题,共12分)1、A【分析】【分析】利用二次根式的运算逐一计算得出结论即可.【解析】【解答】解:A、- =-5;此选项正确;B、(- )2=2;此选项错误;C、=5;此选项错误;D、- =- ;此选项错误.故选:A.2、B【分析】【分析】原式各项计算得到结果,即可做出判断.【解析】【解答】解:A、原式= ;本选项错误;B、原式= = ;本选项正确;C、原式= = ;本选项错误;D、原式= + = = ;本选项错误;故选B.3、D【分析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】【解答】解:无理数有:,2+ ,,共有4个.故选D.4、B【分析】【解答】解:A、a3•a2=a5,故A错误; B、(a2)3=a6;故B正确;C、(2x2)3=8x6;故C错误;D、(﹣ab)2=a2b2;故D错误;故选B.【分析】根据幂的乘方和积的乘方、同底数幂的乘法进行计算即可.5、D【分析】解:隆脽隆脧A=60鈭�隆脿隆脧1+隆脧ADB=180鈭�鈭�隆脧A=120鈭�隆脽隆脧1=隆脧2隆脿隆脧ADC=隆脧2+隆脧ADB=隆脧1+隆脧ADB=120鈭�.故选:D.根据三角形的内角和定理求出隆脧1+隆脧ADB=180鈭�鈭�隆脧A=120鈭�根据已知求出隆脧ADC=隆脧1+隆脧ADB代入求出即可.本题考查了三角形内角和定理的应用,能求出隆脧1+隆脧ADB的度数是解此题的关键.【解析】D6、D【分析】解:A射线AB和射线BA不是同一条射线;故选项错误;B;射线是直线的一部分;故选项错误;C;直线是向两方无限延伸的;故选项错误;D;线段AO与线段OA是同一条线段;故选项正确.故选D.根据表示射线时;端点字母必须在前,射线AB和射线BA端点字母不同,因此不是同一条射线;射线是直线的一部分;直线是向两方无限延伸的;根据线段的表示方法判断D依此进行分析即可.此题主要考查了直线、射线的表示和性质,关键是掌握射线和直线的表示方法,以及关系.【解析】D二、填空题(共5题,共10分)7、略【分析】【分析】根据买到的铅笔是整数,再根据总钱数和铅笔的单价即可得出不同的买法.【解析】【解答】解:∵8元钱买了价格为1元和2元;∴买了价格为1元的0个;那么买2元的铅笔就有4只;买了价格为1元的2个;那么买2元的铅笔就有3只;买了价格为1元的4个;那么买2元的铅笔就有2只;买了价格为1元的6个;那么买2元的铅笔就有1只;买了价格为1元的8个;那么买2元的铅笔就有0只;共有5种不同买法;故答案为:5.8、略【分析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n;与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.试题解析:0.00000012=1.2×10-7.考点: 科学记数法-------表示较小的数.【解析】【答案】1.2×10-7.9、略【分析】解:过点B作BE//a隆脽a//b隆脿a//b//BE隆脿隆脧1=隆脧3=28鈭�隆脧2=隆脧4=50鈭�隆脿隆脧ABC=隆脧3+隆脧4=78鈭�.故答案为:78.如图,首先过点B作BE//a由a//b可得a//b//BE根据平行线的性质,可得隆脧1=隆脧3隆脧2=隆脧4所以可以求得隆脧ABC的度数.此题考查了平行线的性质:两直线平行,内错角相等.解此题的关键是辅助线的作法.【解析】7810、略【分析】本题考查实数的分类,要注意无限循环小数可以化为分数,无理数是无限不循环小数,注意娄脨是无理数,故娄脨4也是无理数,不能填写在分数集合中.【解答】解:(1)自然数{0,3}(2)有理数{0,?23,3,2.57,鈭�6,0.8,1.212121,227}(3)无理数{娄脨4,0.1010010001}(4)整数{0,3,鈭�6}.故答案为(1)03(2)0?2332.57鈭�60.81.212121227(3)娄脨40.1010010001(4)03鈭�6.【解析】(1)03(2)0?2332.57鈭�60.81.212121227(3)娄脨40.1010010001(4)03鈭�6.11、略【分析】【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2 横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.并且横坐标的数目与横坐标上点的个数相符,奇数列从上往下数,偶数列反之,得到接近2013个点的点所在的列数,进而判断第2013个点的坐标即可.【解析】【解答】解:因为1+2+3+ +13=91;所以第91个点的坐标为(13,0).因为在第14行点的走向为向上;故第100个点在此行上,横坐标就为14,纵坐标为从第92个点向上数8个点,即为8;故第100个点的坐标为(14;8);同理可求出第2013个点的坐标为(63;3);故答案为:(14,8),(63,3).三、判断题(共7题,共14分)12、√【分析】【分析】根据邻补角是指两个角的和是180°而且相邻,以及角平分线的意义,进行分析判定判断.【解析】【解答】解:因为邻补角的大小关系是;这两个角和是180度;所以两个角的平分线组成的角,就是×180°=90°.由于邻补角互补又相邻;故邻补角的角平分线互相垂直,是正确的.故答案为:√.13、√【分析】【分析】根据直线的定义判断即可.【解析】【解答】解:∵直线是向两方无限延伸的;∴延长直线AB是错误的;∴说法正确.故答案为:√.14、√【分析】【分析】利用有理数乘法法则判断即可得到结果.【解析】【解答】解:几个因数相乘;负数个数为3,则积为负.√;故答案为:√15、×【分析】【分析】根据两点间距离的定义即可得出答案.【解析】【解答】解:∵连接两点间的线段的长度叫两点间的距离;∴原来的说法错误;故答案为:×.16、×【分析】【分析】根据单项式系数的定义,即可作出判断.【解答】解:-a2b2的系数为-1;y3的系数为1;故-a2b2与y3没有系数;说法错误;故答案为:×.17、√【分析】本题考查对逆命题概念的理解,逆命题就是把原命题的题设和结论互换【解析】命题的逆命题就是把原命题的题设和结论互换,故任何命题都有逆命题.故答案为:√【解析】【答案】√18、B【分析】【解答】解:根据角平分线的定义:从一个角的顶点出发,把它分成相等两个角的射线叫做这个角的平分线.故答案为错误.【分析】根据角平分线的定义可知,此话是错误的.四、其他(共1题,共5分)19、略【分析】【分析】根据题意可得到本题中含有的相等关系是:调过人后B班人数=2×调过后A班人数,因而用含x的代数式表示出A、B班人数,就可以列出方程.【解答】解:设从A班调x人去B班;则:从A班调x人去B班后;A班还剩30-x个人,B班有16+x人;∵B班人数为A班人数的2倍。
华东师大版2022届七年级数学测试题附答案
华东师大版2022届七年级数学测试题附答案(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的学习资料,如英语资料、语文资料、数学资料、物理资料、化学资料、生物资料、地理资料、历史资料、政治资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of learning materials for everyone, such as English materials, language materials, mathematics materials, physical materials, chemical materials, biological materials, geographic materials, historical materials, political materials, other materials, etc. Please pay attention to the data format and writing method!华东师大版2022届七年级数学测试题附答案一、选择题1.个位数字为a,十位数字为b的两位数用代数式可表示为()A.baB.b+aC.10b+aD.10a+b2.以下各式不是代数式的是()A.0B.C.m+n=n+mD.3.一件工作,甲单独做需a天完成,乙单独做需b天完成,如果两人合作7天,完成的工作量是()A. B.7(a-b) C.7(a+b) D.4.已知某商场打7折后的价格为a元,则原价为()A. 元B. 元C. 元D. 元5.已知上山的速度为,下山的速度为,来回的平均速度为()A. B. C. D.6.某班共有x名学生,其中男生人数占,那么女生人数是()A. B. C. D.二、填空题1.三个连续的偶数,若中间的一个数是2n,则这三个连续的偶数的和是2.A是一个两位数,已知十位数字为b,则个位数字是,交换个位、十位上的数字后,所得的新的两位数是3.某工厂第一年的产值为a万元,第二年产值增加了,第三年又比第二年增加了,则第三年的产值为万元.4.甲乙两列火车分别从相距a千米的A.B两地同时出发,相向而行,甲的速度为a千米/时,乙的速度为b千米/时,则甲乙两列火车经过小时相遇.5.某商场对所销售的茶叶进行促销活动:每购买一包装为50克的袋装茶叶则送小包装5克的茶叶2袋,某顾客获得小包装茶叶有2m袋,则他共得到的茶叶(包括所购买的茶叶与所赠送茶叶的总和)为克.三、综合应用将甲乙两种糖果混合后出售,已知甲种糖果每千克m元,取a千克;乙种糖果每千克n元,取b千克,则混合后每千克糖果的售价应是多少元四、探索创新你能很快计算出吗为了解决这个问题,我们来考察个位为5的自然数的平方,任意一个个位为5的自然数都可以写成10n+5的形式,于是原题即求的值.N为自然数,分析n=1,n=2,n=3,……这些简单情况,从中探索其规律,并归纳、猜想出结论.(1)通过计算、探索规律: = = =(2)从(1)小题的结果,归纳、猜想得: =(3)根据上面的归纳、猜想,请计算出 =五、活动实践为了绿化校园,学校决定修建一块长方形草坪,长30米,宽20米,并在草坪上修建如图3-2所示的十字路,小路宽为x米,用代数式表示:(1)修建小路面积为多少平方米(2)草坪的面积是多少平方米六、中考题1.小院里栽下1.8米高的小树苗,以后每年长0.3米,则n年后的树高是米.2.一台电视机成本a元,销售价比成本价增加,因库存积压,所以就按销售价的出售,那么每台实际售价为()A. B.C. D.华东师大版2022届七年级数学测试题附参考答案(列代数式)一、1.C 2.C 3.A 4.B 5.D 6.D二、1.6n 2.a-10b 10(a-10b)+b 3. 4. 5. 60m.三、四、(1)100×4×(4+1)+25 100×6×(6+1)+25100×9×(9+1)+25(2)100×n×(n+1)+25(3)100×199×200+25五、(1) (2) 或(30-x)(20-x)六、1.1.8+0.3n 2 B。
精品试卷华东师大版七年级数学下册第10章轴对称、平移与旋转同步训练试题(含详解)
七年级数学下册第10章轴对称、平移与旋转同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明将图案绕某点连续旋转若干次,每次旋转相同角度α,设计出一个外轮廓为正六边形的图案(如图),则α可以为()A.30°B.60°C.90°D.120°2、下列四个图形中,是中心对称图形的是()A.B.C .D .3、如图的4×4的正方形网格中,有A 、B 两点,在直线a 上求一点P ,使PA +PB 最短,则点P 应选在( )A .C 点B .D 点C .E 点D .F 点4、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC 为格点三角形,在图中可以画出与△ABC 成轴对称的格点三角形的个数为( )A .2个B .3个C .4个D .5个5、如图,三角形ABC 中,90ACB ∠=︒,40ABC ∠=︒.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CBA '∠的度数是( )A .80︒B .50︒C .40︒D .20︒6、如图图案中,不是中心对称图形的是()A.∽B.C.>D.=7、甲骨文是中国的一种古代文字,是汉字的早期形式,有时候也被认为是汉字的书体之一,也是现存中国王朝时期最古老的一种成熟文字。
下图为甲骨文对照表中的部分文字,若把它们抽象为几何图形,其中最接近轴对称图形的甲骨文对应的汉字是()A.时B.康C.黄D.奚8、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是()A.63°B.58°C.54°D.56°9、下列图形中,不一定...是轴对称图形的是()A.直角三角形B.等腰三角形C.等边三角形D.正方形10、如图,下列图形中,轴对称图形的个数是()A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把一张长方形纸片ABCD 的一角沿AE 折叠,点D 的对应点'D 落在∠BAC 的内部,若∠CAE =2∠'BAD ,且∠'CAD =15°,则∠DAE 的度数为____________.2、如图,△ABC 中,∠ACB =90°,∠A =28°,若以点C 为旋转中心,将△ABC 逆时针旋转到△DEC 的位置,点B 在边DE 上,则旋转角的度数是_______.3、已知点A 的坐标为(),a b ,O 为坐标原点,连结OA ,将线段OA 绕点О顺时针旋转90°得到线段1OA ,则点1A 的坐标为______.4、如图所示的四角风车至少旋转__________°就可以与原图形重合.5、数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是_________三、解答题(5小题,每小题10分,共计50分)A B C都是格点.1、如图,方格图中每个小正方形的边长都是1,点,,A BC;(1)画出ABC关于直线BM对称的11AA的长度.(2)写出12、经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.3、已知,在如图所示的网格中建立平面直角坐标系后,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(2,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注字母!)①在第一象限内找一点P,使得P到AB、AC的距离相等,且PA=PB;②在x轴上找一点Q,使得△QAB的周长最小,则Q点的坐标(_____,_____).4、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).5、阅读下面材料:活动1利用折纸作角平分线①画图:在透明纸片上画出PQR ∠(如图1-①);②折纸:让PQR ∠的两边QP 与QR 重合,得到折痕QH (如图1-②);③获得结论:展开纸片,QH 就是PQR ∠的平分线(如图1-③).活动2利用折纸求角如图2,纸片上的长方形ABCD ,直线EF 与边AB ,CD 分别相交于点E ,F .将AEF ∠对折,点A 落在直线EF 上的点A '处,折痕EN 与AD 的交点为N ;将BEF ∠对折,点B 落在直线EF 上的点B '处,折痕EM 与BC 的交点为M .这时NEM ∠的度数可知,而且图中存在互余或者互补的角.解答问题:(1)求NEM ∠的度数;(2)①图2中,用数字所表示的角,哪些与A EN '∠互为余角?②写出A EN '∠的一个补角.解:(1)利用活动1可知,EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,所以12A EN '∠=∠ ,12B EM '∠=∠ .由题意可知,AEB ∠是平角.所以12NEM A EN B EM ''∠=∠+∠=(∠ +∠ )= °. (2)①图2中,用数字所表示的角,所有与A EN '∠互余的角是: ;②A EN '∠的一个补角是 .-参考答案-一、单选题1、B【解析】【分析】由题意依据每次旋转相同角度α,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度α,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度α 360660︒=÷=.故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.2、B【解析】【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意;故选:B.【点睛】本题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、A【解析】【分析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.【详解】解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故选:A.【点睛】此题考查了最短路径问题,成轴对称图形的性质.解题的关键是作出其中一点关于直线a的对称点,对称点与另一点的连线和直线a的交点就是所要找的点.4、D【解析】【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.5、A【解析】【分析】根据旋转的性质,可得ABC A BC ''∠=∠ ,即可求解.【详解】解:根据题意得:∠ABC =∠A'BC'∵40ABC ∠=︒.∴=404080ABC A BC CBA ''+∠︒+'=︒=∠∠︒.故选:A【点睛】本题主要考查了图形的旋转,熟练掌握图形旋转前后对应角相等,对应边相等是解题的关键.6、C【解析】【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A 、是中心对称图形,故A 选项不合题意;B 、是中心对称图形,故B 选项不合题意;C 、不是中心对称图形,故C 选项符合题意;D 、是中心对称图形,故D 选项不合题意;故选:C .【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.7、C【解析】【分析】根据图形的特点及轴对称图形的定义即可辨别求解.【详解】由图可得最接近轴对称图形的甲骨文对应的汉字是黄故选C.【点睛】此题主要考查轴对称图形的识别,解题的关键是熟知根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.8、C【解析】【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DE C.9、A【解析】【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A.【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键.10、B【解析】【分析】如果一个图形沿着某条直线对折,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据轴对称图形的概念逐一分析即可判断.【详解】第一、三个图形是轴对称图形,第二、四个图形不是轴对称图形,故符合题意的有两个;故选:B【点睛】本题考查了轴对称图形的概念,掌握概念是关键.二、填空题1、39︒【解析】【分析】由折叠的性质可知DAE D AE CAE CAD ''∠=∠=∠+∠,再根据长方形的性质可知90DAE D AE BAD ''∠++∠=︒,结合题意整理即可求出BAD '∠的大小,从而即可求出DAE ∠的大小.【详解】根据折叠的性质可知DAE D AE CAE CAD ''∠=∠=∠+∠,由长方形的性质可知90DAB ∠=︒,即90DAE D AE BAD ''∠++∠=︒,∵2CAE BAD '∠=∠,'15CAD ∠=︒,∴215DAE D AE BAD ''∠=∠=∠+︒,∴22151590BAD BAD BAD '''+︒++∠︒+∠=∠︒,∴12BAD '∠=︒,∴2152121539DAE BAD '∠=∠+︒=⨯︒+︒=︒.故答案为:39︒【点睛】本题考查矩形的性质,折叠的性质.利用数形结合的思想是解答本题的关键.2、56°【解析】【分析】直接利用旋转的性质得出EC =BC ,进而利用三角形内角和定理得出∠E =∠ABC =62°,即可得出∠ECB 的度数,得出答案即可.【详解】解:∵以点C为旋转中心,将△ABC旋转到△DEC的位置,点B在边DE上,∴EC=BC,∵∠ACB=90°,∠A=28°,∴∠E=∠ABC=62°,∴∠EBC=62°,∴∠ECB=180°-62°-62°=56°,∴则旋转角的度数是56°.故答案为:56°.【点睛】此题主要考查了旋转的性质以及三角形内角和定理,得出∠E=∠ABC的度数是解题关键.3、(b,-a)【解析】【分析】设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.根据旋转的性质,A1B1=AB,OB1=OB.综合A1所在象限确定其坐标,其它象限解法完全相同.【详解】解:设A在第一象限,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.∵A(a,b),∴OB=a,AB=b,∴A1B1=AB=b,OB1=OB=a,因为A1在第四象限,所以A1(b,﹣a),A在其它象限结论也成立.故答案为:(b,﹣a),【点睛】本题考查了图形的旋转,设点A在某一象限是解题的关键.4、90【解析】【分析】如图所示,∠AOB即为所求,由题意得∠AOB=90°,由此即可得到答案.【详解】解:如图所示,∠AOB即为所求,由题意得,∠AOB=90°,∴四角风车至少旋转90°就可以与原图形重合,故答案为:90.【点睛】本题主要考查了图形的旋转,解题的关键在于能够熟练掌握旋转的意义.5、乙【解析】【分析】观察图形,中间相当于一个圆心角被平分为8份,用一周角度数除以8,得45°,故旋转45°的整数倍,即可与自身重合【详解】圆被平分成八部分,则360845︒÷=︒则旋转45°的整数倍,就可以与自身重合,因而甲,丙,丁都正确;错误的是乙.故答案为:乙【点睛】本题考查了旋转对称性,求得每一份的角度是解题的关键.三、解答题1、 (1)见解析(2)10【解析】【分析】(1)找到,,A B C 关于直线BM 的对称点111,,A B C ,顺次连接111,,A B C ,则11A BC 为所求作的三角形;(2)根据格点的特点,即可求得1AA 的长度.(1)如图所示,找到,,A B C 关于直线BM 的对称点111,,A B C ,顺次连接111,,A B C ,则11A BC 为所求作的三角形;(2)1AA 的长度为10【点睛】本题考查了画轴对称图形,掌握轴对称的性质是解题的关键.2、见解析【解析】【详解】3、(1)见详解;(2)①见详解;②2,0.【解析】(1)根据题意画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始,连接这些对称点,就得到原图形的轴对称图形;(2)①由题意作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②由题意作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求.根据直线AB'的解析式即可得出点Q的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)①如图所示,作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②如图所示,作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求,∵A(1,1),B'(4,-2),∴可设直线AB'为y=kx+b,则124k bk b=+⎧⎨-=+⎩,解得:12kb=-⎧⎨=⎩,∴y=-x+2,当y=0时,-x+2=0,此时点Q 的坐标为(2,0).故答案为:2,0.【点睛】本题主要考查利用轴对称进行作图,解决问题的关键是掌握角平分线的性质,中垂线的性质以及待定系数法求一次函数解析式,解题时注意两点之间,线段最短.4、(1)30;(2)1902FEG α∠=︒+;(3)1902FEG α∠=︒-【解析】【分析】(1)由折叠的性质,得到A EF AEF '∠=∠,D EG DEG '∠=∠,然后由邻补角的定义,即可求出答案;(2)由折叠的性质,先求出1(180)2AEF DEG α∠+∠=︒-,然后求出∠FEG 的度数即可;(3)由折叠的性质,先求出1(180)2AEF DEG α∠+∠=︒+,然后求出∠FEG 的度数即可.【详解】解:(1)将∠AEF 沿折痕EF 翻折,点A 落在点A '处;将∠DEG 沿折痕EG 翻折,点D 落在点D '处, ∴40A EF AEF '∠=∠=︒,35D EG DEG '∠=∠=︒,∴1804040353530A ED ''∠=︒-︒-︒-︒-︒=︒;(2)根据题意,则A EF AEF '∠=∠,D EG DEG '∠=∠,∵A ED α''∠=,∴2()180AEF DEG α∠+∠=︒-, ∴1(180)2AEF DEG α∠+∠=︒-,∴11180(180)9022FEG αα∠=︒-︒-=︒+;(3)根据题意,A EF AEF '∠=∠,D EG DEG '∠=∠, ∵A ED α''∠=,∴2()180AEF DEG α∠+∠=︒+, ∴1(180)2AEF DEG α∠+∠=︒+, ∴11180(180)9022FEG αα∠=︒-︒+=︒-;【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到A EF AEF '∠=∠,D EG DEG '∠=∠.5、(1)AEA ',BEB ',AEA BEB '',,90;(2)①∠1、∠2;②∠CME 或∠NEB .【解析】【分析】()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒ 【详解】解:(1)∵折叠∴EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,∴∠NEA =∠NEA ′=12AEA '∠,∠BEM =∠B′EM=12BEB '∠, ∵AEB ∠是平角.∴∠NEM =∠NEA ′+∠B′EM==12AEA '∠+()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒,故答案为:AEA ',BEB ',AEA BEB '',,90;(2)①∵∠1=∠2,∠A′EN =∠3,∠NEM =90°,∴∠A′EN +∠1=∠NEM =90°,∴A EN '∠互为余角为∠1和∠2,故答案为:∠1、∠2;②∵∠A′EN =∠3,∠3+∠NEB =180°,∴∠A′EN 的补角为∠NEB .∵∠B =90°,∴∠2+∠EMB =90°,∴∠3=∠EMB ,∵∠CME +∠EMB =180°,∴∠3+∠CME =180°,∴∠A′EN 的补角为∠CME ,∴∠A′EN 的补角为∠CME 或∠NEB .故答案为∠CME 或∠NEB .【点睛】本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.。
华东师大版数学七年级(初一)上下册试卷(附参考答案)
七年级(初一)数学上册试题学校: 班级: 姓名:考试时间:120分钟 总分值:150分一、选择题:〔本大题有10个小题,每题4分,共40分。
每题后面的四个选项中只有一个正确,请将正确的选项填入题后的括号里〕1.假如+3吨表示运入仓库的大米吨数, 那么运出仓库5吨大米表示为〔 〕。
A .-5吨B .+5吨C .-3吨D .+3吨 2.以下各式正确的选项是〔 〕。
A .33--=B .+(-3)=3C .(3)3--=D .-(-3)=-33.如图,数轴上的A 、B 两点分别表示有理数a 、b,以下式子中不正确的选项是〔 〕。
A. 0a b +<B. 0a b -<C. 0a b -+>D. b a >4.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为( )。
A.149×106千米2B. 1.49×108千米2C. 14.9×107千米2D. 0.149×109千25.在数12、—20、211-、 0 、—〔—5〕、—|+3|中,负数有( )。
A.2 个 B. 3个 C. 4个 D.5个 6.以下说法中,正确的选项是〔 〕。
A .a -是正数 B.-a 是负数 C.-a 是负数 D.a -不是负数 7.在以下的代数式的写法中,表示正确的一个是〔 〕。
A .“负x 的平方〞记作-2x B.“y 与311的积〞记作y 311 C.“x 的3倍〞记作x3 D.“a 除以2b 的商〞记作ba 2 8.4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,假设不另拿钱购置,最多可以喝矿泉水〔 〕。
A. 3瓶B. 4瓶C. 5瓶D. 6瓶 9.假设,0,5,7>+==y x y x 且那么y x -的值是〔 〕。
A. 2或12 B. 2或-12 C. -2或12 D.- 2或-1210.计算:1211-=,2213-=,3217-=,42115-=,52131-=,··· ···归纳各计算结果中的个位数字规律,那么201021-的个位数字是〔 〕。
华东师大版数学七年级上册第四章、第五章测试题及答案(各一套)
华东师大版数学七年级上册第四章测试题(时间:90分钟 分值:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.生活中的一些物体可以近似看做是几何体的组合体,则图1中的粮囤可以看做是( )A.棱锥与圆柱的组合B.棱锥与棱柱的组合C.圆锥与圆柱的组合D.圆锥与棱柱的组合2.如图2,下列角的表示方法中不正确的是 ( ) A.∠B B.∠ACE C.∠α D.∠A3.已知点P 是线段AB 上一点,下列条件:①AP=21AB ;②AB=2PB; ③AP+PB=AB ;④AP =PB=21AB.其中能得到“P 是线段AB 的中点” 的条件有( ) A.1个 B.2个 C.3个 D.4个 4.下列图形中可以作为一个三棱柱的表面展开图的是( )5.下列角度换算不正确的是 ( ) A. 5°16′=316′ B. 10.2°=612′ C. 72000″=20° D. 18°25′=18.5°6.图3是由5个大小相同的正方体组成的几何体,则该几何体的左视图是( )7.如图4,O 为直线AB 上一点,∠AOC=α,∠BOC=β,则β的余角可表示为( )A B C DA B C D 图1 图2 图3A .21(α+β)B.21α C.21(α-β)D.21β8.如图5,点C ,D 在直线AB 上,AB=8 cm ,AC=BD=2 cm ,则下列说法不正确的是 ( )A.图中有6条线段B.射线DA 与射线DC 表示同一条射线C.线段CD 的长度为4cmD.图中有一条直线和4条射线9.图6是某个几何体的三视图,则组成这个几何体的小立方块的个数为( ) A. 7 B. 8 C. 9 D. 1010.如图7,点A ,B 在数轴上表示的数分别是-9和3,动点P 从点B 出发沿数轴向左移动,移动速度为每秒2个单位长度,设移动时间为t(秒),有下列结论:①当t=2时,AP=5;②当t=3时,点P 与线段AB 的中点重合;③当t=6时,点P 与点A 重合;④当t=5或7时,点P 与点A 相距为2.其中正确的结论有 ( ) A.①②③④ B.①②③ C.②③④ D.①②④二、填空题(本大题共6小题,每小题3分,共18分)11.图8是一个几何体的表面展开图,则该几何体有______个顶点,有_______个面,经过每个顶点有______条棱.12.图9是一个几何体的三视图,则该几何体为 .13.花园的草坪上常常能看到“芳草茵茵,踏之何忍”等一类警示牌,但是有些游人为了走近道,往往践踏草坪,如图10所示,这是一种不文明的行为.游人之所以从草坪上走,用数学的知识可以解释为 .14.如图11,已知∠MON,点A 在射线ON 上,利用尺规,在射线ON 的同侧作∠EAN,使∠EAN=∠MON ,则弧DE 的作法:以点D 为圆心,以线段 的长度为半径画弧,与前弧交于点E.图7 图6图4图5图11 图12图8 图9 图1015.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成图12所示的拼接图形(实线部分),经折叠后发现还少一个面,在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,则添加方法共有 种.16.有一个正六面体骰子,放在桌面上,将骰子按图13所示的方式顺时针方向滚动,每滚动90°算一次,则第2017次滚动后,骰子朝下一面的点数是 .三、解答题(本大题共6小题,共52分)17.(8分)如图14,公路AB ,CD 交于点O ,在两条公路之间有两个村庄M ,N ,已知村庄N 在村庄M 的北偏西60°的方向上,同时又在两条公路夹角(∠AOD )的平分线上. (1)村庄M 在村庄N 的什么方向?(2)借助三角尺、圆规和量角器等,通过作图,确定村庄N 的位置(保留作图痕迹,不写作法).18.(8分)已知∠α=76°,∠β=41°31′,求: (1)∠β的余角; (2)∠α的2倍与∠β的21的差.19.(8分)一个几何体由大小相同的小立方块搭成,它的俯视图如图15所示,其中小正图13 图14方形中的数字表示在该位置的小立方块的个数,请你画出这个几何体的主视图和左视图.20.(8分)如图16,已知∠BOC=3∠AOC ,OD 平分∠AOB ,OE 平分∠AOC ,∠AOE=15°. (1)求∠AOB 的度数; (2)求∠DOE 的度数.21.(10分)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB=2,BC=1,如图17所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且CO=28,求p .22.(10分)如图18所示的硬纸片可以折成一个无盖的正方体盒子,每个面上都标有一个数字,且相对面上的数字和相等.图15 图16 图17(1)写出a ,b 之间的关系式;(2)图19为一张3×5的长方形硬纸片,请你把它分割成三块,要求每块都能折成一个无盖的正方体盒子.图18 图19附加题(共20分,不计入总分)1. (6分)如图1,点C ,D 在线段AB 上,已知点C 是AB 的中点,AD=31AB ,CD=4cm,则AB 的长度为 .2.(14分)一个几何体的三视图如图2所示,已知AB=8,CD=EF=41CF ,FG=12. (1)该几何体是 ; (2)求该几何体的体积.图1图2参考答案:一、1. C 2. D 3. C 4. B 5. D 6. C 7. C 8. D 9. A 10. C 二、11. 8 6 3 12. 三棱柱13. 两点之间线段最短 14. BC 15. 4 16. 2 三、17. 解:(1)南偏东60°方向; (2)如图1所示.18. 解:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′; (2)2∠α-21∠β=2×76°-21×41°31′=152°-20°45′30″=131°14′30″. 19. 如图2所示:20. 解:(1)因为OE 平分∠AOC ,∠AOE=15°, 所以∠AOC=2∠AOE=30°.因为∠BOC=3∠AOC ,所以∠BOC=3×30°=90°. 所以∠AOB=∠BOC+∠AOC=90°+30°=120°.(2)因为OD 平分∠AOB ,∠AOB=120°,所以∠AOD=60°. 所以∠DOE=∠AOD-∠AOE=60°-15°=45°. 21. 解:(1)若以B 为原点,则C 表示1,A 表示-2. 则p=1+0-2=-1;若以C 为原点,则A 表示-3,B 表示-1. 则p=-3-1+0=-4;(2)若原点O 在图中数轴上点C 的右边,且CO=28,则C 表示-28,B 表示-29,A 表示-31. 则p=-31-29-28=-88. 22. 解:(1)a+2=b ; (2)如图3所示:图1 图2图3附加题1. 24 cm 提示:因为点C 是AB 的中点,所以BC=21AB.因为AD=31AB ,所以BD=(AB-AD)= (AB-31AB)=32AB.所以CD=BD-BC=32AB-21AB=61AB=4.所以AB=24 cm. 2. 解:(1)空心圆柱 (2)因为CF=AB=8,所以CD=EF=41CF=2,所以DE=4. π×(28)2×12-π×(24)2×12=π×42×12-π×22×12=144π. 所以该几何体的体积为144π.华东师大版数学七年级上册第五章测试题(时间:90分钟 分值:120分)一、选择题(4分×8=32分) 1.关于“对顶角”,下列说法错误的是( )A. 对顶角具有相同的顶点B.对顶角的两边互为反向延长线C.相等的角是对顶角D.对顶角相等2.直线m 上有A 、B 、C 三点,直线m 外有一点p ,已知PA =8cm ,PB =6cm ,PC =9cm ,则点P 到直线m 的距离是( )A. 大于6cmcB.等于6cmC.不小于6cmD.不大于6cm 3.“关于同旁内角”,下列说法错误的是( )A.同旁内角在截线的同旁B.同旁内角在被截两线的内部C.同旁内角可能相等 .D.同旁内角互补4.已知线段AB 、CD ,点M 在线段AB 上,结合图形,下列说法不正确的是( ) A .延长线段AB 、CD ,相交于点F B .反向延长线段BA 、DC ,相交于点FC .过点M 画线段AB 的垂线,交CD 于点E D .过点M 画线段CD 的垂线,交CD 于点E5.如图,直线AB、CD相交于点O,EO⊥CD.下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°6.如图,与∠1是内错角的是()A.∠2 B.∠3 C.∠4 D.∠57.已知:如图,点E、F分别在直线AB、CD上,点G、H在两直线之间,线段EF与GH相交于点O,且有∠AEF+∠CFE=180°,∠AEF﹣∠1=∠2,则在图中相等的角共有()A.5对 B.6对 C.7对 D.8对8.下列说法:①两条直线都和第三条直线平行,这两条直线平行;②两条直线都和第三条直线垂直,这两条直线垂直;③两条直线被第三条直线所截,如果同位角相等,这两条直线平行;④如果两个角的两边相互平行,这两个角相等;其中正确的个数是()A.1B. 2C. 3D.4二、填空题(4分×5=20分)9.如图,一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=73°,则∠2的大小是.10.如图,把一个长方形纸片沿EF折叠后,点A,B分别落在A′,B′的位置,若∠A′FD=54°,则∠CEF等于.11.如图,AB∥CD,∠B=26°31´,∠D=39°14´,则∠BED的度数为.12.∠A和∠B的两边互相平行,且∠A比∠B的2倍大15°,则∠A=;13.如图,AB∥CD,一副三角板按如图所示放置,∠AEG=30°,则∠HFD度数为.三、解答题(每空1分,共20分)14.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC∴∠= ()∵∠1=30°∴∠BAD=∠+∠=又∵∠B=60°∴∠BAD+∠B=∴AD∥BC()15.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∵,∴∠CDA=90°,∠DAB=90°().∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴∠3=∠4 (),∴DF∥AE ().16.填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF= .∵∠1=∠ACB(已知)∴DE∥BC()∴∠2= ∠BCD .()∵∠2=∠3(已知)∴∠3= .()∴CD∥FH()∴∠BDC=∠BHF= .°()∴CD⊥AB.四、解答题(6+6+6+10=28分)17.读图1~图4,回答下列问题.(1)请你写出图1、图2、图3和图4中分别有几对同旁内角?(2)观察图形,请写出图n(n是正整数)中有几对同旁内角?18.观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有对对顶角.(2)如图b,图中共有对对顶角.(3)如图c,图中共有对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?19.画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.20..如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.参考答案:一、选择题CDDADCDB二、填空题9、107° 10、63° 11、65°45´ 12、125° 13、45°三、解答题14、证明:∵AB⊥AC∴∠BAC = 90 °(垂直定义)∵∠1=30°∴∠BAD=∠BAC +∠ 1 = 120 °又∵∠B=60°∴∠BAD+∠B= 180 °∴AD∥BC(同旁内角互补,两直线平行)15.证明:∵CD⊥DA,DA⊥AB,,∴∠CDA=90°,∠DAB=90°(垂直定义).∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴∠3=∠4 (等角的余角相等),∴DF∥AE (内错角相等,两直线平行).16.证明:FH⊥AB(已知)∴∠BHF= 90°.∵∠1=∠ACB(已知)∴DE∥BC(同位角相等,两直线平行)∴∠2= ∠BCD .(两直线平行,内错角相等)∵∠2=∠3(已知)∴∠3= ∠BCD .(等量代换)∴CD∥FH(同位角相等,两直线平行)∴∠BDC=∠BHF= 90 .°(两直线平行,同位角角相等)∴CD⊥AB.四、解答题17.(1)图1中:有2对同旁内角;图2中:有8对同旁内角;图3中:有18对同旁内角;图4中:有32对同旁内角;(2)图n(n是正整数)中有2n2对同旁内角.18.(1)2,(2)6,(3)12,(4)n(n-1),(5)3998000;19.解:(1)如图(2)垂直;(3)10.20.(2)∠BEG+12∠MFD=90°,(3)∠BEG+∠MFD=90°,。
华东师大版七年级数学上册第二章 有理数 单元测试卷(含答案)
第二章 有理数 单元测试卷班级_________ 座号_________姓名__________ 得分________ 一、选择题 (每小题2分,共24分)1、下列说法正确的是( )A 、一个数前面加上“-”号这个数就是负数;B 、非负数就是正数;C 、正数和负数统称为有理数D 、0既不是正数也不是负数;2、 在-(-2),-|-7|,-|+1|,|-( )中,负数有,511(-|32+A 、1个B 、2个C 、3个D 、4个3、 一个数的倒数是它本身的数 是( )A 、1B 、-1C 、±1D 、04. 下列计算正确的是()A 、(-4)2=-16B 、(-3)4=-34C 、(-34-)31(-D 12515143=-=、5、 (-0.2)2020× 52020+(-1)2020+(-1)2019的值是( )A 、3B 、-2C 、 -1D 、16、 如果两个数的绝对值相等,那么这两个数是( )A 、互为相反数B 、相等C 、积为0D 、互为相反数或相等7、 下列说法正确的是( )A 、若两具数互为相反数,则这两个数一定是一个正数,一个负数;B 、一个数的绝对值一定不小于这个数;C 、如果两个数互为相反数,则它们的商为-1;D 、一个正数一定大于它的倒数;8、 若a<0,b<0,则下列各式正确的是( )A 、a -b<0B 、a -b>0C 、a -b=0D 、(-a)+(-b)>09、 若0<a<1,则a ,)(,12从小到大排列正确的是a a A 、a 2<a< B 、a < < a 2 C 、<a< a 2D 、a < a 2 <a 1a 1a1a110、在数轴上距2.5有3.5个单位长度的点所表示的数是( )A 、6B 、-6C 、-1D 、-1或611、学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为( )A 、约104元;B 、1000元C 、100元D 、约21.4元12、当n 为正整数时,(-1)2n+1-(-1)2n 的值是( )A 、0B 、2C 、-2D 、2或-2二.填空题(每小题 2分,共24分)13、对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么-3克表示=_____14、有理数2,+7.5,-0.03,-0.4,0,中,非负数是__________3115、如果-x=-(-12),那么x= __________16、化简| 3.14 -π|= _________17、计算:(-= _________53)32(52()31+-+--18、在-(-2),-|-2|,(-2)2,-22四个数中,负数有_________个19、如果x<0,且x 2=25,那么x= _________20、把按从小到大排列的顺序是_______________________32(-3)51(-32-0,41,,,21、计算:-3×23-(-3×2)3= _________22、若|x|=-x ,则x 是_________数;23、水池中的水位在某天八个不同时间测得记录事下:(规定向上为正,向下为负,单位:厘米)+3,-6,-1,+5,-4,+2,-3,-2,那么这天中水池中水位的最终变化情况是___________24、如果x<0,且x 2=4,那么x= _________三、计算题(每题3分,共24分)25、①计算:(-3)×(-9)-8×(-5)②计算:-63÷7+45÷(-9)③计算:-3;x 22-(-3×2)3④计算:(-0.1)3-253(41-⨯ ⑤计算:-23-3×(-2)3-(-1)4⑥计算:(-62)21()25.0(|-3|32)23÷-+÷⨯ ⑦计算:[11×2-|3÷3|-(-3)2-33]÷43⑧计算:22234.0)2.1()21(-192÷⨯--四、解答下列各题(共28分)26、参加世界杯足球赛的23名中国队员的年龄如下表所示:2129242733222525323128312424232120272628233434⑴求出年龄最大的队员与年龄最小的队员的年龄差(2分)⑵求出中国队队员的平均年龄。
华东师大版七年级数学下册全套试卷(单元、期中、期末)
华东师大版七年级数学下册第6章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列式子中,是一元一次方程的是( ) A .3x +1=4x B .x +2>1 C .x 2-9=0 D .2x -3y =0 2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =yaC .若a =b ,则ac =bcD .若b a =dc ,则b =d3.一元一次方程2x =4的解是( ) A .x =1 B .x =2 C .x =3 D .x =44.已知方程x -2y +3=8,则整式x -2y 的值为( ) A .5 B .10 C .12 D .155.下列过程中,变形正确的是( ) A .由2x =3,得x =23B .由x -13-1=1-x 2,得2(x -1)-1=3(1-x )C .由x -1=2,得x =2-1D .由-3(x +1)=2,得-3x -3=26.若x =-3是方程2(x -m )=6的解,则m 的值为( ) A .6 B .-6 C .12 D .-127.关于y 的方程ay -2=4与2y -5=-1的解相同,则a 的值为( ) A .2 B .3 C .4 D .-28.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A .350元B .400元C .450元D .500元 9.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A .5.5公里B .6.9公里C .7.5公里D .8.1公里 10.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15厘米,各装有10厘米高的水,下表记录了甲、乙、丙三个杯子的底面积,今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3∶4∶5.若不计杯子厚度,则甲杯内水的高度变为( )A.5.4厘米 B .5.7C .7.2厘米 D .7.5厘米二、填空题(每小题3分,共24分)11.方程x 0.3-x 0.5=1可变形为10x 3-10x5=________.12.有一个密码系统,其原理如下面的框图所示:输入x →2x +6→输出当输出为10时,则输入的x =________.13.若式子x +33比x -44的值大4,则x 的值为________.14.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x 分钟,那么可列出的方程是__________________.15.若(m -2)x |2m -3|=6是关于x 的一元一次方程,则m 的值是________.16.若a =b ,12b =-12c ,4c -3d =0,则a 和d 之间的关系式为______________.17.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为________.18.规定一种运算“*”,a *b =13a -14b ,则方程x *2=1*x 的解为________.三、解答题(共66分) 19.(12分)解下列方程: (1)-4x +1=-2⎝⎛⎭⎫12-x ;(2)2-3x -74=-x +75;(3)12x +2⎝⎛⎭⎫54x +1=8+x .20.(10分)x 为何值时,代数式12⎣⎡⎦⎤x -12(x -1)的值比34x 小1?21.(10分)对于有理数a ,b ,c ,d ,规定一种运算⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,如⎪⎪⎪⎪⎪⎪1 02 -2=1×(-2)-0×2=-2,那么当⎪⎪⎪⎪⎪⎪2 -43-x 5=25时,x 的值为多少?22.(10例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?23.(12分)小杰到食堂买饭,看到A,B两窗口前面排队的人一样多,就站在A窗口队伍的后面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.此时,若小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时,每队有多少人排队.24.(12分)某公司以每吨500元的价格收购了100吨某种药材.若直接在市场上销售,每吨的售价是1000元.该公司决定加工后再出售,相关信息如下表所示:注:①出品率指加工后所得产品的质量与原料的质量的比值;②加工后的废品不产生效益.受市场影响,该公司必须在10天内将这批药材加工完毕,现有3种方案:A.全都粗加工;B.尽可能多的精加工,剩余的直接在市场上销售;C.部分粗加工,部分精加工,恰好10天完成.问:哪个方案获得的利润最大?是多少?参考答案与解析1.A 2.C 3.B 4.A 5.D 6.B 7.B 8.B 9.B10.C 解析:由甲、乙、丙三杯内水的高度比为3∶4∶5,可依次设高度为3x 厘米,4x 厘米,5x 厘米.依题意得60(10-3x )+80(10-4x )=100(5x -10),解得x =2.4,所以3x =3×2.4=7.2厘米.故选C.11.1 12.2 13.24 14.250(15-x )+80x =290015.1 16.4a +3d =0 17.90% 18.10719.解:(1)x =13.(4分)(2)x =10311.(8分)(3)x =3.(12分)20.解:由题意得12⎣⎡⎦⎤x -12(x -1)=34x -1,(3分)解得x =52.(10分) 21.解:因为⎪⎪⎪⎪⎪⎪2 -43-x 5=25,所以2×5-(-4)×(3-x )=25,(4分)化简得4x =-3,所以x =-34.(10分)22.解:设五月份用电量为x 度,则六月份用电量为(500-x )度.依题意得500-x >x ,解得x <250,当0<x ≤200时,列方程得0.55x +0.6(500-x )=290.5,解得x =190.则500-x =310,符合题意.(5分)当200<x <250时,列方程得0.6x +0.6(500-x )=290.5,此方程无解.(9分)答:该户居民五、六月份各用电190度,310度.(10分)23.解:设开始时,每队有x 人在排队,2分钟后,B 窗口排队的人数为x -6×2+5×2=x -2,(3分)根据题意得x4=2+x -26+12,(7分)解得x =26.(11分)答:开始时,每队有26人排队.(12分)24.解:方案A 的利润为100×80%×5000-500×100=350000(元);(3分)方案B 的利润为60×60%×11000+40×1000-50000=386000(元);(6分)设方案C 粗加工x 天,则精加工(10-x )天,有14x +6(10-x )=100,解得x =5.(8分)方案C 的利润为5×14×80%×5000+5×6×60%×11000-50000=428000(元).(10分)所以方案C 的利润最大,是428000元.(11分)答:方案C 获得的利润最大,最大利润为428000元.(12分)华东师大版七年级数学下册第7章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列各式中,是二元一次方程的是( ) A .4x +10y =2 B .a +bC .x =y +3D .2x -π=52.解为⎩⎪⎨⎪⎧x =1,y =2的方程组是( )A.⎩⎪⎨⎪⎧x -y =1,3x +y =5B.⎩⎪⎨⎪⎧x -y =-1,3x +y =-5 C.⎩⎪⎨⎪⎧x -y =3,3x -y =1 D.⎩⎪⎨⎪⎧x -2y =-3,3x +y =5 3.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解是( )A.⎩⎪⎨⎪⎧x =-1,y =2B.⎩⎪⎨⎪⎧x =-2,y =3 C.⎩⎪⎨⎪⎧x =2,y =1 D.⎩⎪⎨⎪⎧x =2,y =-1 4.解方程组⎩⎪⎨⎪⎧x -2y =-2①,x 2-y 3=1②的过程如下:②×6,得3x -2y =6③,(1);①+③,得4x =4,(2);即x =1.(3);把x =1代入①,得y =32.(4);方程组的解为⎩⎪⎨⎪⎧x =1,y =32.其中开始错误的步骤为( )A .(1)B .(2)C .(3)D .(4)5.由方程组⎩⎪⎨⎪⎧x +m =4,y -3=m 可得出x 与y 的关系是( )A .x +y =1B .x +y =-1C .x +y =7D .x +y =-76.已知(x -2y -1)2+||2x +y -7=0,则3x -y 的值为( ) A .3 B .1 C .-6 D .87.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的平均速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x ,y 分钟,则列出的二元一次方程组是( )A.⎩⎪⎨⎪⎧x +y =13,200x +70y =3350B.⎩⎪⎨⎪⎧x +y =20,70x +200y =3350C.⎩⎪⎨⎪⎧x +y =13,70x +200y =3350D.⎩⎪⎨⎪⎧x +y =20,200x +70y =33508.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .49.小刚解出了方程组⎩⎪⎨⎪⎧3x -y =3,2x +y =△的解为⎩⎪⎨⎪⎧x =4,y =□.因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则△、□分别为( )A .17,9B .16,8C .23,15D .15,2310.甲、乙两药品仓库共存药品45 t ,为共同抗击“H7N9禽流感”,现从甲仓库调出库存药品的60%,从乙仓库调出库存药品的40%支援疫区.结果乙仓库所余药品比甲仓库所余药品多3 t ,那么,甲、乙仓库原来所存药品分别为( )A .21 t ,24 tB .24 t ,21 tC .25 t ,20 tD .20 t ,25 t 二、填空题(每小题3分,共24分)11.将方程2x -3y =5变形为用含x 的代数式表示y 的形式:____________.12.已知x ,y 满足方程组⎩⎪⎨⎪⎧x +2y =5,2x +y =4,则x -y 的值是________.13.若2x a +1-3y b -2=10是关于x ,y 的二元一次方程,则a -b =________.14.已知⎩⎪⎨⎪⎧x =3,y =-2是方程组⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.15.二元一次方程组⎩⎪⎨⎪⎧4x +3y =1,ax +(a -1)y =3中,它的解x 和y 值相等,则a =________.16.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔最多能买________支.17.《孙子算经》是中国传统数学最重要的著作,其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x 尺,长木为y 尺,可列方程组为____________.18.一铁路大桥长1800米,一列火车从桥上通过,测得火车从开始上桥到完全离开桥共用123分钟,整列火车完全在桥上的时间为113分钟,则火车的速度为20米/秒,火车长为200米.三、解答题(共66分)19.(12分)解下列方程组:(1)⎩⎪⎨⎪⎧4x +y =7,6x -y =3;(2)⎩⎪⎨⎪⎧3x -2(2y +1)=4,x +2y +12=4(x -1).20.(10分)在等式y =x 2+mx +n 中,当x =2时,y =5;当x =-3时,y =-5. (1)求m ,n 的值;(2)试求当x =3时,y 的值.21.(10分)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -5y =2a ,2x +7y =a -18.(1)若x ,y 的值互为相反数,求a 的值;(2)若2x +y +35=0,解这个方程组.22.(10分)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a-b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?23.(12分)为了实现“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价;(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.24.(12分)小丽购买学习用品的收据如下表,因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?参考答案与解析1.C 2.D 3.D 4.B 5.C 6.D 7.D8.C 解析:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费.设截成2米长的彩绳x 根,1米长的y 根,由题意得2x +y =5,因为x ,y 都是正整数,所以符合条件的解为⎩⎪⎨⎪⎧x =0,y =5或⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =1,则共有3种不同截法.故选C. 9.A10.B 解析:若设甲仓库原来存药x 吨,乙仓库原来存药y 吨,由题意得⎩⎪⎨⎪⎧x +y =45,60%y -40%x =3,解得⎩⎪⎨⎪⎧x =24,y =21.故选B. 11.y =2x -53 12.-1 13.-3 14.-8 15.11 16.317.⎩⎪⎨⎪⎧x -y =4.5,12x -y =-1 18.20 20019.解:(1)⎩⎪⎨⎪⎧x =1,y =3.(6分) (2)⎩⎨⎧x =43,y =-12.(12分) 20.解:(1)由题意得⎩⎪⎨⎪⎧5=4+2m +n ,-5=9-3m +n ,(3分)解得⎩⎪⎨⎪⎧m =3,n =-5.(6分)(2)由(1)可得原等式为y =x 2+3x -5,因此当x =3时,y =32+3×3-5=13.即当x =3时,y 的值为13.(10分)21.解:(1)⎩⎪⎨⎪⎧3x -5y =2a ①,2x +7y =a -18②,①-②×2,得-x -19y =36,即x +19y =-36.当x =-y 时,-y +19y =-36,解得y =-2,∴x =2.代入①,得a =8.(6分)(2)由(1)知,⎩⎪⎨⎪⎧x +19y =-36,2x +y =-35,解得⎩⎪⎨⎪⎧x =-17,y =-1.(10分)22.解:(1)由题意得A =2×2-3=1,B =2×3=6,C =3+5=8.答:接收方收到的密码是1,6,8;(4分) (2)由题意得⎩⎪⎨⎪⎧2a -b =2,2b =8,b +c =11,解得⎩⎪⎨⎪⎧a =3,b =4,c =7.答:发送方发出的密码是3,4,7.(10分)23.解:(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,依题意得⎩⎪⎨⎪⎧2x +3y =380,4x +2y =360,解得⎩⎪⎨⎪⎧x =40,y =100. 答:A 品牌足球的单价为40元,B 品牌足球的单价为100元.(7分)(2)依题意得20×40+2×100=1000(元).答:该校购买20个A 品牌足球和2个B 品牌足球所需总费用为1000元.(12分)24.解:(1)设小丽购买自动铅笔x 支,记号笔y 支,根据题意得⎩⎪⎨⎪⎧x +y =8-(2+2+1),1.5x +4y =28-(6+9+3.5),解得⎩⎪⎨⎪⎧x =1,y =2.(5分) 答:小丽购买自动铅笔1支,记号笔2支.(6分)(2)设小丽购买软皮笔记本m 本,自动铅笔n 支,根据题意得92m +1.5n =15.∵m ,n 为正整数,∴⎩⎪⎨⎪⎧m =1,n =7或⎩⎪⎨⎪⎧m =2,n =4或⎩⎪⎨⎪⎧m =3,n =1.(11分)答:共3种方案:购买1本软皮笔记本与7支自动铅笔;购买2本软皮笔记本与4支自动铅笔;购买3本软皮笔记本与1支自动铅笔.(12分)华东师大版七年级数学下册第8章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列数学表达式中:①-8<0;②4a +3b >0;③a =3;④a +2>b +3,是不等式的有( )A .1个B .2个C .3个D .4个2.一元一次不等式x -1≥0的解集在数轴上表示正确的是( )3.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x +3>y +3 C .-3x >-3y D.x 3>y34.如图,天平右盘中每个砝码的质量都是1 g ,则图中显示出来的某药品A 质量的范围在数轴上可表示为( )5.下列说法中,错误的是( ) A .不等式x <2的正整数解只有一个 B .-2是不等式2x +2<0的一个解 C .不等式-4x >12的解集是x >-3 D .不等式x <100的整数解有无数个6.若关于x 的不等式(a -2)x >a -2的解集为x >1,那么字母a 的取值范围是( ) A .a >1 B .a <1 C .a >2 D .a <2 7.不等式组⎩⎪⎨⎪⎧2x -1≤1,-12x <1的整数解的个数为( )A .0个B .2个C .3个D .无数个8.某班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔( )A .20支B .14支C .13支D .10支9.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )A. B.C.D.10.图为歌神KTV 的两种计费方案说明.若晓莉和朋友们打算在此KTV 的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?( )A .6人B .7人C .8人D .9人二、填空题(每小题3分,共24分)11.用不等式表示:x 与5的差不小于x 的2倍:____________. 12.当有理数a <0时,6+a ________6-a (填“<”或“>”).13.关于x 的不等式组的解集在数轴上的表示如图,则不等式组的解集为________.14.当x 满足________时,式子x +52-1的值大于式子3x +22的值.15.不等式组⎩⎪⎨⎪⎧x -2<0,5x +1>2(x -1)的解集为______________.16.对一个数x 按如图所示的程序进行操作,规定:程序运行从“输入一个数x ”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x 的取值范围是________.17.若关于x 的不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则a 的取值范围是________.18.某校开学对学生进行军训,将学生编成8个组,如果每组人数比预定人数多1名,那么学生人数将超过100人;如果每组人数比预定人数少1名,那么学生人数将不到90名,则预定每组分配的人数为________.三、解答题(共66分)19.(8分)在公路上,常看到如图所示的不同的交通标志图形,它们有着不同的意义,如果设汽车载重为x ,速度为y ,宽度为l ,高度为h ,请你用不等式表示图中各种标志的意义.20.(8分)解下列不等式(组),并把解集在数轴上表示出来.(1)5x -2≤3x; (2)⎩⎨⎧x -23(2x -1)≤4,1+3x2>2x -1.21.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求有理数a 的取值范围.22.(10分)喷灌是一种先进的田间灌水技术,雾化指标P 是它的技术要素之一,当喷嘴的直径为d (mm),喷头的工作压强为h (kPa)时,雾化指标P =100hd ,如果树喷灌时要求3000≤P ≤4000,若d =4 mm ,求h 的范围.23.(10分)定义:对于有理数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a ]=-2,那么a 的取值范围是____________;(2)如果[x +12]=3,求满足条件的所有正整数x .24.(10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B 种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.(12分)某工厂计划生产A,B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?参考答案与解析1.C 2.A 3.C 4.A 5.C 6.C 7.C 8.C 9.C 10.C 11.x -5≥2x 12.< 13.-4≤x <-114.x <1215.-1<x <2 16.x >4917.a >-36 18.1219.解:x ≤5.5t(2分) y ≤30km/h(4分) l ≤2m(6分) h ≤3.5m(8分) 20.解:(1)x ≤1(在数轴上表示解集略).(4分) (2)-10≤x <3(在数轴上表示解集略).(8分)21.解:由①,得x >-25,由②,得x <2a .(3分)又∵其有三个整数解,∴不等式组的解集为-25<x <2a ,(5分)∴2<2a ≤3,解得1<a ≤32.(8分)22.解:把d =4代入公式P =100h d ,得P =100h4,即P =25h .(3分)又由3000≤P ≤4000,可得⎩⎪⎨⎪⎧25h ≥3000,25h ≤4000,(6分)解得120≤h ≤160.(8分)答:h 的范围为120≤h ≤160.(10分) 23.解:(1)-2≤a <-1(4分)(2)根据题意得3≤x +12<4,解得5≤x <7,则满足条件的所有正整数为5,6.(10分)24.解:(1)设该商场计划购进A ,B 两种品牌的教学设备分别为x 套,y 套,由题意得⎩⎪⎨⎪⎧1.5x +1.2y =66,0.15x +0.2y =9,解得⎩⎪⎨⎪⎧x =20,y =30. 答:该商场计划购进A ,B 两种品牌的教学设备分别为20套,30套.(5分)(2)设A 种设备购进数量减少a 套,则B 种设备购进数量增加1.5a 套,由题意得1.5(20-a )+1.2(30+1.5a )≤69,解得a ≤10.答:A 种设备购进数量至多减少10套.(10分)25.解:(1)设甲材料每千克x 元,乙材料每千克y 元,由题意得⎩⎪⎨⎪⎧x +y =60,2x +3y =155,解得⎩⎪⎨⎪⎧x =25,y =35.答:甲材料每千克25元,乙材料每千克35元.(5分)(2)设生产A产品m件,生产B产品(60-m)件,则生产这60件产品的材料费为25×4m +35×1m+25×3(60-m)+35×3(60-m)=-45m+10800,由题意得-45m+10800≤9900,解得m≥20.(8分)又∵60-m≥38,解得m≤22,∴20≤m≤22,∵m为正整数,∴m的值为20,21,22.(10分)共有三种方案:①生产A产品20件,生产B产品40件;②生产A产品21件,生产B产品39件;③生产A产品22件,生产B产品38件.(12分)华东师大版七年级数学下册期中检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分) 1.下列方程中,是二元一次方程的是( ) A .xy =1 B .y =3x -1 C .x +1y=2 D .x 2+x -3=02.若a <b ,则下列各式中一定成立的是( ) A .a -1<b -1 B.a 3>b3C .-a <-bD .ac <bc3.不等式组⎩⎪⎨⎪⎧x -1>0,8-4x ≤0的解集在数轴上表示为( )4.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=445.已知关于x 的方程2x +4=m -x 的解是负数,则m 的取值范围是( ) A .m <43 B .m >43C .m <4D .m >46.已知a ,b 满足方程组⎩⎪⎨⎪⎧a +2b =8,2a +b =7,则a -b 的值为( )A .-1B .0C .1D .27.已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax +5y =4,5x +y =3与⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,则a ,b 的值为( ) A.⎩⎪⎨⎪⎧a =1,b =2 B.⎩⎪⎨⎪⎧a =-4,b =-6 C.⎩⎪⎨⎪⎧a =-6,b =2 D.⎩⎪⎨⎪⎧a =14,b =2 8.已知⎩⎪⎨⎪⎧3x +4y =4k ,4x +3y =3k +7且0<x +y <1,则k 的取值范围是( )A .-1<k <0B .-1<k <-12C .0<k <1D .-1<k <19.某商品的标价比成本价高m %,根据市场需要该商品需降价n %出售,为了不亏本,n 应满足( )A .n ≤mB .n ≤100m100+mC .n ≤m100+m D .n ≤100m100-m10.宜宾市某化工厂,现有A 种原料52千克,B 种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A 种原料3千克,B 种原料2千克;生产1件乙种产品需要A 种原料2千克,B 种原料4千克,则生产方案的种数为( ) A .4 B .5 C .6 D .7二、填空题(每小题3分,共24分)11.当x =________时,代数式3x -2与代数式6-x 的值相等.12.已知⎩⎪⎨⎪⎧x =-2,y =3是方程x -ky =1的解,那么k =________.13.不等式组⎩⎪⎨⎪⎧12x ≤1,2-x <3的解集是__________.14.已知x =3-2a 是不等式2(x -3)<x -1的一个解,那么a 的取值范围是________. 15.若3x +12的值比2x -23的值小1,则x 的值为________.16.如果4xa +2b -11-2y5a -2b -3=8是关于x ,y 的二元一次方程,那么a -b =________.17.已知关于x的不等式组⎩⎪⎨⎪⎧x -a ≥0,3-2x ≥-1的整数解共有5个,则a 的取值范围是________________.18.书店举行购书优惠活动,活动规则如下: ①一次性购书不超过100元,不享受打折优惠; ②一次性购书超过100元但不超过200元一律打九折; ③一次性购书200元以上一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元. 三、解答题(共66分)19.(8分)解下列方程或方程组:(1)3x -22=4x +23-1; (2)⎩⎪⎨⎪⎧3x -7y =8①,2x +y =11②.20.(8分)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1,把它的解集在数轴上表示出来,并写出不等式组的非负整数解.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A ,B 两种饮料各多少瓶?22.(10分)若关于x ,y 的方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解x 与y 的值的和等于2,求m 2-4m+4的值.23.(10分)定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.24.(10分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知这两种货车的装货情况如下表:(1)试求甲、乙两种货车每辆每次分别可运货物的吨数;(2)现租用该公司3辆甲种货车及5辆乙种货车,一次刚好运完这批货,如果按每吨付运费30元计算,货主应付多少运费?25.(12分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,其中直拍球拍的数量不低于总数量的70%,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.参考答案与解析1.B 2.A 3.A 4.A 5.C 6.A 7.D 8.A 9.B10.B 解析:设生产甲产品x 件,则乙产品(20-x )件,根据题意得⎩⎪⎨⎪⎧3x +2(20-x )≤52,2x +4(20-x )≤64,解得8≤x ≤12.∵x 为整数,∴x =8,9,10,11,12,∴有5种生产方案.故选B. 11.2 12.-1 13.-1<x ≤2 14.a >-1 15.-13516.-2 17.-3<a ≤-218.248或296 解析:设第一次购书的原价为x 元,则第二次购书的原价为3x 元,依题意得①当0<x ≤1003时,x +3x =229.4,解得x =57.35(舍去);②当1003<x ≤2003时,x +910×3x =229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x ≤100时,x +710×3x =229.4,解得x =74,此时两次购书原价总和为:4x =4×74=296.综上所述,小丽这两次购书原价的总和是248或296元.19.解:(1)x =4.(4分)(2)⎩⎪⎨⎪⎧x =5,y =1.(8分)20.解:不等式组的解集为-1≤x <3,(4分)在数轴上表示略,其非负整数解为0,1,2.(8分)21.解:设A 种饮料生产了x 瓶,B 种饮料生产了y瓶,根据题意得⎩⎪⎨⎪⎧x +y =100,2x +3y =270,(4分)解得⎩⎪⎨⎪⎧x =30,y =70.(7分)答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.(8分)22.解:⎩⎪⎨⎪⎧3x +5y =m +2①,2x +3y =m ②,由①-②,得x +2y =2③.∵x ,y 的值的和等于2,∴x +y =2④,由③-④,得y =0.把y =0代入④,得x =2.把x =2,y =0代入②,得m =4,(7分)∴m 2-4m +4=42-4×4+4=4.(10分)23.解:由题意得⎩⎪⎨⎪⎧3x -3-x +1>5,3x -3-x +1<9,(5分)解得72<x <112.(10分)24.解:(1)设甲、乙两种货车每辆每次分别可运x 吨货物,y 吨货物,由题意得⎩⎪⎨⎪⎧2x +3y =15.5,5x +6y =35,解得⎩⎪⎨⎪⎧x =4,y =2.5. 答:甲种货车每辆每次可运货物4吨,乙种货车每辆每次可运货物2.5吨.(7分) (2)30×(4×3+2.5×5)=735(元).(9分) 答:货主应付运费735元.(10分)25.解:(1)设直拍球拍每副x 元,横拍球每副y 元,由题意得⎩⎪⎨⎪⎧20(x +20)+15(y +20)=9000,5(x +20)+1600=10(y +20),解得⎩⎪⎨⎪⎧x =220,y =260. 答:直拍球拍每副220元,横拍球每副260元.(6分)(2)设购买直拍球拍m 副,则购买横拍球(40-m )副,由题意得⎩⎪⎨⎪⎧m ≥40×70%,m ≤3(40-m ),解得28≤m≤30.∵m 为整数,∴m 为28,29,30.(8分)设买40副球拍所需的费用为w ,则w =(220+20)m +(260+20)(40-m )=11200-40m .(10分)∴当m =28时,w =10080元;当m =29时,w =10040元;当m =30时,w =10000元,∴当m =30时,w 取最小值,最小值为10000元.答:购买直拍球拍30副,购买横拍球10副时,费用最少,最少费用为10000元.(12分)华东师大版七年级数学下册第9章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.一个正多边形的每个外角都等于36°,那么它是( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形 2.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线 C .∠3=12∠ACB D .CE 是△ABC 的角平分线第2题图第3题图3.如图,下列说法中错误的是( ) A .∠1不是△ABC 的外角 B .∠B <∠1+∠2 C .∠ACD 是△ABC 的外角 D .∠ACD >∠A +∠B4.下列长度的三条线段不能组成三角形的是( ) A .5,5,10 B .4,5,6 C .4,4,4 D .3,4,5 5.只用下列图形中的一种,能够铺满地面的是( ) A .正十边形 B .正八边形 C .正六边形 D .正五边形6.已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x ,则x 的取值范围是( )A .0<x <52B .x ≥52C .x >52D .0<x <107.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( ) A .13 B .14 C .15 D .168.如图,把一块含有30°角(∠A =30°)的直角三角板ABC 的直角顶点放在长方形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 在三角板的斜边上,如果∠1=40°,那么∠AFE 的度数是( )A .50°B .40°C .20°D .10°第8题图9.如图,已知在△ABC 中,∠B =∠C ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于点D ,∠AED =155°,则∠EDF 等于( )A .50°B .65°C .70°D .75°第9题图第10题图10.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a ,M 为正八边形内部的小正方形的一个顶点,则∠ABM 的度数及阴影部分的面积分别为( ) A .45°,2a 2B .60°,3a 2C .30°,4a 2D .75°,2a 2二、填空题(每小题3分,共24分)11.在△ABC 中,如果∠B =45°,∠C =72°,那么与∠A 相邻的一个外角等于________度. 12.如果三角形的三边长度分别为3a ,4a ,14,则a 的取值范围是____________.13.如图,AD,BE分别是△ABC的角平分线和高,∠BAC=40°,则∠AFE=________.第13题图第14题图14.如图,在△ABC中,AD是BC边上的中线,已知AB=5cm,AC=7cm,则△ACD与△ABD 的周长差为________cm.15.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2=________.第15题图第16题图第18题图16.维明公园的一段小路是由型号相同的五边形地砖平铺而成的,如图所示,是平铺图案的一部分,如果每一个五边形中有3个内角相等,那么这三个内角的度数都等于________.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.18.如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积是________.三、解答题(共66分)19.(8分)在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD 和∠ECD的度数.20.(10分)若六边形的内角之比为2∶4:4:4:5:5,求它的最大内角与最大的外角.21.(12分)在等腰△ABC中,腰AB=AC,BD是AC边上的中线,已知△ABD的周长比△BCD 的周长大8 cm,且腰长是底边长的3倍,求△ABC的周长.22.(12分)如图,在△ABC中,已知∠ABC=60°,∠ACB=54°,BE是AC边上的高,CF 是AB边上的高,H是BE和CF的交点,HD是∠BHC的平分线,求∠ABE,∠ACF和∠CHD的度数.23.(10分)已知两个正多边形,其中一个正多边形的外角是另一个正多边形外角的2倍,并且用这两个正多边形可以拼成平面图形,求这两个正多边形的边数.24.(14分)如图①,已知线段AB ,CD 相交于点O ,连接AC ,BD ,我们把形如图①的图形称之为“8字形”.如图②,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD ,AB 分别相交于M ,N .试解答下列问题:(1)仔细观察,在图②中有________个以线段AC 为边的“8字形”; (2)在图②中,若∠B =96°,∠C =100°,求∠P 的度数;(3)在图②中,若设∠C =α,∠B =β,∠CAP =13∠CAB ,∠CDP =13∠CDB ,试问∠P 与∠C ,∠B 之间存在着怎样的数量关系(用α,β表示∠P ),并说明理由; (4)如图③,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为________.参考答案与解析1.D 2.D 3.D 4.A 5.C 6.C 7.C 8.D 9.B 10.A 11.117 12.2<a <14 13.70° 14.215.225° 16.120° 17.30° 18.719.解:∵CD ⊥AB ,∴∠CDB =90°.∵∠B =60°,∴∠BCD =90°-∠B =90°-60°=30°.(3分)∵∠A =20°,∠B =60°,∠A +∠B +∠ACB =180°,∴∠ACB =100°.∵CE 是∠ACB 的平分线,∴∠ACE =12∠ACB =50°,(5分)∴∠CEB =∠A +∠ACE =20°+50°=70°,(7分)∴∠ECD =90°-70°=20°.(8分)20.解:设六边形最小的内角为2x ,则其他几个内角分别为4x ,4x ,4x ,5x ,5x .依题意得2x +4x +4x +4x +5x +5x =(6-2)×180°,(4分)整理得24x =720°,解得x =30°.(6分)所以最大的内角是5x =5×30°=150°,(8分)最大的外角是180°-2x =120°.(10分)21.解:设AB =AC =2x ,则BC =23x .∵BD 是AC 边上的中线,∴AD =CD =12AC =x .又∵AB +AD +BD -(BD +CD +BC )=8cm ,(4分)即2x +x +BD -BD -x -23x =8cm ,(6分)∴43x =8cm ,∴x =6cm ,(8分)∴△ABC 的周长为2x +2x +23x =12+12+4=28(cm).(12分)22.解:在△ABC 中,∠ABC =60°,∠ACB =54°,∴∠A =66°.∵∠AEB =90°,∠A =66°,∴∠ABE =24°.(3分)又∵∠AFC =90°,∴∠ACF =90°-66°=24°,(6分)∴∠HBC =∠ABC -∠ABE =60°-24°=36°,∠HCB =∠ACB -∠ACF =54°-24°=30°,∴∠BHC =180°-36°-30°=114°.(10分)∵HD 是∠BHC 的平分线,∴∠CHD =12∠BHC =57°.(12分)23.解:设这两个正多边形的边数分别为n ,k ,依题意有360°n =2×360°k,(3分)因此k=2n (n ≥3,且n 为整数),(5分)所以n =3,4,5,6,…,从而k =6,8,10,12,….(7分)其中正三角形和正六边形,正方形和正八边形,正五边形和正十边形能拼成平面图形.(10分)24.解:(1)2(2分)(2)∵∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,∴∠CAP =∠BAP ,∠BDP =∠CDP .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =∠P -∠B ,即∠P =12(∠C+∠B ).(5分)∵∠C =100°,∠B =96°,∴∠P =12(100°+96°)=98°.(7分)(3)∠P =13(β+2α).理由如下:∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,。
2024年华东师大版七年级数学上册阶段测试试卷含答案
2024年华东师大版七年级数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏一、选择题(共7题,共14分)1、代数式5x2-2x+6的值为9,则x2-0.4x+6值为()A. 6B. 6.6C. 15D. 92、按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是()A. 1022.0(精确到0.1)B. 1.0×103(精确到0.1)C. 1020(精确到十位)D. 1022.010(精确到千分位)3、【题文】下列各组线段中,不能构成三角形的是()A. 1,2,3B. 2, 3,4C. 3,4,5D. 4,5, 64、4的平方根为()A. 2B. ±2C. 4D. ±45、如图,AD隆脥BC垂足为D隆脧BAC=隆脧CAD下列说法正确的是()A. 射线AC是鈻�ABD的角平分线B. 直线BD是鈻�ABD的边AD上的高C. 线段AC是鈻�ABD的中线D. 线段AD是鈻�ABC的边BC上的高6、水利勘察队沿一条河向上游走了5.5千米,又继续向上游走了4.8千米,然后又向下游走了5.2千米,又向下游走了4.1千米,这时勘察队在出发点的()处.A. 上游1千米B. 下游9千米C. 上游10.3千米D. 下游1千米7、如图是金昌市在“四城”联创活动中制作的一个正方体宣传品的展开图,将它折叠成正方体后“创”字的对面是()A. 文B. 明C. 城D. 市评卷人得分二、填空题(共6题,共12分)8、观察下面的点阵图和相应的等式;探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;④____ ⑤____.(2)试用含有n的式子表示第n个点阵图和相应的等式规律.(3)根据上面算式的规律,请计算:41+43+45+ +99.9、一年共有12个月,闰年的二月是29天,又有4个小月,7个大月,所以闰年共有29×1+30×4×31×7=366(天).反过来思考:如果非负整数a,b,c满足等式:29a+30b+31c=366(*),那么a+b+c=____,这样的数组(a,b,c)共有____组,它们分别是____.10、在方程中,如果是它的一个解,那么的值为______.11、已知是方程组的解,那么一次函数y=x-和y=8-2x的交点坐标是______ .12、6326000精确到万位用科学记数法表示为____.13、分解因式:(2a-b)2+8ab=____.评卷人得分三、判断题(共9题,共18分)14、取线段AB的中点M,则AB-AM=BM.____.(判断对错)15、(4x+3b)(4x-3b)=4x2-3b2;____(判断对错)16、若|a-2|+|3-b|=0,那么.____.(判断对错)17、两个数的和一定大于这两数的差.____.(判断对错)18、判断:过直线上一点不存在直线与已知直线垂直. ()19、面积为0.9的正方形的边长是有理数.____(判断对错)20、周长相等的三角形是全等三角形.()21、判断:当字母的取值不同,则同一个代数式的值就一定不同()22、三角形中除了等边三角形外,其它的三角形均称为不等边三角形.评卷人得分四、其他(共2题,共4分)23、据电力部门统计;每天8:00至21:00是用点高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:。
2022-2023年华东师大版初中数学七年级上册期末考试检测试卷及答案(共5套)
2022-2023年华东师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(每小题4分,共40分).1.一个数比它的相反数小,这个数是()A.正数B.负数C.整数D.非负数2.当3x =时,代数式x 210-的值是().A.1 B.2C.3D.43.下面不是同类项的是().A.2-与12B.b a 22-与b a 2C.m 2与n 2D.22x y -与2212y x 4.下列式子中计算正确的是().A.22550x y xy -=B.22523a a -=C.22243xy xy xy -=D.235a b ab+=5.下列各数中,比3-大的数是().A.π-B.1.3-C.4-D.2-6.下列物体中,主视图是圆的是().A B C D 7.中国药学家发明的青蒿素为保护人类健康做出了重大贡献,荣获2015年诺贝尔生理学或医学奖,奖金约为3020000元人民币.将3020000用科学记数法表示为().A.41002.3⨯B.410302⨯C.61002.3⨯D.610302⨯8.如图,锯木板前,在木板两端固定两个点,用墨盒弹一根墨线然后再锯,这样做的数学道理是().A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线D.经过已知直线外一点,有且只有一条直线与已知直线平行9.下面图形中,射线OP 是表示北偏东60°方向的是().10.一组数据:2,1,3,x ,7,-9,…,满足“从第三个数起,若前两个数依次为a 、b ,则紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到,那么该组数据中的x 为().A.-2B.-1C.1D.2二、填空题(每小题4分,共24分).11.在有理数5.0-、-5、35中,属于分数的共有个.12.把多项式x x +-229按字母x 降幂排列是.13.若50A ∠=︒,则A ∠的补角为.14.在数轴上,点A 表示的数是5,若点B 与A 点之间距离是8,则点B 表示的数是.15.如图,直线a ∥b ,将三角尺的直角顶点放在直线b 上,若∠1=35°,则∠2=.16.观察下列数字:第1层12第2层456第3层9101112第4层1617181920…………在上述数字宝塔中,第4层的第二个数是17,请问2510为第层第个数.三、解答题(共86分).17.(8分)计算:5×(-2)+(-8)÷(-2)18.(8分)计算:()5497332÷-+-19.(8分)先化简,再求值:()()y x xy y x xy y x 22252223--++,其中1=x ,1-=y .(第15题图)纸上的四个格点,根据要求在网格中画图并标注相关字母.①画线段AB;②画直线AC;③过点B画AD的平行线BE;④过点D画AC的垂线,垂足为F.BC.AB,8=20=(1)试求出线段AC的长;(2)如果点O是线段AC的中点.请求线段OB的长.22.(10分)根据解答过程填空(写出推理理由或根据):DC证明∵∠DAF=∠F(已知)∴AD∥BF()∴∠D=∠DCF()∵∠B=∠D()∴∠=∠DCF(等量代换)∴AB∥DC()23.(10分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30、-25、-30、+28、-29、-16、-15、(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?24.(12分)下列是某初一数学兴趣小组探究三角形内角和的过程,请根据他们的探究过程,结合所学知识,解答下列问题.兴趣小组将图1△ABC三个内角剪拼成图2,由此得△ABC 三个内角的和为180度.(1)请利用图3证明上述结论.(2)三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图4,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.①请探究出∠ACD与∠A、∠B的关系,并直接填空:∠ACD=.②如图5是一个五角星,请利用上述结论求∠A+∠B+∠C+∠D+∠E的值.25.(14分)我们知道:对边平行且相等,四个角都是直角的四边形是长方形.你可以利用这一结论解答问题.(1)如图1是某直三棱柱的表面展开图.①请指出图中哪三个字母表示多面体的同一点;②如果沿BC、GH将其表面展开图.....剪成三块,恰好拼成一个长方形,那么△BMC应满足什么条件?(直接写出所有满足条件......,不必说明理由)(2)将图2中边长都是20cm的等边三角形纸片剪拼成一个底面是等边三角形的直三棱柱模型,使它的表面积与原等边三角形的面积相等;请按要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据).参考答案:一、选择题(每小题4分,共40分)1.B ;2.D;3.C;4.C;5.D ;6.C;7.C ;8.A ;9.C ;10.B.二、填空题(每小题4分,共24分)11.2;12.229x x -++;13.130°;14.3-或13;(每对一个得两分)15.55°;16.50、11.三、解答题17.(本题8分)解:原式=-10+4………6分(化简正确每个2分)=-6……………8分18.(本题8分)解:原式=()45293⨯-+-………………………4分(化简正确每个2分)=()4589⨯-+-………………………6分=()109-+-………………………………7分=19-……………………………………8分19.(本题8分)解:原式=y x xy y x xy y x 22254263--++……4分xy 2=……………………………5分当1,1-==y x 时,原式=()112-⨯⨯………………………………7分2-=…………8分20.(本题8分)每画对一条得2分(点E、点F 没标注各扣1分)21.(本题8分)解:(1)∵BC AB AC +=…………2分又∵AB=20,BC=8∴AC 820+=………………………………………………3分28=………………………………………………4分(2)∵O 是AC 的中点,∴AC CO 21=……………………………………………5分14=……………………………………………6分∴BC CO OB -=…………………………………………7分814-=6=……………………………………………8分22.(本题10分)证明:∵∠DAF=∠F(已知)∴AD∥BF(内错角相等,两直线平行)…………2分∴∠D=∠DCF(两直线平行,内错角相等)………4分∵∠B=∠D(已知)………………………………6分∴∠B=∠DCF(等量代换)………………………8分∴AB∥DC (同位角相等,两直线平行).……………10分23.(本题10分)解:(1)∵+30-25-30+28-29-16-15=-57………………………2分∴经过这7天,仓库里的水泥减少了57吨……………………3分(2)∵200+57=257……………………………………………4分∴那么7天前,仓库里存有水泥257吨……………………6分(3)依题意:进库的装卸费为:()()[]a a 582830=+++;………………7分出库的装卸费为:[]b b 1151516293025=-+-+-+-+-…………8分∴这7天要付多少元装卸费58115a b +…10分(直接列式求得答案且正确不扣分)24.(本题12分)证明:(1)过点C 作AB CM //………………1分AB CM // (已作)2∠=∠∴A (两直线平行,同位角相等)………2分1∠=∠B (两直线平行,内错角相等)……………3分018021=∠+∠+∠BCA ………………………4分0180=∠+∠+∠∴B A BCA ………………………5分(2)①∠A+∠B,…………………………………8分②对于△BDN,∠MNA=∠B+∠D,……………9分对于△CEM ,∠NMA=∠C+∠E,…………10分对于△ANM ,∠A+∠MNA+∠NMA=180o ,……11分∴∠A+∠B+∠D+∠C+∠E=180o ,……………………12分25.(本题14分)解:(1)点A、M、D 三个字母表示多面体的同一点.……………3分(2)△BMC 应满足的条件是:a、∠BMC=90°,且BM=DH,或CM=DH;………………5分b、∠MBC=90°,且BM=DH,或BC=DH;……………7分c、∠BCM=90°,且BC=DH,或CM=DH;……………9分(3)如下图,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可.2022-2023年华东师大版数学七年级上册期末考试测试卷及答案(二)一、选择题(本大题共10小题,每小题3分,共30分)1.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠52.已知:如图,点E、F分别在直线AB、CD上,点G、H在两直线之间,线段EF与GH相交于点O,且有∠AEF+∠CFE=180°,∠AEF﹣∠1=∠2,则在图中相等的角共有()A.5对B.6对C.7对D.8对3.当m=-1时,下列代数式是五次三项式的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(初一)数学上册试题学校: 班级: 姓名:考试时间:120分钟 满分:150分一、选择题:(本大题有10个小题,每小题4分,共40分。
每题后面的四个选项中只有一个正确,请将正确的选项填入题后的括号里)1.如果+3吨表示运入仓库的大米吨数, 那么运出仓库5吨大米表示为( )。
A .-5吨B .+5吨C .-3吨D .+3吨 2.下列各式正确的是( )。
A .33--=B .+(-3)=3C .(3)3--=D .-(-3)=-33.如图,数轴上的A 、B 两点分别表示有理数a 、b,下列式子中不正确的是( )。
A. 0a b +<B. 0a b -<C. 0a b -+>D. b a >4.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为( )。
A.149×106千米2B. 1.49×108千米2C. 14.9×107千米2D. 0.149×109千25.在数12、—20、211-、 0 、—(—5)、—|+3|中,负数有( )。
A.2 个 B. 3个 C. 4个 D.5个 6.下列说法中,正确的是( )。
A .a -是正数 B.-a 是负数 C.-a 是负数 D.a -不是负数 7.在下列的代数式的写法中,表示正确的一个是( )。
A .“负x 的平方”记作-2x B.“y 与311的积”记作y 311 C.“x 的3倍”记作x3 D.“a 除以2b 的商”记作ba 2 8.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不另拿钱购买,最多可以喝矿泉水( )。
A. 3瓶B. 4瓶C. 5瓶D. 6瓶 9.若,0,5,7>+==y x y x 且那么y x -的值是( )。
A. 2或12B. 2或-12C. -2或12D.- 2或-1210.计算:1211-=,2213-=,3217-=,42115-=,52131-=,··· ···归纳各计算结果中的个位数字规律,则201021-的个位数字是( )。
A. 1 B. 3 C. 7 D. 5 二、填空题:(本大题有6个小题,每小题4分,共24分。
请将正确的答案填入每题中的横线上)11.如果3-m 与2m+1互为相反数,则m=_____ ___。
12.万润发出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差 kg 。
13.在数轴上A 点表示3,B 点表示2-,那么A 、B 两点之间的距离是 。
4.3016.下列图案由边长均等的黑、白两色正方形按一定规律拼接而成,按此规律:第5个图案中白色正方形的个数为___________.三、解答题:(本大题有4个小题,每小题6分,共24分。
要写出必要的步骤或推理过程)17.在数轴上表示下列各数:(4),-- 3.5,-- 1(),2+- 0, ( 2.5),++ 112并用“<”号把这些数连接起来。
18.计算:(1)(23)(41)---- (2) )511(3)511(13)511(5-⨯--⨯+-⨯-19.若“三角 表示运算a-b+c , “方框” 表示运算x-y+z+w 。
求: × 表示的运算,并计算结果.图一 图二 图三 -4 -3 -2 -1 12 320.已知a 、b 互为相反数且0≠a ,c 、d 互为倒数,m 的绝对值是最小的正整数,求()20112010a b a m cd b +-+-的值四、解答题:(本大题有4个小题,每小题10分,共40分。
要写出必要的步骤或推理过程)21.用简便方法计算:(1)232413243-+--- (2)1891519-⨯22.计算:(1)()()4812163-⨯⎪⎭⎫⎝⎛---÷-(2)()]41)4(240)53(5[31322⨯-÷--⨯-⨯--23.为体现社会对教师的尊重,2010年9月10日“教师节”这一天上午,出租车司机小王在东西向的公路上免费接送老师。
如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,―10,―12,+3,―13,―17. ①最后一名老师送到目的地时,小王距出车地点的什么方向?距离是多少? ②若汽车耗油量为0.4升/千米,这天上午汽车共耗油多少升?24.请阅读下面的材料:计算:)526110132()301(-+-÷-解法一:原式=)52(30161)301(101)301(32)301(-÷-÷-+÷--÷-=1215131201+-+- =61解法二:原式=12112()[()()]3036105-÷+-+ =15111()()330623010-÷-=-⨯=-解法三:原式的倒数为()30()526110132()301()526110132-⨯-+-=-÷-+-=125320+-+-=-10, 故原式=101-上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的,在正确的解法中,你认为解法 最简捷。
(4分) 请你用最简捷的解法计算:11322()()4261437-÷-+-五、解答题:(本大题有2个小题,每小题11分,共22分。
要写出必要的步骤或推理过程)25.如图,粗线A →C →B 和细线A →D →E →F →F →G →H →B 是公交车从少年宫A 到体育馆B 的两条行驶路线。
① 比较两条线路的长短(简要在下图上画出比较的痕迹);(3分)② 小丽坐出租车由体育馆B 到少年宫A ,假设出租车的收费标准为:起步价为7元,3千米以后每千米1.8元,用代数式表示出租车的收费m 元与行驶路程s (s >3)千米之间的关系; (4分)③ 如果这段路程长4.5千米,小丽身上有10元钱,够不够小丽坐出租车由体育馆到少年宫呢?说明理由。
(4分)A D 体育馆少年宫B CEFGH26.探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 … …(1)图中十字框中的五个偶数的和与中间的偶数16有什么关系?(3分) (2)移动十字架,设十字架中间的偶数为x ,用代数式表示十字框中的五个偶数的和;(4分)(3)若将十字框上下左右移动,可框住另外的五个偶数,则能框住五个偶数的和等于2010吗?如能,写出这五个偶数;如不能,说明理由。
(4分)七年级(初一)上试题参考答案一、ACDBB DDCAB二、11.-4 12. 0.4 13. 5 14. 0.01 3 15. 5 16. 28 三、17.数轴表示略 3.5--<1()2+-<0<112<( 2.5)++<(4)-- 18. (1) 4 (2) -111111220. 由题意得0,1,1a b cdm +===,原式=1(1)011--+-= 四、21. (1)原式3122()()210234433=--+--=-+-=- (2)原式=1154(10)15150149191919-+⨯=-+=-22.(1)原式11116(8)21222=-÷--=-=(2)原式=13119[25()240(4)]9[1515]3543--⨯⨯--÷-⨯=--⨯-+ 1909093=--⨯=--=-23.(1)由题意得:1541310123131725-+--+--=-小王距出车地点的西方,距离是25千米 (2)由题意得:(15413101231317)0.4++-+++-+-+++-+-⨯(15413101231317)0.4870.434.8=+++++++⨯=⨯=(升)小王这天上午汽车共耗油34.8升24.解法一 解法三 原式的倒数为(13221322)(42)(42)(42)(42)(42)6143761437-+-⨯-=⨯--⨯-+⨯--⨯- =79281214-+-+=-, 故原式=114-五、25.(1) 两条线路的长度相等 (2) 7 1.8(3)m s =+-(3)当4.5s =时,7 1.8(4.53)7 1.8 1.57 2.79.710m =+-=+⨯=+=<小丽能坐出租车由体育馆到少年宫.26. (1) 图中十字框中的五个偶数的和是中间的偶数16的5倍。
(2) (2)(2)(10)(10)5x x x x x x -++++-++=(3)不能。
理由:设十字架中间的偶数为x ,则(2)(2)(10)(10)5x x x x x x -++++-++==2010,402x =。
而x 左边应为400,x 右边应为404,400不与x 同排,在x 上排之末,所以十字框上下左右移动,框不住五个偶数的和能等于2010。
七年级(初一)下册试题一、选择题:(本大题10个小题,每小题3分,共30分) 1.下列方程中,是一元一次方程的是( ) A .112x-= B .210x -= C .23x y -= D .132x -=2.等边三角形的对称轴有( )A.1条B.2条C.3条D.4条3.下列不等式中,解集是1x >的不等式是( )A .33x >-B .43x +>C .235x +>D .235x -+>F E D CB ADCB A5.如右图所示,数轴上所表示的不等式组的解集是( ) A .12x -<≤ B .12x -≤≤ C .1x >- D .2x ≤6.已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江、黄河的长分别是x 千米,y 千米,则下列方程组中正确的是( )A .836651284x y y x -=⎧⎨-=⎩B .836651284y x y x -=⎧⎨-=⎩C .836561284x y x y -=⎧⎨-=⎩D .836561284y x x y -=⎧⎨-=⎩ 7.下列事件中,必然发生的事件是( )A .期末考试数学得满分B .若两个角是对顶角,则这两个角相等C .今天刮风了,明天会下雨D .如果a b =,则a b =8.如右图,∠A =32°,∠B =45°,∠C =38°,则∠DFB 等于( ) A .105° B .110° C .115° D .120°9.已知2a x =+,1b x =-,且3a b >>,则x 的取值范围是( ) A . B .4x < C .或 D .14x <<10.在一张挂历上,任意圈出一个竖列上相邻3个数的和不可能是( ) A .60 B .39 C .40 D .57二、填空题(共10小题,每小题3分,共30分) 1.用正三角形和_____________能铺满地面;2.当x =________时,代数式23x +与35x -的值互为相反数;3.x 与3的和不小于6-,用不等式表示为_____________;4.已知一个多边形的内角和是2340°,这个多边形是_______边形;5.等腰三角形两边长分别为4cm 和5cm ,则这个三角形的周长 是_________________;6.如图,在△ABC 中,AB =AC ,BD 是∠ABC 的平分线, 若∠ADB =93°,则∠A =______;7.若不等式组8x x m <⎧⎨>⎩无解,则m 的取值范围是____________;8.在一个袋子中装有10个红球,2个黄球,每个球除颜色外都相同,搅匀后,摸到_____色的球可能性大. 9.解方程|21x-|= 3,则x = __________. 10.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.三、解方程(组)或不等式组,并将不等式组的解集在数轴上表示出来(每小题5分,D C B AE D C BA 1. x+22x 3=+163- 2. 4239x y x y +=⎧⎨+=⎩3. 求不等式组255256715x xx x -<-⎧⎨-≥-⎩的解集,并将不等式组的解集在数轴上表示出来.四、解答题(1小题5分,2小题6分,3小题7分,共18分) 1.从“不太可能”、“不可能”、“很有可能”和“必然”中选择适当的词描述下列事件. (1)若三角形是等腰三角形,则它的两个底角相等;(2)任画两条直线与另一条直线都相交,得到两个彼此相等的同位角; (3)小强对数学很有兴趣,常钻研教材内容,在数学测验中取得好成绩; (4)在电话上随机拨一串数字,刚好打通了好朋友的电话; (5)互为倒数的两个有理数符号相同.2.如图,AD ∥BC ,BD 平分∠ABC ,试问AB 与AD 相等吗?说明理由.3.在△ABC 中,∠ADB =100°,∠C =80°,∠BAD =12∠DAC ,BE 平分∠ABC ,求∠BED 的度数.五、列方程(组)或不等式(组)解应用题(每题7分,共14分) 1.某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.如果每套定价700元,软11 / 11 E C B A2.初三(2)班的一个综合实践活动小组去A 、B 两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,请你分别求出A 、B 两个超市今年“五一节”六、解答题(本题13分)如图,在△ABC 中,∠C=90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,点E 是BC 上一个动点(点E 与B 、C 不重合),连AE ,若a 、b 满足60210b a b -=⎧⎨-=⎩,且c 是不等式组12642233x x x x +⎧≤+⎪⎪⎨+⎪>-⎪⎩的最大整数解. (1)求a ,b ,c 的长;(2)若AE 平分△ABC 的周长,求∠BEA 的大小;(3)是否存在线段AE 将三角形ABC 的周长和面积同时平分,若存在,求出BE 的长;若不存在,请说明理由.两超市销售额去年共为150万元,今年共为170万元 A 超市销售额今年比去年增加15% B 超市销售额今年比去年增加10%。